ArticleLiterature Review

Dendritic Protein Synthesis, Synaptic Plasticity, and Memory

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Considerable evidence suggests that the formation of long-term memories requires a critical period of new protein synthesis. Recently, the notion that some of these newly synthesized proteins originate through local translation in neuronal dendrites has gained some traction. Here, we review the experimental support for this idea and highlight some of the key questions outstanding in this area.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Within neurons, functional autonomy of subcellular compartments such as synapses rely on the in-situ availability of proteins to meet the requirements for synaptic development and plasticity. Localization of RNAs to the synapse enables neurons to rapidly fulfill such on-site demands for stimulus-specific translation in a spatiotemporal manner (Holt and Schuman, 2013;Martin and Ephrussi, 2009;Sutton and Schuman, 2006). Transcriptomic analysis of the hippocampal neuropil has identified ~2550 mRNAs in excitatory synapses (Cajigas et al., 2012). ...
... Regulatory RNAs; predominantly comprised of noncoding transcripts, such miRNAs (Kye et al., 2007;Siegel et al., 2009), circular RNAs (Piwecka et al., 2017Rybak-Wolf et al., 2015;You et al., 2015) and diverse isoforms of 3' untranslated region (3'UTR) (Tushev et al., 2018); have been identified from the synapto-dendritic compartment. These regulatory RNAs, in association with RNA binding proteins (RBPs), determine the transport, stability, and translation of mRNAs associated with neuronal plasticity (Darnell, 2013;Holt and Schuman, 2013) and memory (Kandel, 2001;Sutton and Schuman, 2006). However, no such detailed characterization exists for long noncoding RNAs (lncRNAs). ...
... The local abundance of lncRNAs was analyzed from synaptoneurosomes (SN) prepared from the dorsal hippocampus after measuring the freezing response 3h post training as the activity-induced translation of plasticity related proteins occur within this timeframe (Bourtchouladze et al., 1998;O'Donnell and Sejnowski, 2014;Sutton and Schuman, 2006). qRT-PCR analysis revealed that the abundance of SynLAMP (1.83 ± 0.3 fold, p<0.0009), ...
Preprint
Characterization of brain-enriched lncRNAs have predominantly been restricted to the nuclear compartment; with limited exploration of synaptic lncRNA functions. Our RNA-seq analysis of synaptoneurosomes identify 94 synaptically-enriched lncRNAs in the adult mouse hippocampus. Among these, we characterized the roles of Pantr1, Pvt1 and 2410006H16Rik (named SynLAMP) in glutamatergic synapse development, plasticity and memory. Pvt1 regulates dendritic arborization, spine morphology and glutamatergic synapse formation via a molecular framework of synaptogenic genes; as detected by RNA-seq analysis of the hippocampal trancriptome following Pvt1 knockdown. SynLAMP and Pantr1 modulate mEPSC amplitude and surface AMPA receptor distribution in mature synapses. We find activity-invoked redistribution of these synaptic lncRNAs and their concommitant reversible association with RNA binding proteins. The activity-dependent, transcript-specific synaptic localization of SynLAMP and Pantr1 indicate their synapse-centric function. SynLAMP specifically regulates basal and activity-invoked nascent translation in somato-dendritic compartments and its RNAi disrupts memory consolidation, underlining its input-specific role in synaptic translation.
... Cognitive and behavioral alterations during learning and memory are mediated by changes at the molecular level, most of which seem to be remarkably conserved across species (Kandel et al., 2014). Although research to understand the molecular mechanisms of learning and memory has made great progress, and several protein factors important for plasticity have been identified (Kelleher et al., 2004;Sutton and Schuman, 2006), the exact underlying molecular pathways are yet to be fully characterized (Evans et al., 2021). ...
... Given the evidence that protein synthesis is required for longterm memory formation, identifying which proteins are synthesized, and their specific roles, is fundamental for understanding the complexity of the underpinning molecular mechanisms (Flexner et al., 1963;Sutton and Schuman, 2006;Costa-Mattioli et al., 2008;Gal-Ben-Ari et al., 2012;Hinz et al., 2013). Manipulation of protein synthesis provides useful information about the importance of protein synthesis in certain cell types and brain regions during memory consolidation, but it does not identify which proteins are being synthesized. ...
... Because of the rapid integration of puromycin into the newly synthesized amino-acid chain, this method can be used to examine local protein synthesis (Hafner et al., 2019). This is important because both in neurons and glial cells, it has been demonstrated that protein synthesis occurs locally, which likely plays an important role in synaptic plasticity (Sutton and Schuman, 2006;Sakers et al., 2017;Spaulding and Burgess, 2017). Click-chemistry compatible analogs of puromycin have been developed (Liu et al., 2012) and used to label neuronal nascent proteins (Holt et al., 2019). ...
Article
Full-text available
Research on learning and memory formation at the level of neural networks, as well as at the molecular level, is challenging due to the immense complexity of the brain. The zebrafish as a genetically tractable model organism can overcome many of the current challenges of studying molecular mechanisms of learning and memory formation. Zebrafish have a translucent, smaller and more accessible brain than that of mammals, allowing imaging of the entire brain during behavioral manipulations. Recent years have seen an extensive increase in published brain research describing the use of zebrafish for the study of learning and memory. Nevertheless, due to the complexity of the brain comprising many neural cell types that are difficult to isolate, it has been difficult to elucidate neural networks and molecular mechanisms involved in memory formation in an unbiased manner, even in zebrafish larvae. Therefore, data regarding the identity, location, and intensity of nascent proteins during memory formation is still sparse and our understanding of the molecular networks remains limited, indicating a need for new techniques. Here, we review recent progress in establishing learning paradigms for zebrafish and the development of methods to elucidate neural and molecular networks of learning. We describe various types of learning and highlight directions for future studies, focusing on molecular mechanisms of long-term memory formation and promising state-of-the-art techniques such as cell-type-specific metabolic labeling.
... Neurons, being highly polarized cells, undergo immense spatiotemporal regulation of protein synthesis, which is essential for the maintenance of synaptic structure, function, and plasticity (20,21,22,23). Regulation of protein synthesis is a common feature of different neuronal stimulation paradigms (e.g., glutamate, dopamine, BDNF), facilitating the activity-mediated changes in synaptic plasticity (22). ...
... Neurons, being highly polarized cells, undergo immense spatiotemporal regulation of protein synthesis, which is essential for the maintenance of synaptic structure, function, and plasticity (20,21,22,23). Regulation of protein synthesis is a common feature of different neuronal stimulation paradigms (e.g., glutamate, dopamine, BDNF), facilitating the activity-mediated changes in synaptic plasticity (22). Glutamate receptors are primary drivers of synaptic plasticity in the central nervous system, and among them, NMDARs and metabotropic glutamate receptors (mGluRs) are the major modulators of synaptic activity (24). ...
Article
Full-text available
Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity–mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases—increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer’s disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.
... Within neurons, mRNA translation can occur locally at synapses and all the components of the translational machinery are present near or at synapses, including 4E-BPs [15,28]. Localised mRNA translation near or at synapses facilitates the synthesis of proteins that are required to remodel neuronal connections in a synapse-specific manner [29][30][31]. While 4E-BPs seem to be important for plasticity mechanisms occurring during sleep, it is currently not known whether sleep-dependent 4E-BPs phosphorylation occurs specifically only at synapses or other parts of neurons as well. ...
... Fast Fourier transforms were performed on each EEG for consecutive 4 s epochs. Power was averaged within the slow oscillation (0.5-1.5 Hz), delta (1-4 Hz), theta (4-9 Hz), sigma/alpha (9-16 Hz), beta (16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30), and slow gamma (Slow γ, 30-50 Hz) frequency bands. EEG (FP and FC) and activity signals were used to classify polygraphic data into 4 s epochs of Active Wake (AW), Quiet Wake (QW), Intermediate State (IS), Rapid Eye Movement (R) sleep and non-REM (NR) sleep ( Figure 1D) using similar criteria as previously described [35]. ...
Preprint
Full-text available
Brain plasticity is induced by learning during wakefulness and is consolidated during sleep. But the molecular mechanisms involved are poorly understood and their relation to experience-dependent changes in brain activity remains to be clarified. Localized mRNA translation is im-portant for the structural changes at synapses supporting brain plasticity consolidation. Sleep has been shown activate the translation mTOR pathway, via phosphorylation of 4E-BPs, during brain plasticity, but whether this activation is specific to synapses is not known. We investigated this question using acute exposure of rats to an enriched environment (EE). We measured brain activity with EEGs and 4E-BPs phosphorylation at cortical and cerebellar synapses with Western Blot. Sleep significantly increased the conversion of 4E-BPs to its hyperphosphorylated form at synapses, especially after EE exposure. EE exposure increased oscillations in the alpha band dur-ing active exploration and in the theta to beta (4-30Hz) range, as well as spindle density, during NREM sleep. Theta activity during exploration and NREM spindle frequency predicted changes in 4E-BPs hyperphosphorylation at synapses. Our results provide a link between EEG and mo-lecular markers of plasticity across wake and sleep.
