Marzio Gerbella

Marzio Gerbella
Università di Parma | UNIPR

About

59
Publications
20,549
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,589
Citations
Additional affiliations
December 2018 - December 2021
Università di Parma
Position
  • Researcher
July 2018 - present
Università di Parma
Position
  • PostDoc Position
July 2016 - July 2018
Istituto Italiano di Tecnologia
Position
  • PostDoc Position

Publications

Publications (59)
Article
Full-text available
La corteccia prefrontale ventrolaterale (VLPF) caudale del macaco è delimitata posteriormente dal solco arcuato inferiore, dorsalmente dal solco principale e rostralmente dalla fossetta frontale inferiore ed è costituita da almeno 3 differenti domini funzionali: uno localizzato in corrispondenza del banco anteriore del solco arcuato, i Frontal Eye...
Article
Over the last century, anatomical studies have shown that the cerebral cortex can be subdivided into structurally distinct regions, giving rise to a new branch of neuroanatomy: 'architectonics'. Since then, architectonics has been often accused of being overly subjective, and its validity for the definition of functionally different cortical fields...
Article
We traced the cortical connections of the anterior intraparietal (AIP) area, which is known to play a crucial role in visuomotor transformations for grasping. AIP displayed major connections with 1) areas of the inferior parietal lobule convexity, the rostral part of the lateral intraparietal area and the SII region; 2) ventral visual stream areas...
Article
Full-text available
The caudal part of the macaque ventrolateral prefrontal cortex (VLPF) is part of several functionally distinct domains. In the present study we combined a cyto- and a myeloarchitectonic approach with a chemoarchitectonic approach based on the distribution of SMI-32 and Calbindin immunoreactivity, to determine the number and extent of architectonica...
Article
Simulation theories predict that the observation of other’s expressions modulates neural activity in the same centers controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptiv...
Article
Full-text available
The prefrontal cortex plays an important role in coding rules and producing context-appropriate behaviors. These processes necessarily require the generation of goals based on current context. Indeed, instructing stimuli are prospectively encoded in prefrontal cortex in relation to behavioral demands, but the coding format of this neural representa...
Research Proposal
We are editing a research topic aimed at describing the common and distinctive anatomo-functional aspects through which cognition and emotion shape the sensorimotor processes in primates. If you are interested in contributing a paper to this Research Topic, please participate through this link: https://www.frontiersin.org/research-topics/48747/the-...
Article
Full-text available
Humans and monkey studies showed that specific sectors of cerebellum and basal ganglia activate not only during execution but also during observation of hand actions. However, it is unknown whether, and how, these structures are engaged during the observation of actions performed by effectors different from the hand. To address this issue, in the p...
Article
Full-text available
About 85% of children with autism spectrum disorder (ASD) experience comorbid motor impairments, making it unclear whether white matter abnormalities previously found in ASD are related to social communication deficits, the hallmark of ASD, or instead related to comorbid motor impairment. Here we aim to understand specific white matter signatures o...
Article
Full-text available
As cold actions (i.e. actions devoid of an emotional content), also emotions are expressed with different vitality forms. For example, when an individual experiences a positive emotion, such as laughing as expression of happiness, this emotion can be conveyed to others by different intensities of face expressions and body postures. In the present s...
Article
Full-text available
Open science initiatives are creating opportunities to increase research coordination and impact in nonhuman primate (NHP) imaging. The PRIMatE Data and Resource Exchange community recently developed a collaboration-based strategic plan to advance NHP imaging as an integrative approach for multiscale neuroscience.
Article
Full-text available
Significance Vitality forms represent the different ways in which actions are performed (e.g., gentle, rude). They express the agent’s attitudes toward others. Previous data indicated that vitality forms of hand actions depend on the dorso-central insula. In the present study, we show that in addition to the insula, the middle cingulate cortex is a...
Poster
Full-text available
Social interactions rely on the capacity to communicate our attitude or intentions and to evaluate those of others. This behavioral exchange is based on different action and speech dynamics, defined vitality forms by Stern. For example, offering an apple can be performed kindly or rudely, according to the positive or negative attitude of the agent....
Article
Full-text available
Objective. Previous studies demonstrated the possibility to fabricate stereo-electroencephalography (SEEG) probes with high channel count and great design freedom, which incorporate macro-electrodes as well as micro-electrodes offering potential benefits for the pre-surgical evaluation of drug resistant epileptic patients. These new polyimide probe...
Article
Full-text available
In the macaque brain, projections from distant, interconnected cortical areas converge in specific zones of the striatum. For example, specific zones of the motor putamen are targets of projections from frontal motor, inferior parietal and ventrolateral prefrontal hand-related areas and thus are integral part of the so-called "lateral grasping netw...
Article
Laughter is a complex motor behavior occurring in both emotional and nonemotional contexts. Here, we investigated whether the different functions of laughter are mediated by distinct networks and, if this is the case, which are the white matter tracts sustaining them. We performed a multifiber tractography investigation placing seeds in regions inv...