... One of the cellular mechanisms underlying memory formation, is the stabilization of synaptic contacts, and compelling evidence indicates that mRNA localization to activated spines leads to localized translation of proteins necessary for the structural and functional integrity of synaptic structures. 4,6,10,42,[45][46][47] To support memory consolidation, the activity-driven changes at synapses need to persist, by maintaining the local pool of plasticity proteins. 48,49 For a structural protein, such as b-actin, its mRNA is constitutively expressed, abundant, long-lived, and can persist at, or revisit, sites of activity to translate multiple rounds and promote stability of the cytoskeletal architecture within the postsynaptic region. ...
... In the last decades, studies have independently focused on the contribution of transcription and local translation to longterm memory. 1,3,42,45,67 Little is known about how these two molecular events converge to regulate memory consolidation, with recent studies indicating long-lasting transcriptional and translational programs for memory persistence. 49,67 By providing a high-resolution spatio-temporal insight into activity-dependent gene expression, we show that coupling between transcription and translation is maintained for subsequent cycles several hours after stimulation to stabilize activity-driven changes. ...
Article
Activity-dependent expression of immediate early genes (IEGs) is critical for long-term synaptic remodeling and memory. It remains unknown how IEGs are maintained for memory despite rapid transcript and protein turnover. To address this conundrum, we monitored Arc, an IEG essential for memory consolidation. Using a knockin mouse where endogenous Arc alleles were fluorescently tagged, we performed real-time imaging of Arc mRNA dynamics in individual neurons in cultures and brain tissue. Unexpectedly, a single burst stimulation was sufficient to induce cycles of transcriptional reactivation in the same neuron. Subsequent transcription cycles required translation, whereby new Arc proteins engaged in autoregulatory positive feedback to reinduce transcription. The ensuing Arc mRNAs preferentially localized at sites marked by previous Arc protein, assembling a "hotspot" of translation, and consolidating "hubs" of dendritic Arc. These cycles of transcription-translation coupling sustain protein expression and provide a mechanism by which a short-lived event may support long-term memory.
... Synaptic plasticity is a protein synthesis-dependent process in which longterm changes in synaptic efficacy (or "strength") arise as a result of neuronal activity/experience (80). In synaptic plasticity, there is a role for local protein synthesis at the synaptic site undergoing plasticity (81,82). There is also evidence that protein synthesis related to synaptic plasticity may specifically include ISR-regulated protein synthesis. ...
Article
Full-text available
The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an “always-on” mode, rather than the more canonical “on-demand” response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group’s initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.
... Potent and functional communication between their soma and distal processes (axons) is necessary for correct functions (Bentley & Banker, 2016). Consequently, correct localization of mRNA and subsequent local protein synthesis are needed (Sutton & Schuman, 2006;Wang et al., 2010;Perry & Fainzilber, 2014;Tom Dieck et al., 2014). ...
Preprint
Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a subset of previously unreported TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed KIF1C-knockout (KO) CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.
... Related to learning, a role for BVR has been established in synaptic plasticity. Synapses are dynamically modulated and can be structurally strengthened or weakened depending on the signal [99][100][101]. This plasticity has been linked to learning and memory involving various components of brain circuitry [102]. ...
Article
Full-text available
Biliverdin reductase-A (BVRA) is a multi-functional enzyme with a multitude of important roles in physiologic redox homeostasis. Classically, BVRA is well known for converting the heme metabolite biliverdin to bilirubin, which is a potent antioxidant in both the periphery and the brain. However, BVRA additionally participates in many neuroprotective signaling cascades in the brain that preserve cognition. Here, we review the neuroprotective roles of BVRA and bilirubin in the brain, which together constitute a BVRA/bilirubin axis that influences healthy aging and cognitive function.
... Indeed, mRNA translation is essential for many different forms of plasticity and particularly critical for shaping synaptic strength long-term. [3][4][5][6][7][8][9][10][11] Although there is a wealth of research uncovering how translation facilitates long-term plasticity of glutamatergic synapses, [11][12][13] our understanding of its contribution to activity-dependent changes in GABAergic synaptic strength remains limited. Synaptic inhibition modulates excitatory plasticity and circuit firing, maintaining an appropriate level of neural activity via excitatory/inhibitory (E/I) balance. ...
Preprint
Full-text available
Activity-dependent protein synthesis is crucial for many long-lasting forms of synaptic plasticity. However, our understanding of the translational mechanisms controlling inhibitory synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the precise mechanisms controlling gephyrin translation during this process remain unknown. Here, we identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting GABAergic synaptic structure and function. We find that iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and allowing for increased de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Overall, this work delineates a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.
... De novo protein synthesis plays a pivotal role in a variety of homeostatic and activity-dependent processes in the nervous system, including development, growth and regeneration, synaptic plasticity, and memory formation. 3 Furthermore, dysregulation of protein synthesis underlies many pathological conditions, such as autism, epilepsy, and chronic pain. 4,5 Protein synthesis is differentially affected in distinct cell types in disease states, requiring methods to assess rates of protein synthesis in a cell-type-specific manner. ...
Article
Full-text available
The fluorescent non-canonical amino acid tagging (FUNCAT) technique has been used to visualize newly synthesized proteins in cell lines and tissues. Here, we present a protocol for measuring protein synthesis in specific cell types in the mouse brain using in vivo FUNCAT. We describe steps for metabolically labeling newly synthesized proteins with azidohomoalanine, which introduces an azide group into the polypeptide. We then detail procedures for binding a fluorophore-conjugated alkyne to the azide group to allow its visualization. For complete details on the use and execution of this protocol, please refer to tom Dieck et al. (2012)¹ and Hooshmandi et al. (2023).²
... A host of other molecular mechanisms that bridge between rapid electrodynamic events and long-lasting changes in cell form via intracellular wetware are currently the topic of intense study. For example, the last decades have made clear that the process of translating genes into protein from messenger RNAs is distributed thoughout the dendritic arbor (rather than limited to the cell body, as previously thought) (Sutton and Schuman, 2006). This local translation supports an activity-dependent protein synthesis, which in some cases (e.g., the Arc gene) can lead to further transcription of the gene. ...
Article
Full-text available
Contemporary neural network models often overlook a central biological fact about neural processing: that single neurons are themselves complex, semi-autonomous computing systems. Both the information processing and information storage abilities of actual biological neurons vastly exceed the simple weighted sum of synaptic inputs computed by the “units” in standard neural network models. Neurons are eukaryotic cells that store information not only in synapses, but also in their dendritic structure and connectivity, as well as genetic “marking” in the epigenome of each individual cell. Each neuron computes a complex nonlinear function of its inputs, roughly equivalent in processing capacity to an entire 1990s-era neural network model. Furthermore, individual cells provide the biological interface between gene expression, ongoing neural processing, and stored long-term memory traces. Neurons in all organisms have these properties, which are thus relevant to all of neuroscience and cognitive biology. Single-cell computation may also play a particular role in explaining some unusual features of human cognition. The recognition of the centrality of cellular computation to “natural computation” in brains, and of the constraints it imposes upon brain evolution, thus has important implications for the evolution of cognition, and how we study it.
... To meet them, neurons are adapted to transport mRNA and produce proteins (translation) in axons and dendrites in a very efficient way (Cagnetta et al., 2018;Huber et al., 2000;Kang & Schuman, 1996;Ostroff et al., 2002). In this sense, the presence of RBPs is indispensable since they are involved in mRNA protection during transport and in local de novo translation (Piol et al., 2023;Sutton & Schuman, 2006). ...
Article
Full-text available
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine‐induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA‐binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
... Early LTP persists for 30-60 min and is associated with ionic activity and mediator redistribution. Conversely, late LTP can last from a few days up to a few weeks and is associated with gene expression and protein synthesis (Pfeiffer and Huber, 2006;Sutton and Schuman, 2006). NMDA receptors are often located in the same synapse with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which also recognize glutamate. ...
Article
Full-text available
Drug-resistant mental disorders, particularly treatment-resistant depression, pose a significant medical and social problem. To address this challenge, modern psychiatry is constantly exploring the use of novel treatment methods, including biological treatments, such as transcranial magnetic stimulation (TMS), and novel rapid-acting antidepressants, such as ketamine. While both TMS and ketamine demonstrate high effectiveness in reducing the severity of depressive symptoms, some patients still do not achieve the desired improvement. Recent literature suggests that combining these two methods may yield even stronger and longer-lasting results. This review aims to consolidate knowledge in this area and elucidate the potential mechanisms of action underlying the increased efficacy of combined treatment, which would provide a foundation for the development and optimization of future treatment protocols.
... Sustained neuronal firing leads to the accumulation of calcium ions within the cell [9,10], and calcium ions participate in various processes of signal transmission and activity modulation [11]. Neuronal firing activity also continuously regulates the synthesis and degradation of proteins within the cell [12], and these proteins are involved in nearly all aspects of neuronal activity [13]. The changes in calcium ions and proteins within the neuron have a significant impact on synaptic plasticity and neuronal function. ...
Article
Full-text available
In neuromorphic computing, the coding method of spiking neurons serves as the foundation and is crucial for various aspects of network operation. Existing mainstream coding methods, such as rate coding and temporal coding, have different focuses, and each has its own advantages and limitations. This paper proposes a novel coding scheme called activeness coding that integrates the strengths of both rate and temporal coding methods. It encompasses precise timing information of the most recent neuronal spike as well as the historical firing rate information. The results of basic characteristic tests demonstrate that this encoding method accurately expresses input information and exhibits robustness. Furthermore, an unsupervised learning method based on activeness-coding triplet spike-timing dependent plasticity (STDP) is introduced, with the MNIST classification task used as an example to assess the performance of this encoding method in solving cognitive tasks. Test results show an improvement in accuracy of approximately 4.5%. Additionally, activeness coding also exhibits potential advantages in terms of resource conservation. Overall, activeness offers a promising approach for spiking neural network encoding with implications for various applications in the field of neural computation.
... This data, along with the structure of the domains in METTL5, suggests that it may have a global epigenetic regulatory role in the brain in addition to its synapse-dependent role. Several studies have shown the importance of synapse-autonomous regulatory mechanisms, including adjustments mediated by METTL proteins (Kelleher et al. 2004;Sutton and Schuman 2006;Richard et al. 2019). In this study, we report a 13-year-old boy with intellectual disability and primary microcephaly with a novel splice site variant in the METTL5 gene using whole-exome sequencing (WES). ...
Article
Intellectual disability (ID) is a highly heterogeneous disorder, affecting 1–3% of the world’s population, which is associated with a significant disorder in cognitive development, adaptive functioning and behavioural problems in human life. In this study, due to the genetic heterogeneity of the disease, the whole-exome sequencing (WES) was performed on a 13-year-old boy suffering from microcephaly. In addition, Sanger sequencing, cosegregation analysis, and structural modelling were performed to identify and verify the causative variant in the proband and obligate carriers in the family. WES revealed a novel, homozygote 10-bp deletion in the donor splice site of 2nd exon of METTL5 gene (NM_014168:c.223_224+8del), which was found segregating with the phenotype in the pedigree. This variant meets the criteria of being pathogenic according to the American College of Medical Genetics (ACMG) variant interpretation guideline. Up to now, four pathogenic homozygous variants of the METTL5 gene have been reported that are associated with ID. A comparison of the clinical characteristics of our patient with previously reported cases revealed variability in the disease severity and some clinical presentations, including overall growth, dysmorphic facial features and behavioural psychiatric manifestations. The clinical findings of the case reported in this study extend the spectrum of genetic variations and phenotypes associated with ID and provide a better insight of the disease pathogenesis.
... Neuronal transport granules facilitate the long-distance transport of mRNAs from the cell body to the axon and dendrites, enabling local translation and activity-dependent regulation of protein synthesis in distal neuronal compartments and at the synapse (Ainger et al., 1993;Krichevsky and Kosik, 2001;Kanai et al., 2004;Willis et al., 2005). Maintaining local translation is crucial for synaptic function, regulating dendritic spine morphology, and modulating long-term potentiation (LTP) and long-term depression (LTD) (Sutton and Schuman, 2006;Holt and Schuman, 2013). In neurons, mRNA transport and local translation are tightly regulated by RBPs. ...
Article
Full-text available
Liquid–liquid phase separation results in the formation of dynamic biomolecular condensates, also known as membrane-less organelles, that allow for the assembly of functional compartments and higher order structures within cells. Multivalent, reversible interactions between RNA-binding proteins (RBPs), including FUS, TDP-43, and hnRNPA1, and/or RNA (e.g., RBP-RBP, RBP-RNA, RNA-RNA), result in the formation of ribonucleoprotein (RNP) condensates, which are critical for RNA processing, mRNA transport, stability, stress granule assembly, and translation. Stress granules, neuronal transport granules, and processing bodies are examples of cytoplasmic RNP condensates, while the nucleolus and Cajal bodies are representative nuclear RNP condensates. In neurons, RNP condensates promote long-range mRNA transport and local translation in the dendrites and axon, and are essential for spatiotemporal regulation of gene expression, axonal integrity and synaptic function. Mutations of RBPs and/or pathologic mislocalization and aggregation of RBPs are hallmarks of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer’s disease. ALS/FTD-linked mutations of RBPs alter the strength and reversibility of multivalent interactions with other RBPs and RNAs, resulting in aberrant phase transitions. These aberrant RNP condensates have detrimental functional consequences on mRNA stability, localization, and translation, and ultimately lead to compromised axonal integrity and synaptic function in disease. Pathogenic protein aggregation is dependent on various factors, and aberrant dynamically arrested RNP condensates may serve as an initial nucleation step for pathologic aggregate formation. Recent studies have focused on identifying mechanisms by which neurons resolve phase transitioned condensates to prevent the formation of pathogenic inclusions/aggregates. The present review focuses on the phase separation of neurodegenerative disease-linked RBPs, physiological functions of RNP condensates, and the pathologic role of aberrant phase transitions in neurodegenerative disease, particularly ALS/FTD. We also examine cellular mechanisms that contribute to the resolution of aberrant condensates in neurons, and potential therapeutic approaches to resolve aberrantly phase transitioned condensates at a molecular level.
... Experiments with synaptosomes from transgenic mice with conditional inactivation of ErbB-4 indicated the involvement of cellular protein translational signaling cascade centered on tuberous sclerosis protein 2 (Tsc-2 or tuberin), mammalian target of rapamycin complex 1 (mTORC-1), ribosomal protein S6, and eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP1), indicating the possible involvement of the Nrg-ErbB-4 axismediated localized protein translation in the maturation of synaptic connections of the developing brain [29]. Activity-dependent regulation of de novo synaptically localized protein translation is thought to underlie, at least in part, long-term plasticity mechanisms of memory formation and storage [30,31]. Further, neuronal deficits in activity-dependent local protein translation at the synapses are critically implicated in the pathogeneses of multiple diseases such as psychiatric, neurodevelopmental, and degenerative disorders [32]. ...
Article
Full-text available
Synapses are the cellular substrates of higher-order brain functions, and their dysfunction is an early and primary pathogenic mechanism across several neurological disorders. In particular, Alzheimer’s disease (AD) is categorized by prodromal structural and functional synaptic deficits, prior to the advent of classical behavioral and pathological features. Recent research has shown that the development, maintenance, and plasticity of synapses depend on localized protein translation. Synaptosomes and synaptoneurosomes are biochemically isolated synaptic terminal preparations which have long been used to examine a variety of synaptic processes ex vivo in both healthy and pathological conditions. These ex vivo preparations preserve the mRNA species and the protein translational machinery. Hence, they are excellent in organello tools for the study of alterations in mRNA levels and protein translation in neuropathologies. Evaluation of synapse-specific basal and activity-driven de novo protein translation activity can be conveniently performed in synaptosomal/synaptoneurosomal preparations from both rodent and human brain tissue samples. This review gives a quick overview of the methods for isolating synaptosomes and synaptoneurosomes before discussing the studies that have utilized these preparations to study localized synapse-specific protein translation in (patho)physiological situations, with an emphasis on AD. While the review is not an exhaustive accumulation of all the studies evaluating synaptic protein translation using the synaptosomal model, the aim is to assemble the most relevant studies that have done so. The hope is to provide a suitable research platform to aid neuroscientists to utilize the synaptosomal/synaptoneurosomal models to evaluate the molecular mechanisms of synaptic dysfunction within the specific confines of mRNA localization and protein translation research.
... neuronal proteins 7,11 . Likewise, neuronal activation dependent RNA localization and translation underlie synaptic plasticity, memory, axon guidance and regeneration 12,13 . Altogether, the brain hosts one of the most abundant and diverse RNA landscapes 14 , an observation that must be supported by the existence of complex posttranscriptional regulation mechanisms. ...
Article
Full-text available
RNA-binding proteins (RBPs) are key players regulating RNA processing and are associated with disorders ranging from cancer to neurodegeneration. Here, we present a proteomics workflow for large-scale identification of RBPs and their RNA-binding regions in the mammalian brain identifying 526 RBPs. Analysing brain tissue from males of the Huntington’s disease (HD) R6/2 mouse model uncovered differential RNA-binding of the alternative splicing regulator RBM5. Combining several omics workflows, we show that RBM5 binds differentially to transcripts enriched in pathways of neurodegeneration in R6/2 brain tissue. We further find these transcripts to undergo changes in splicing and demonstrate that RBM5 directly regulates these changes in human neurons derived from embryonic stem cells. Finally, we reveal that RBM5 interacts differently with several known huntingtin interactors and components of huntingtin aggregates. Collectively, we demonstrate the applicability of our method for capturing RNA interactor dynamics in the contexts of tissue and disease.
... In line with this, our findings indicate that storage bodies bind MTPTs and regulate their local translation in the vicinity of the organelles, supporting the evolutionary conservation of the molecular mechanism by which mRNA fate near mitochondria is influenced, and influences translation, in turn. In addition, accumulating evidence suggests that a quick and efficient response to stress requires rapid translation of select transcripts, as shown in neuronal axons during synaptic plasticity (Sutton & Schuman, 2006;Besse & Ephrussi, 2008;Rangaraju et al, 2019). Under these conditions, storage bodies offer this advantage to neighbouring mitochondria as inferred from the increased susceptibility of NTL-2-deficient animals to mitochondrial stress. ...