Article
Full-text available
Unlike emotions, which are short-lasting events accompanied by viscero-motor responses, vitality forms are continuous internal states that modulate the motor behaviors of individuals and are devoid of the autonomic modifications that characterize real emotions. Despite the importance of vitality forms in social life, only recently have neurophysiol...
Article
Full-text available
The pre-supplementary motor area F6 is involved in a variety of functions in multiple domains, from planning/withholding goal-directed actions in space to rule-based cognitive processes and social interactions. Yet, the neural machinery underlying this functional heterogeneity remains unclear. Here, we measured local population dynamics in differen...
Chapter
Synopsis In this chapter we describe the anatomical and functional characteristics of the Posterior Parietal Cortex (PPC) of macaque monkeys and humans. We critically discuss the classical notion that the posterior parietal lobule is an association region, and contrast it with the more recent view that PPC is endowed with motor properties. We concl...
Article
Continuing investigations of corticostriatal connections in rodents emphasize an intricate architecture where striatal projections originate from different combinations of cortical layers, include an inhibitory component, and form terminal arborizations which are cell-type dependent, extensive or compact. Here, we report that in macaque monkeys, de...
Article
Full-text available
Current knowledge regarding the processing of observed manipulative actions (OMAs) (e.g., grasping, dragging, or dropping) is limited to grasping and underlying neural circuitry remains controversial. Here, we addressed these issues by combining chronic neuronal recordings along the anteroposterior extent of monkeys' anterior intraparietal (AIP) ar...
Article
Full-text available
The cingulate cortex is a mosaic of different anatomical fields, whose functional characterization is still a matter of debate. In humans, one method that may provide useful insights on the role of the different cingulate regions, and to tackle the issue of the functional differences between its anterior, middle and posterior subsectors, is intraco...
Article
Full-text available
Mirror neurons (MNs) are a class of cells originally discovered in the monkey ventral premotor cortex (PMv) and inferior parietal lobule (IPL). They discharge during both action execution and action observation and appear to play a crucial role in understanding others’ actions. It has been proposed that the mirror mechanism is based on a match betw...
Article
Full-text available
The mirror mechanism is a basic mechanism that transforms sensory representations of others' behaviours into one's own motor or visceromotor representations concerning that behaviour. In this review, we examine the different functions of the mirror mechanism according to its location in the brain, with particular emphasis on recent data concerning...
Article
Full-text available
Based on neural tracer injections we found evidence for 3 connectionally distinct sectors of the dorsal part of the macaque prefrontal area 46 (46d), located at different rostro-caudal levels. Specifically, a rostral sector displayed an almost exclusive and extensive intraprefrontal connectivity and extraprefrontal connections limited to superior t...
Poster
Full-text available
Actions can be expressed with different forms: for example gently or rudely. These forms has been named “vitality forms” by Stern (1985, 2010). In previous fMRI studies in humans, it has been demonstrated that the perception and the execution of reaching-grasping actions performed with different vitality forms activated the left dorso-central insul...
Article
Full-text available
Grasping is the most important skilled motor act of primates. It is based on a series of sensorimotor transformations through which the affordances of the objects to be grasped are transformed into appropriate hand movements. It is generally accepted that a circuit formed by inferior parietal areas AIP and PFG and ventral premotor area F5 represent...
Article
Full-text available
Following gaze is a crucial skill, in primates, for understanding where and at what others are looking, and often requires head rotation. The neural basis underlying head rotation are deemed to overlap with the parieto-frontal attention/gaze-shift network. Here, we show that a set of neurons in monkey’s Brodmann area 9/46dr (BA 9/46dr), which is in...
Article
The aim of the present review is to discuss the localization of circuits that allow recognition of emotional facial expressions in blindsight patients. Because recognition of facial expressions is function of different centers, and their localization is not always clear, we decided to discuss here three emotional facial expression - smiling, disgus...
Article
Full-text available
The vast majority of functional studies investigating mirror neurons (MNs) explored their properties in relation to hand actions, and very few investigated how MNs respond to mouth actions or communicative gestures. Since hand and mouth MNs were recorded in two partially overlapping sectors of the ventral precentral cortex of the macaque monkey, th...
Article
In primates, neural mechanisms for controlling skilled hand actions primarily rely on sensorimotor transformations. These transformations are mediated by circuits linking specific inferior parietal with ventral premotor areas in which sensory coding of objects' features automatically trigger appropriate hand motor programs. Recently, connectional s...
Poster
This study investigates the properties of Mirror Neurons of are Pre-SMA F6 during the observation of a go/no-go reaching-grasping task performed in both the: a) extrapersonal space; b) peripersonal space.
Article
Full-text available
Grasping relies on a network of parieto-frontal areas lying on the dorsolateral and dorsomedial parts of the hemispheres. However, the initiation and sequencing of voluntary actions also requires the contribution of mesial premotor regions, particularly the pre-supplementary motor area F6. We recorded 233 F6 neurons from 2 monkeys with chronic line...
Article
Full-text available
Pleasant touch may serve as a foundation for affiliative behavior, providing a mechanism for the formation and maintenance of social bonds among conspecifics. In humans, this touch is usually referred to as the caress. Dynamic caressing performed on the hairy skin with a velocity of 1–10 cm/sec is perceived as being pleasant and determines positive...
Article
Full-text available
The primate motor cortex, located in the caudal part of the frontal lobe, is anatomically and functionally heterogeneous. Specifically, rostral to the precentral motor area F1 (primary motor area), several architectonic, connectional, and functionally distinct premotor areas can be identified, which, based on common multimodal architectonic and con...
Article
Full-text available
Over the last two decades the insula has been described as the sensory “interoceptive cortex”. As a consequence, human brain imaging studies have been focusing on the role of insula in the sensory perception of emotions. However, evidence from neurophysiological studies on non-human primates have shown that the insula is involved in generating emot...
Article
Full-text available
Corticostriatal projections from the primate cortical motor areas partially overlap in different zones of a large postcommissural putaminal sector designated as "motor" putamen. These zones are at the origin of parallel basal ganglia-thalamocortical subloops involved in modulating the cortical motor output. However, it is still largely unknown how...
Article
Full-text available
We traced the connections of the macaque Granular Frontal Opercular (GrFO) area, located in the rostralmost part of the frontal opercular margin, and compared them with those of the caudally adjacent dorsal opercular (DO) and precentral opercular (PrCO) areas. Area GrFO displays strong connections with areas DO, PrCO, and ventrolateral prefrontal (...
Article
Full-text available
The caudal part of the macaque ventrolateral prefrontal (VLPF) cortex hosts several distinct areas or fields-45B, 45A, 8r, caudal 46vc, and caudal 12r-connected to the frontal eye field (area 8/FEF). To assess whether these areas/fields also display subcortical projections possibly mediating a role in controlling oculomotor behavior, we examined th...
Article
Full-text available
In the present study, based on injections of retro- or retro-anterograde tracers at the cortical level, we analyzed the amygdalar connections of the caudal ventrolateral prefrontal areas 45A and 45B of the macaque and compared them with those of the adjacent areas 8/FEF, 8r, 46v, and 12r. The results showed that areas 45A and 45B display reciprocal...
Article
Full-text available
We found that the macaque inferior parietal (PFG and anterior intraparietal [AIP]), ventral premotor (F5p and F5a), and ventrolateral prefrontal (rostral 46vc and intermediate 12r) areas forming a network involved in controlling purposeful hand actions ("lateral grasping network") are a source of corticotectal projections. Based on injections of an...
Article
Full-text available
We found that the ventral part of the prefrontal area 46 (46v) is connectionally heterogeneous. Specifically, the rostral part (46vr) displayed an almost exclusive and extensive intraprefrontal connectivity and extraprefrontal connections limited to area 24 and inferotemporal areas. In contrast, the caudal part (46vc) mostly displayed intraprefront...
Article
Full-text available
The macaque ventrolateral prefrontal (VLPF) area 12r is thought to be involved in higher-order nonspatial information processing. We found that this area is connectionally heterogeneous, and the intermediate part is fully integrated in a cortical network involved in selecting and controlling object-oriented hand and mouth actions. Specifically, int...
Article
Full-text available
We traced the cortical connections of the anterior sector (F5a) of the macaque ventral premotor (PMv) area F5 and compared them with those of the adjacent F5 sectors, F5c and F5p. F5a displays a very dense "intrinsic" connectivity with F5c and F5p, premotor connections limited to F4 and F6/pre-SMA, relatively robust prefrontal connections with area...
Article
Full-text available
In both monkeys and humans, the observation of actions performed by others activates cortical motor areas. An unresolved question concerns the pathways through which motor areas receive visual information describing motor acts. Using functional magnetic resonance imaging (fMRI), we mapped the macaque brain regions activated during the observation o...
Article
We studied the sources of thalamic projections to the caudal ventrolateral prefrontal areas 45A and 45B, which display markedly distinct cortical connections [M. Gerbella et al. (2010) Cereb. Cortex, 20, 141-168], and compared them with those to area 8/FEF (frontal eye field). Both areas 45A and 45B were the targets of highly predominant projection...
Article
In the present study we first assessed that the hand motor field of the macaque ventral premotor area F5, involved in visuomotor control of hand actions, is connected to both the hand field of the primary motor cortex (M1) and the spinal cord. We then injected retroanterograde tracers in this field to completely illustrate its possible descending m...
Article
Full-text available
We have found that the 2 architectonic subdivisions of the prefrontal area 45, 45A and 45B, display connectivity patterns that clearly distinguish them from one another and from their neighboring architectonic areas. Area 45A is primarily connected to the frontal areas 45B, 12l, caudal 12r, 12o, 10, rostrodorsal 46, 9/8B, 44, 8/FEF (frontal eye fie...
Article
We used a cyto-, myelo-, and chemoarchitectonic (distribution of SMI-32 and calbindin immunoreactivity) approach to assess whether the rostral histochemical area F5 of the ventral premotor cortex (PMv) comprises architectonically distinct areas, possibly corresponding to functionally different fields. Three areas were identified, occupying differen...

Network

Cited By