Article
Mitochondria are central regulators of healthspan and lifespan, yet the intricate choreography of multiple, tightly controlled steps regulating mitochondrial biogenesis remains poorly understood. Here, we uncover a pivotal role for specific elements of the 5'-3' mRNA degradation pathway in the regulation of mitochondrial abundance and function. We find that the mRNA degradation and the poly-A tail deadenylase CCR4-NOT complexes form distinct foci in somatic Caenorhabditis elegans cells that physically and functionally associate with mitochondria. Components of these two multi-subunit complexes bind transcripts of nuclear-encoded mitochondria-targeted proteins to regulate mitochondrial biogenesis during ageing in an opposite manner. In addition, we show that balanced degradation and storage of mitochondria-targeted protein mRNAs are critical for mitochondrial homeostasis, stress resistance and longevity. Our findings reveal a multifaceted role of mRNA metabolism in mitochondrial biogenesis and show that fine-tuning of mRNA turnover and local translation control mitochondrial abundance and promote longevity in response to stress and during ageing.
... Compared with 50 week-old C57BL/6J mice, Ldlr-/-.Leiden of the same age showed a inactivation of oxidative phosphorylation and an increase in mitochondrial dysfunction, in conjunction with a strong downregulation of the elongation factor eIF2 signaling pathway. The eiF2 signaling pathway is critical for mRNA translation in protein synthesis and has been shown to be important for cellular repair and replacement of dysfunctional cells or organelles, and for long-term synaptic plasticity and memory (Sutton and Schuman, 2006;Rios-Fuller et al., 2020). These features were already observed in Ldlr-/-.Leiden mice on a chow diet indicating that the Ldlr-/-.Leiden model as such (i.e., without HFD feeding) replicates human hallmarks of brain pathophysiology that cannot be studied in aged wildtype C57BL/6J mice, namely impaired mitochondrial function and protein synthesis (Cui et al., 2012;Anisimova et al., 2018). ...
Article
Full-text available
Introduction Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.
... Since LTM formation requires gene expression and new protein synthesis (17,23,(41)(42)(43)(44), we searched for transcriptomic alterations that are associated with aging related changes in LTS. To gain insights into the transcriptomic bases of aging associated impairments in LTS we sought to carry out total RNAseq analysis of L7 motor neurons (L7MN) from trained (STS or LTS) animals and untrained age matched controls across the age groups. ...
Preprint
Full-text available
Molecular mechanisms underlying aging associated impairments in learning and long-term memory storage are poorly understood. Here we leveraged the single identified motor neuron L7 in Aplysia, which mediates a form of non-associative learning, sensitization of the siphon-withdraw reflex, to assess the transcriptomic correlates of aging associated changes in learning. RNAseq analysis of the single L7 motor neuron isolated following short-term or long-term sensitization training of 8,10 and 12 months old Aplysia, corresponding to mature, late mature and senescent stages, has revealed progressive impairments in transcriptional plasticity during aging. Specifically, we observed modulation of the expression of multiple lncRNAs and mRNAs encoding transcription factors, regulators of translation, RNA methylation, and cytoskeletal rearrangements during learning and their deficits during aging. Our comparative gene expression analysis also revealed the recruitment of specific transcriptional changes in two other neurons, the motor neuron L11 and the giant cholinergic neuron R2 whose roles in long-term sensitization were previously not known. Taken together, our analyses establish cell type specific progressive impairments in the expression of learning- and memory-related components of the transcriptome during aging.
... Normal TOR signaling has previously been shown to be essential for synaptic plasticity (NMDA-R-dependent) [4,5] and spatial learning [6]. TOR is also involved in the de novo synthesis of synaptic proteins [7,8] and is required for morphological changes associated with LTP induction in dendritic spines. Disruption of TOR signaling in the central nervous system is also thought to affect neuronal excitability and contribute to epileptogenesis [9]. ...
Article
Full-text available
Torin-2, a synthetic compound, is a highly selective inhibitor of both TORC1 and TORC2 (target of rapamycin) complexes as an alternative to the well-known immunosuppressor, geroprotector, and potential anti-cancer natural compound rapamycin. Torin-2 is effective at hundreds of times lower concentrations and prevents some negative side effects of rapamycin. Moreover, it inhibits the rapamycin-resistant TORC2 complex. In this work, we evaluated transcriptomic changes in D. melanogaster heads induced with lifetime diets containing Torin-2 and suggested possible neuroprotective mechanisms of Torin-2. The analysis included D. melanogaster of three ages (2, 4, and 6 weeks old), separately for males and females. Torin-2, taken at the lowest concentration being tested (0.5 μM per 1 L of nutrient paste), had a slight positive effect on the lifespan of D. melanogaster males (+4% on the average) and no positive effect on females. At the same time, RNA-Seq analysis revealed interesting and previously undiscussed effects of Torin-2, which differed between sexes as well as in flies of different ages. Among the cellular pathways mostly altered by Torin-2 at the gene expression level, we identified immune response, protein folding (heat shock proteins), histone modification, actin cytoskeleton organization, phototransduction and sexual behavior. Additionally, we revealed that Torin-2 predominantly reduced the expression of Srr gene responsible for the conversion of L-serine to D-serine and thus regulating activity of NMDA receptor. Via western blot analysis, we showed than in old males Torin-2 tends to increase the ratio of the active phosphorylated form of ERK, the lowest node of the MAPK cascade, which may play a significant role in neuroprotection. Thus, the complex effect of Torin-2 may be due to the interplay of the immune system, hormonal background, and metabolism. Our work is of interest for further research in the field of NMDA-mediated neurodegeneration.
... The late phase of LTP as well as long-lasting structural plasticity with regular patterns requires newly synthesized proteins. 8,39,40 Our results demonstrate that naturalistic patterns of activity induce similar mechanisms at individual spines, and it will be important to determine what are the temporal dynamics of the signaling targets which regulate the function of these critical plasticity pathways. ...
Article
Full-text available
Learning is thought to involve physiological and structural changes at individual synapses. Synaptic plasticity has predominantly been studied using regular stimulation patterns, but neuronal activity in the brain normally follows a Poisson distribution. We used two-photon imaging and glutamate uncaging to investigate the structural plasticity of single dendritic spines using naturalistic activation patterns sampled from a Poisson distribution. We showed that naturalistic activation patterns elicit structural plasticity that is both NMDAR and protein synthesis-dependent. Furthermore, we uncovered that the longevity of structural plasticity is dependent on the temporal structure of the naturalistic pattern. Finally, we found that during the delivery of the naturalistic activity, spines underwent rapid structural growth that predicted the longevity of plasticity. This was not observed with regularly spaced activity. These data reveal that different temporal organizations of the same number of synaptic stimulations can produce rather distinct short and long-lasting structural plasticity.
... In many brain regions, dopamine (DA) and glutamate inputs converge onto common postsynaptic targets [1], with DA serving as a neuromodulator to influence synaptic transmission or plasticity at excitatory synapses [2][3][4][5]. Protein translation plays an important role in some forms of excitatory synaptic plasticity [6][7][8][9]. In hippocampus, signaling through D1 DA receptors (D1R) and protein kinase A (PKA) has long been implicated in the protein synthesis dependent phase of LTP [10][11][12][13][14], and D1Rs have also been shown to modulate protein translation directly [15,16]. ...
Preprint
Full-text available
Protein translation is essential for some forms of synaptic plasticity. We used nucleus accumbens (NAc) medium spiny neurons (MSN), co-cultured with cortical neurons to restore excitatory synapses, to examine whether dopamine modulates protein translation in NAc MSN. FUNCAT was used to measure translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 hr). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers, which have been described in other cell types. Supporting this, immunocytochemistry and proximity ligation assays revealed D1/NMDAR heteromers on NAc cells both in vitro and in vivo. Further, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390+APV. These results suggest that: 1) excitatory synaptic transmission stimulates translation in NAc MSNs, 2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and 3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
... Somatodendritic growth during CNS development is essential for the establishment of proper connections (Jan and Jan, 2010). In addition, the morphology of dendritic arbors is maintained and undergoes plastic changes through a process that requires activity-dependent transcription factors (TFs), protein translation, and extracellular neurotrophic factors (Sutton and Schuman, 2006;Wong and Ghosh, 2002;. ...
Article
Full-text available
Brain-derived neurotrophic factor (BDNF) and its receptors tropomyosin kinase receptor B (TrkB) and the p75 neurotrophin receptor (p75) are the primary regulators of dendritic growth in the CNS. After being bound by BDNF, TrkB and p75 are endocytosed into endosomes and continue signaling within the cell soma, dendrites, and axons. We studied the functional role of BDNF axonal signaling in cortical neurons derived from different transgenic mice using compartmentalized cultures in microfluidic devices. We found that axonal BDNF increased dendritic growth from the neuronal cell body in a cAMP response element-binding protein (CREB)-dependent manner. These effects were dependent on axonal TrkB but not p75 activity. Dynein-dependent BDNF-TrkB-containing endosome transport was required for long-distance induction of dendritic growth. Axonal signaling endosomes increased CREB and mTOR kinase activity in the cell body, and this increase in the activity of both proteins was required for general protein translation and the expression of Arc, a plasticity-associated gene, indicating a role for BDNF-TrkB axonal signaling endosomes in coordinating the transcription and translation of genes whose products contribute to learning and memory regulation.
... As such, it is counterintuitive that SCN1A gain-offunction is also associated with epilepsy. A high EI ratio may predispose to seizures, whereas excess inhibition may suppress PC firing rates and impair normal cortical function and maturation, and it has been shown that homeostatic plasticity allows cortical networks to restore PC firing rates and EI balance (Keck et al., 2017;Lignani et al., 2020;Sutton and Schuman, 2006;Turrigiano, 2008). Although homeostatic plasticity is thought to be important in the pathogenesis of epilepsy, but it has not yet been studied in detail (Lignani et al., 2020). ...
Preprint
Full-text available
SCN1A gain-of-function variants are associated with early onset developmental and epileptic encephalopathies (DEEs) that possess distinct clinical features compared to Dravet syndrome caused by SCN1A loss-of-function. However, it is unclear how SCN1A gain-of-function may predispose to cortical hyper-excitability and seizures. Here, we first report the clinical features of a patient carrying a de novo SCN1A variant (T162I) associated with neonatal-onset DEE, and then characterize the biophysical properties of T162I and three other SCN1A variants associated with neonatal-onset or early infantile DEE (I236V, P1345S, R1636Q). In voltage clamp experiments, three variants (T162I, P1345S and R1636Q) exhibited changes in activation and inactivation properties that enhanced window current, consistent with gain-of-function. Dynamic action potential clamp experiments utilising model neurons incorporating Nav1.1. channels supported a gain-of-function mechanism for all four variants. Here, the T162I, I236V, P1345S, and R1636Q variants exhibited higher peak firing rates relative to wild type and the T162I and R1636Q variants produced a hyperpolarized threshold and reduced neuronal rheobase. To explore the impact of these variants upon cortical excitability, we used a spiking network model containing an excitatory pyramidal cell (PC) and parvalbumin positive (PV) interneuron population. SCN1A gain-of-function was modeled by enhancing the excitability of PV interneurons and then incorporating three simple forms of homeostatic plasticity that restored pyramidal cell firing rates. We found that homeostatic plasticity mechanisms exerted differential impact upon network function, with changes to PV-to-PC and PC-to-PC synaptic strength predisposing to network instability. Overall, our findings support a role for SCN1A gain-of-function and inhibitory interneuron hyperexcitability in early onset DEE. We propose a mechanism through which homeostatic plasticity pathways can predispose to pathological excitatory activity and contribute to phenotypic variability in SCN1A disorders.
... The efficacy of synaptic transmission constantly changes depending on intracellular and/or extracellular cues. Upon electrical or chemical stimulation, the alteration of either the probability of presynaptic neurotransmitter release or the density of postsynaptic receptors results in synaptic plasticity, that is, enhanced or decreased synaptic transmission (Sutton & Schuman, 2006). ...
Article
The mammalian brain is a complex organ comprising neurons, glia, and more than 1 × 1014 synapses. Neurons are a heterogeneous group of electrically active cells, which form the framework of the complex circuitry of the brain. However, glial cells, which are primarily divided into astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte precursor cells (OPCs), constitute approximately half of all neural cells in the mammalian central nervous system (CNS) and mainly provide nutrition and tropic support to neurons in the brain. In the last two decades, the concept of "tripartite synapses" has drawn great attention, which emphasizes that astrocytes are an integral part of the synapse and regulate neuronal activity in a feedback manner after receiving neuronal signals. Since then, synaptic modulation by glial cells has been extensively studied and substantially revised. In this review, we summarize the latest significant findings on how glial cells, in particular, microglia and OL lineage cells, impact and remodel the structure and function of synapses in the brain. Our review highlights the cellular and molecular aspects of neuron-glia crosstalk and provides additional information on how aberrant synaptic communication between neurons and glia may contribute to neural pathologies.
Chapter
Testing of the synaptic tagging and capture (STC) hypothesis has produced remarkable work on the understanding of how a single neuron undergoes spatial and temporal encoding of information. Central to this work is the notion that STC processes can be compartment specific. Formed by activation of synaptic plasticity mechanisms and extending along confined dendritic domains, these compartments can work as the neuron’s information integration units. The association or dismissal of incoming information would depend on the plasticity-driven functional state of the compartment. With multiple streams of neural activity arriving at distinct synapses in a neuron, compartmentalization emerges as a key strategy to organize this information and enhance the neuron’s computing capability.
Article
Full-text available
The artificial brain is conceived as advanced intelligence technology, capable to emulate in‐memory processes occurring in the human brain by integrating synaptic devices. Within this context, improving the functionality of synaptic transistors to increase information processing density in neuromorphic chips is a major challenge in this field. In this article, Li‐ion migration promoting long afterglow organic light‐emitting transistors, which display exceptional postsynaptic brightness of 7000 cd m⁻² under low operational voltages of 10 V is presented. The postsynaptic current of 0.1 mA operating as a built‐in threshold switch is implemented as a firing point in these devices. The setting‐condition‐triggered long afterglow is employed to drive the photoisomerization process of photochromic molecules that mimic neurotransmitter transfer in the human brain for realizing a key memory rule, that is, the transition from long‐term memory to permanent memory. The combination of setting‐condition‐triggered long afterglow with photodiode amplifiers is also processed to emulate the human responding action after the setting‐training process. Overall, the successful integration in neuromorphic computing comprising stimulus judgment, photon emission, transition, and encoding, to emulate the complicated decision tree of the human brain is demonstrated.
Article
Protein kinase-B (Akt) and the mechanistic target of rapamycin (mTOR) signaling pathways are implicated in Alzheimer’s disease (AD) pathology. Akt/mTOR signaling pathways, activated by external inputs, enable new protein synthesis at the synapse and synaptic plasticity. The molecular mechanisms impeding new protein synthesis at the synapse in AD pathogenesis remain elusive. Here, we aimed to understand the molecular mechanisms prior to the manifestation of histopathological hallmarks by characterizing Akt1/mTOR signaling cascades and new protein synthesis in the hippocampus of WT and amyloid precursor protein/presenilin-1 (APP/PS1) male mice. Intriguingly, compared to those in WT mice, we found significant decreases in pAkt1, pGSK3β, pmTOR, pS6 ribosomal protein, and p4E-BP1 levels in both post nuclear supernatant and synaptosomes isolated from the hippocampus of one-month-old (presymptomatic) APP/PS1 mice. In synaptoneurosomes prepared from the hippocampus of presymptomatic APP/PS1 mice, activity-dependent protein synthesis at the synapse was impaired and this deficit was sustained in young adults. In hippocampal neurons from C57BL/6 mice, downregulation of Akt1 precluded synaptic activity–dependent protein synthesis at the dendrites but not in the soma. In three-month-old APP/PS1 mice, Akt activator (SC79) administration restored deficits in memory recall and activity-dependent synaptic protein synthesis. C57BL/6 mice administered with an Akt inhibitor (MK2206) resulted in memory recall deficits compared to those treated with vehicle. We conclude that dysregulation of Akt1/mTOR and its downstream signaling molecules in the hippocampus contribute to memory recall deficits and loss of activity-dependent synaptic protein synthesis. In AD mice, however, Akt activation ameliorates deficits in memory recall and activity-dependent synaptic protein synthesis.
Article
Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.
Article
Full-text available
Background The unfolding protein response is a critical biological process implicated in a variety of physiological functions and disease states across eukaryotes. Despite its significance, the role and underlying mechanisms of the response in the context of ischemic stroke remain elusive. Hence, this study endeavors to shed light on the mechanisms and role of the unfolding protein response in the context of ischemic stroke. Methods In this study, mRNA expression patterns were extracted from the GSE58294 and GSE16561 datasets in the GEO database. The screening and validation of protein response-related biomarkers in stroke patients, as well as the analysis of the immune effects of the pathway, were carried out. To identify the key genes in the unfolded protein response, we constructed diagnostic models using both random forest and support vector machine-recursive feature elimination methods. The internal validation was performed using a bootstrapping approach based on a random sample of 1,000 iterations. Lastly, the target gene was validated by RT-PCR using clinical samples. We utilized two algorithms, CIBERSORT and MCPcounter, to investigate the relationship between the model genes and immune cells. Additionally, we performed uniform clustering of ischemic stroke samples based on expression of genes related to the UPR pathway and analyzed the relationship between different clusters and clinical traits. The weighted gene co-expression network analysis was conducted to identify the core genes in various clusters, followed by enrichment analysis and protein profiling for the hub genes from different clusters. Results Our differential analysis revealed 44 genes related to the UPR pathway to be statistically significant. The integration of both machine learning algorithms resulted in the identification of 7 key genes, namely ATF6, EXOSC5, EEF2, LSM4, NOLC1, BANF1, and DNAJC3. These genes served as the foundation for a diagnostic model, with an area under the curve of 0.972. Following 1000 rounds of internal validation via randomized sampling, the model was confirmed to exhibit high levels of both specificity and sensitivity. Furthermore, the expression of these genes was found to be linked with the infiltration of immune cells such as neutrophils and CD8 T cells. The cluster analysis of ischemic stroke samples revealed three distinct groups, each with differential expression of most genes related to the UPR pathway, immune cell infiltration, and inflammatory factor secretion. The weighted gene co-expression network analysis showed that all three clusters were associated with the unfolded protein response, as evidenced by gene enrichment analysis and the protein landscape of each cluster. The results showed that the expression of the target gene in blood was consistent with the previous analysis. Conclusion The study of the relationship between UPR and ischemic stroke can help to better understand the underlying mechanisms of the disease and provide new targets for therapeutic intervention. For example, targeting the UPR pathway by blocking excessive autophagy or inducing moderate UPR could potentially reduce tissue injury and promote cell survival after ischemic stroke. In addition, the results of this study suggest that the use of UPR gene expression levels as biomarkers could improve the accuracy of early diagnosis and prognosis of ischemic stroke, leading to more personalized treatment strategies. Overall, this study highlights the importance of the UPR pathway in the pathology of ischemic stroke and provides a foundation for future studies in this field.
Chapter
Local translation in neuronal dendrites is an important basis for synaptic plasticity that underlies long-term memory formation. RNA granules, which are dynamic condensates consisting of mRNAs, ribosomes, and RNA-binding proteins, are essential for transporting mRNAs to dendrites and regulating local dendritic translation. Through coordinating and modulating the translation of specific mRNAs, these granules enable neurons to refine synaptic connections in response to synaptic inputs at the appropriate temporal and spatial scales. Recent studies have revealed that RNA granules form through liquid–liquid phase separation (LLPS), which allows them to adapt to changes in synaptic inputs and switch between different translational states. However, dysregulation of RNA granule dynamics, particularly the formation of aberrant aggregates, has been linked to neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Thus, RNA granules play a pivotal role in maintaining synaptic plasticity and cognitive function in healthy neurons, while their dysregulation may contribute to neurodegeneration.
Article
Full-text available
Brain plasticity is induced by learning during wakefulness and is consolidated during sleep. But the molecular mechanisms involved are poorly understood and their relation to experience-dependent changes in brain activity remains to be clarified. Localised mRNA translation is important for the structural changes at synapses supporting brain plasticity consolidation. The translation mTOR pathway, via phosphorylation of 4E-BPs, is known to be activate during sleep and contributes to brain plasticity, but whether this activation is specific to synapses is not known. We investigated this question using acute exposure of rats to an enriched environment (EE). We measured brain activity with EEGs and 4E-BP phosphorylation at cortical and cerebellar synapses with Western blot analyses. Sleep significantly increased the conversion of 4E-BPs to their hyperphosphorylated forms at synapses, especially after EE exposure. EE exposure increased oscillations in the alpha band during active exploration and in the theta-to-beta (4–30 Hz) range, as well as spindle density, during NREM sleep. Theta activity during exploration and NREM spindle frequency predicted changes in 4E-BP hyperphosphorylation at synapses. Hence, our results suggest a functional link between EEG and molecular markers of plasticity across wakefulness and sleep.
Article
The volume and the electric strength of an excitatory synapse is near linearly correlated with the area of its postsynaptic density (PSD). Extensive research in the past has revealed that the PSD assembly directly communicates with actin cytoskeleton in the spine to coordinate activity-induced spine volume enlargement as well as long-term stable spine structure maintenance. However, the molecular mechanism underlying the communication between the PSD assembly and spine actin cytoskeleton is poorly understood. In this study, we discover that in vitro reconstituted PSD condensates can promote actin polymerization and F-actin bundling without help of any actin regulatory proteins. The Homer scaffold protein within the PSD condensates and a positively charged actin-binding surface of the Homer EVH1 domain are essential for the PSD condensate-induced actin bundle formation in vitro and for spine growth in neurons. Homer-induced actin bundling can only occur when Homer forms condensate with other PSD scaffold proteins such as Shank and SAPAP. The PSD-induced actin bundle formation is sensitively regulated by CaMKII or by the product of the immediate early gene Homer1a. Thus, the communication between PSD and spine cytoskeleton may be modulated by targeting the phase separation of the PSD condensates.
Article
The volume and the electric strength of an excitatory synapse is near linearly correlated with the area of its postsynaptic density (PSD). Extensive research in the past has revealed that the PSD assembly directly communicates with actin cytoskeleton in the spine to coordinate activity-induced spine volume enlargement as well as long-term stable spine structure maintenance. However, the molecular mechanism underlying the communication between the PSD assembly and spine actin cytoskeleton is poorly understood. In this study, we discover that in vitro reconstituted PSD condensates can promote actin polymerization and F-actin bundling without help of any actin regulatory proteins. The Homer scaffold protein within the PSD condensates and a positively charged actin-binding surface of the Homer EVH1 domain are essential for the PSD condensate-induced actin bundle formation in vitro and for spine growth in neurons. Homer-induced actin bundling can only occur when Homer forms condensate with other PSD scaffold proteins such as Shank and SAPAP. The PSD-induced actin bundle formation is sensitively regulated by CaMKII or by the product of the immediate early gene Homer1a. Thus, the communication between PSD and spine cytoskeleton may be modulated by targeting the phase separation of the PSD condensates.
Article
The volume and the electric strength of an excitatory synapse is near linearly correlated with the area of its postsynaptic density (PSD). Extensive research in the past has revealed that the PSD assembly directly communicates with actin cytoskeleton in the spine to coordinate activity-induced spine volume enlargement as well as long-term stable spine structure maintenance. However, the molecular mechanism underlying the communication between the PSD assembly and spine actin cytoskeleton is poorly understood. In this study, we discover that in vitro reconstituted PSD condensates can promote actin polymerization and F-actin bundling without help of any actin regulatory proteins. The Homer scaffold protein within the PSD condensates and a positively charged actin-binding surface of the Homer EVH1 domain are essential for the PSD condensate-induced actin bundle formation in vitro and for spine growth in neurons. Homer-induced actin bundling can only occur when Homer forms condensate with other PSD scaffold proteins such as Shank and SAPAP. The PSD-induced actin bundle formation is sensitively regulated by CaMKII or by the product of the immediate early gene Homer1a. Thus, the communication between PSD and spine cytoskeleton may be modulated by targeting the phase separation of the PSD condensates.
Article
Clinical Relevance Continuous theta burst stimulation may be an important tool in the therapeutic management of amblyopia, when trying to correct the established neuronal imbalance. It is important to understand whether two sessions of continuous theta burst stimulation produce greater and longstanding changes in visual acuity and suppressive imbalance than one session of continuous theta burst stimulation Background We hypothesise that through the usage of continuous theta burst stimulation (cTBS) it is possible to change cortical excitability in a situation where visual impairment is present. Methods We selected 22 adult amblyopes, 18 females and 4 males, with an age range of 20–59 years. They were randomised into two groups: group A with 10 amblyopes was submitted to one session of cTBS and group B with 12 amblyopes submitted to two sessions of cTBS. Visual acuity (VA) and suppressive imbalance (SI) were evaluated immediately before and after stimulation in both groups A and B. A follow-up was done in both groups. Results For both group A and B, the VA improvements were significant after cTBS (p = 0.005 and p = 0.003, respectively). Regarding SI, both group A and B had significant improvements after cTBS (p = 0.03 and p = 0.005, respectively). Comparing groups, A and B no significant differences were found with regard to the results obtained both for VA (p = 0.72) and SI (p = 0.24). However, significant differences were found between group A and B with regard to the duration of stimulation effect for VA (p = 0.049) and SI (p = 0.03). Conclusion We conclude that two sessions of cTBS do not produce better results than one session of stimulation. However, it seems that two sessions of cTBS produce longstanding effects in VA and SI.
Article
Full-text available
The volume and the electric strength of an excitatory synapse is near linearly correlated with the area of its postsynaptic density (PSD). Extensive research in the past has revealed that the PSD assembly directly communicates with actin cytoskeleton in the spine to coordinate activity-induced spine volume enlargement as well as long-term stable spine structure maintenance. However, the molecular mechanism underlying the communication between the PSD assembly and spine actin cytoskeleton is poorly understood. In this study, we discover that in vitro reconstituted PSD condensates can promote actin polymerization and filamentous actin bundling without help of any actin regulatory proteins. The Homer scaffold protein within the PSD condensates and a positively charged actin binding surface of the Homer EVH1 domain are essential for the PSD condensate-induced actin bundle formation in vitro and for spine growth in neurons. Homer-induced actin bundling can only occur when Homer forms condensates with other PSD scaffold proteins such as Shank and SAPAP. The PSD-induced actin bundle formation is sensitively regulated by CaMKII or by the product of the immediate early gene Homer1a . Thus, the communication between PSD and spine cytoskeleton may be modulated by targeting the phase separation of the PSD condensates.
Preprint
Full-text available
In rats, eating obesogenic diets increase calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly these diet-induced alterations in NAc transmission are pronounced in obesity-prone (OP) rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Behavioral tests included conditioned reinforcement, instrumental responding, and free consumption. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work improves our understanding of how sugary, fatty food consumption interacts with obesity susceptibility to influence food-motivated behavior. It also extends our fundamental understanding of NAc CP-AMPAR recruitment; this has important implications for motivation in the context of obesity as well as drug addiction.
Article
The differentiation of B cells into antibody-secreting plasma cells is a complex process that involves extensive changes in morphology, lifespan, and cellular metabolism to support the high rates of antibody production. During the final stage of differentiation, B cells undergo significant expansion of their endoplasmic reticulum and mitochondria, which induces cellular stress and may lead to cell death in absence of effective inhibition of the apoptotic pathway. These changes are tightly regulated at transcriptional and epigenetic levels, as well as at post-translational level, with protein modifications playing a critical role in the process of cellular modification and adaptation. Our recent research has highlighted the pivotal role of the serine/threonine kinase PIM2 in B cell differentiation, from commitment stage to plasmablast and maintenance of expression in mature plasma cells. PIM2 has been shown to promote cell cycle progression during the final stage of differentiation and to inhibit Caspase 3 activation, raising the threshold for apoptosis. In this review, we examine the key molecular mechanisms controlled by PIM2 that contribute to plasma cell development and maintenance.
Article
Transcriptomic approaches are powerful strategies to map the molecular diversity of cells in the brain. Single-cell genomic atlases have now been compiled for entire mammalian brains. However, complementary techniques are only just beginning to map the subcellular transcriptomes from distal cellular compartments. We review single-cell datasets alongside subtranscriptome data from the mammalian brain to explore the development of cellular and subcellular diversity. We discuss how single-cell RNA-seq misses transcripts localized away from cell bodies, which form the 'dark transcriptome' of the brain: a collection of subtranscriptomes in dendrites, axons, growth cones, synapses, and endfeet with important roles in brain development and function. Recent advances in subcellular transcriptome sequencing are beginning to reveal these elusive pools of RNA. We outline the success stories to date in uncovering the constituent subtranscriptomes of neurons and glia, as well as present the emerging toolkit that is accelerating the pace of subtranscriptome discovery.
Article
RNA granules are dynamic entities controlling the spatiotemporal distribution and translation of RNA molecules. In neurons, a variety of RNA granules exist both in the soma and in cellular processes. They contain transcripts encoding signaling and synaptic proteins as well as RNA-binding proteins causally linked to several neurological disorders. In this review, we highlight that neuronal RNA granules exhibit properties of biomolecular condensates that are regulated upon maturation and physiological aging and how they are reversibly remodeled in response to neuronal activity to control local protein synthesis and ultimately synaptic plasticity. Moreover, we propose a framework of how neuronal RNA granules mature over time in healthy conditions and how they transition into pathological inclusions in the context of late-onset neurodegenerative diseases.
Article
The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.
Article
Full-text available
Activity-dependent changes in protein expression are critical for neuronal plasticity, a fundamental process for the processing and storage of information in the brain. Among the various forms of plasticity, homeostatic synaptic up-scaling is unique in that it is induced primarily by neuronal inactivity. However, precisely how the turnover of synaptic proteins occurs in this homeostatic process remains unclear. Here, we report that chronically inhibiting neuronal activity in primary cortical neurons prepared from E18 Sprague-Dawley rats (both sexes) induces autophagy, thereby regulating key synaptic proteins for up-scaling. Mechanistically, chronic neuronal inactivity causes dephosphorylation of ERK and mTOR, which induces TFEB-mediated cytonuclear signaling and drives transcription-dependent autophagy to regulate αCaMKII and PSD95 during synaptic up-scaling. Together, these findings suggest that mTOR-dependent autophagy, which is often triggered by metabolic stressors such as starvation, is recruited and sustained during neuronal inactivity in order to maintain synaptic homeostasis, a process that ensures proper brain function and if impaired can cause neuropsychiatric disorders such as autism. SIGNIFICANCE STATEMENT: In the mammalian brain, protein turnover is tightly controlled by neuronal activation to ensure key neuronal functions during long-lasting synaptic plasticity. However, a long-standing question is how this process occurs during synaptic up-scaling, a process that requires protein turnover but is induced by neuronal inactivation. Here, we report that mTOR-dependent signaling—which is often triggered by metabolic stressors such as starvation—is “hijacked” by chronic neuronal inactivation, which then serves as a nucleation point for TFEB cytonuclear signaling that drives transcription-dependent autophagy for up-scaling. These results provide the first evidence of a physiological role of mTOR-dependent autophagy in enduing neuronal plasticity, thereby connecting major themes in cell biology and neuroscience via a servo loop that mediates autoregulation in the brain.
Article
SCN1A gain-of-function variants are associated with early onset developmental and epileptic encephalopathies (DEEs) that possess distinct clinical features compared to Dravet syndrome caused by SCN1A loss-of-function. However, it is unclear how SCN1A gain-of-function may predispose to cortical hyper-excitability and seizures. Here, we first report the clinical features of a patient carrying a de novo SCN1A variant (T162I) associated with neonatal-onset DEE, and then characterize the biophysical properties of T162I and three other SCN1A variants associated with neonatal-onset or early infantile DEE (I236V, P1345S, R1636Q). In voltage clamp experiments, three variants (T162I, P1345S and R1636Q) exhibited changes in activation and inactivation properties that enhanced window current, consistent with gain-of-function. Dynamic action potential clamp experiments utilising model neurons incorporating Nav1.1. channels supported a gain-of-function mechanism for all four variants. Here, the T162I, I236V, P1345S, and R1636Q variants exhibited higher peak firing rates relative to wild type and the T162I and R1636Q variants produced a hyperpolarized threshold and reduced neuronal rheobase. To explore the impact of these variants upon cortical excitability, we used a spiking network model containing an excitatory pyramidal cell (PC) and parvalbumin positive (PV) interneuron population. SCN1A gain-of-function was modelled by enhancing the excitability of PV interneurons and then incorporating three simple forms of homeostatic plasticity that restored pyramidal cell firing rates. We found that homeostatic plasticity mechanisms exerted differential impact upon network function, with changes to PV-to-PC and PC-to-PC synaptic strength predisposing to network instability. Overall, our findings support a role for SCN1A gain-of-function and inhibitory interneuron hyperexcitability in early onset DEE. We propose a mechanism through which homeostatic plasticity pathways can predispose to pathological excitatory activity and contribute to phenotypic variability in SCN1A disorders.
Article
Full-text available
The maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus has been reported to require both a persistent increase in phosphorylation and the synthesis of new proteins. The increased activity of protein kinase C (PKC) during the maintenance phase of LTP may result from the formation of PKMzeta, the constitutively active fragment of a specific PKC isozyme. To define the relationship among PKMzeta, long-term EPSP responses, and the requirement for new protein synthesis, we examined the regulation of PKMzeta after sub-threshold stimulation that produced short-term potentiation (STP) and after suprathreshold stimulation by single and multiple tetanic trains that produced LTP. We found that, although no persistent increase in PKMzeta followed STP, the degree of long-term EPSP potentiation was linearly correlated with the increase of PKMzeta. The increase was first observed 10 min after a tetanus that induced LTP and lasted for at least 2 hr, in parallel with the persistence of EPSP enhancement. Both the maintenance of LTP and the long-term increase in PKMzeta++ were blocked by the protein synthesis inhibitors anisomycin and cycloheximide. These results suggest that PKMzeta is a component of a protein synthesis-dependent mechanism for persistent phosphorylation in LTP.
Article
Full-text available
Long-term synaptic plasticity requires both gene expression in the nucleus and local protein synthesis at synapses. The effector proteins that link molecular events in the cell body with local maintenance of synaptic strength are not known. We now show that treatment with serotonin (5-HT) that produces long-term facilitation induces the Aplysia eukaryotic translation elongation factor 1alpha (Ap-eEF1A) as a late gene that might serve this coupling function in sensory neurons. Although the translation factor is induced, it is not transported into axon processes when the stimulation with 5-HT was restricted to the cell body. In contrast, its mRNA is transported when 5-HT was applied to both cell body and synapses. Intracellular injection of antisense oligonucleotides or antibodies that block the induction and expression of Ap-eEF1A do not affect the initial expression of long-term facilitation but do block its maintenance beyond 24 h. The transport of eEF1A protein and its mRNA to nerve terminals suggests that the translation factor plays a role in the local protein synthesis that is essential for maintaining newly formed synapses.
Article
Full-text available
The presence of polyribosomes within dendrites suggests a capability for local dendritic protein synthesis. However, local synthesis is difficult to evaluate because of rapid somatodendritic protein transport. The present study describes a two-surfaced culture system that allowed the separation of living axons and dendrites from their cell bodies of origin. Because this system eliminates the transport of proteins produced in the cell body, it was possible to study the extent of dendritic protein synthesis directly. Hippocampal neurons were plated on a Nucleopore polycarbonate membrane that was mounted on a thick matrix of proteins (Matrigel) fixed on a coverslip. As the neurons grew, axons and dendrites grew through the membrane into the Matrigel. To evaluate local protein synthesis within dendrites, the membrane with the cell bodies was removed, leaving a dense array of transected dendrites and axons on the coverslip with few contaminant cell bodies. Absence of cell bodies was confirmed by staining with the nuclear stain Hoechst 33258. Coverslips with isolated neurites were pulse labeled with 3H-leucine for 30 min, and fixed for autoradiography to identify sites of protein synthesis. Autoradiographic analyses revealed that isolated dendrites (immunochemically identified using antibodies against MAP2) became heavily labeled, whereas axons exhibited little if any labeling. The labeling was essentially eliminated when the neurites were pulse labeled with 3H-leucine in the presence of puromycin, whereas labeling was affected only minimally by chloramphenicol. The puromycin-sensitive incorporation of 3H-leucine in dendrites demonstrates that the polyribosomes previously described are active in protein synthesis. This system will allow a characterization of synthetic activity within isolated neurites and provide a new approach to identifying proteins that are produced within dendrites.
Article
Full-text available
Previous studies have led to the hypothesis that some proteins of the postsynaptic membrane are locally synthesized at postsynaptic sites. To evaluate this hypothesis, synaptosome fractions that included fragments of dendrites were allowed to incorporate labeled amino acid into protein. The labeled synaptosomes were then subfractionated to the level of the synaptic plasma membrane (SPM) and then the synaptic junctional complex (SJC). The specific activity (cpm/microgram protein) of the synaptosome fraction and its subfractions was assessed by scintillation counting and protein assay, and labeled polypeptides were characterized by SDS-PAGE and fluorography. The contribution of mitochondrial and eucaryotic protein synthesis to the overall incorporation was evaluated using cycloheximide (CYC), a eucaryotic protein synthesis inhibitor, and chloramphenicol (CAP), a mitochondrial protein synthesis inhibitor. Both the SPM and the SJC subfractions obtained from labeled synaptosomes contained labeled polypeptides. The SPM from labeled synaptosomes had a specific activity approximately equal to that of other nonmitochondrial membrane components of the synaptosome. Thus, labeling of the SPM was not due to contamination by these other labeled membrane components. The mitochondrial fraction had the highest specific activity of the membrane components of the labeled synaptosome, but the specific activity was reduced by 47% in mitochondrial fractions from CAP-treated synaptosomes, while the specific activity of the SPM was not reduced by this treatment. Thus, SPM labeling is not due to mitochondrial contamination. The specific activity of the detergent-insoluble SJC was comparable to that of the SPM from which it was derived. The possibility of labeling of SPM and SJC by contamination with soluble proteins was assessed by adding labeled soluble proteins to a cold synaptosome preparation that was then subfractionated to obtain the SPM and SJC. There was no detectable binding of labeled soluble proteins to the SPM or SJC. These results support the hypothesis that some synaptic proteins are locally synthesized. Fluorographs of SDS gels of SPM from labeled synaptosomes revealed labeled bands at approximate molecular weights of 14, 18, 26, 28, 36, 38, 42, 45, 55, 60, and 116 kDa. Six of these labeled polypeptides at 38, 42, 45, 55, 60, and 116 kDa were still evident in fluorographs of the synaptic junctional complex from labeled synaptosomes. None of these labeled bands were seen in fluorographs of SPM and SJC from CYC-treated synaptosomes, whereas they were still present in fluorographs of CAP-treated synaptosomes. These labeled polypeptides are therefore produced by eucaryotic ribosomal systems.(ABSTRACT TRUNCATED AT 400 WORDS)
Article
Full-text available
A central theme in neurobiology is the search for the mechanisms underlying learning and memory. Since the seminal work, first of Cajal and later of Hebb, the synapse is thought to be the basic "storing unit." Hebb proposed that information is stored by correlation: synapses between neurons, which are often coactive, are enhanced. Several recent findings suggest that such a mechanism is indeed operative in the central nervous system. Pairing of activity on presynaptic fibers with strong postsynaptic depolarization results in synaptic enhancement. While there is substantial evidence in favor of a postsynaptic locus for detection of the synchronous pre- and postsynaptic event and subsequent initiation of synaptic enhancement, the locus of this enhancement and its ensuing persistence is still disputed: both pre- and postsynaptic contributions have been suggested. In all previous studies, the enhancement was presumed to be specific to the synapses where synchronous pre- and postsynaptic stimulation was applied. We report here that two recording techniques--optical recording, using voltage-sensitive dyes, and double intracellular recordings--reveal that synaptic enhancement is not restricted to the stimulated cell. Although we paired single afferent volleys with intracellular stimulation confined to one postsynaptic cell, we found that strengthening also occurred on synapses between the stimulated presynaptic fibers and neighboring cells. This suggests that synaptic enhancement by the "paired-stimulation paradigm" is not local on the presynaptic axons and that, in fact, the synapses of many neighboring postsynaptic cells are enhanced.
Article
Full-text available
Previous studies have demonstrated that polyribosomes are selectively positioned beneath postsynaptic sites on CNS neurons. In spine-bearing neurons, these polyribosomes are selectively localized at the base of the spines, and occasionally within spine heads. The present study evaluates whether there are relationships between the polyribosomes and other organelles of the postsynaptic cytoplasm, including membranous cisterns and spine apparatuses. Dendritic spines from the dentate gyrus and hippocampus of the rat were analyzed at the electron-microscopic level in 2 ways. First, relatively thick sections were prepared for electron microscopy, and spines were photographed in stereo using a goniometer stage. Second, conventional serial thin sections were taken, and spines were reconstructed. From the stereo photographs and serial reconstructions, we determined the proportion of polyribosomes that was associated with membranous cisterns. We also counted the number of ribosomes per cluster to determine whether there were differences between polyribosomes in different intradendritic locations, or between free polyribosomes and polyribosomes on cisternal membranes. From the serially reconstructed spines we determined the incidence of polyribosomes, membranous cisterns, and spine apparatuses, and evaluated the relationships between these organelles. We found that in both the dentate gyrus and hippocampus, about 50% of the polyribosomes that were present beneath the base of spines were associated with membranous cisterns. Polyribosomes that were present in the head of the spine were rarely associated with a cistern, however. The overall incidence of polyribosomes was similar in spines with spine apparatuses and spines without a spine apparatus.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
Full-text available
Both long-term and short-term sensitization of the gill and siphon withdrawal reflex in Aplysia involve facilitation of the monosynaptic connections between the sensory and motor neurons. To analyze the relationship between these two forms of synaptic facilitation at the cellular and molecular level, this monosynaptic sensorimotor component of the gill-withdrawal reflex of Aplysia can be reconstituted in dissociated cell culture. Whereas one brief application of 1 microM serotonin produced short-term facilitation in the sensorimotor connection that lasted minutes, five applications over 1.5 hours resulted in long-term facilitation that lasted more than 24 hours. Inhibitors of protein synthesis or RNA synthesis selectively blocked long-term facilitation, but not short-term facilitation, indicating that long-term facilitation requires the expression of gene products not essential for short-term facilitation. Moreover, the inhibitors only blocked long-term facilitation when given during the serotonin applications; the inhibitors did not block the facilitation when given either before or after serotonin application. These results parallel those for behavioral performance in vertebrates and indicate that the critical time window characteristic of the requirement for macromolecular synthesis in long-term heterosynaptic facilitation is not a property of complex circuitry, but an intrinsic characteristic of specific nerve cells and synaptic connections involved in the long-term storage of information.
Article
Full-text available
Reviews studies that have used protein synthesis inhibitors to test the hypothesis that memory in part depends on brain protein synthesis. Evidence from learning curves, examination of short-term retention, and posttraining drug injection indicate that initial acquisition is not dependent on such synthesis, but it appears that protein synthesis, during or shortly after training, is an essential step in the formation of long-term memory. Possible side effects of protein synthesis inhibitors are considered in terms of locomotor activity, abnormal cerebral electrical activity, conditioned aversion, and catecholamine biosynthesis. Stages of memory formation are discussed, and the possibility that kindling, drug tolerance, and enzyme induction are dependent on protein synthesis is considered. (8 p ref)
Article
Full-text available
Long-term potentiation (LTP) in the hippocampus has attracted attention as a model of neuronal plasticity in the central nervous system. Although accumulating evidence associates protein synthesis with LTP, there is no direct proof that protein synthesis is actually required for the production of LTP. Therefore, we have examined the ability of some inhibitors of protein synthesis to modify LTP in the CA1 region of the rat hippocampal slice. Incubation for 30 min in the presence of emetine, cycloheximide, or puromycin decreased the frequency of occurrence of LTP in field CA1 elicited by repetitive stimulation of the Schaffer collaterals. This blockade was dose dependent and correlated with the ability of individual inhibitors to inhibit incorporation of [3H]valine into proteins. LTP blockade was irreversible for the irreversible inhibitor emetine and was reversible for the reversible inhibitor cycloheximide. Blockade of LTP required a substantial preincubation period to be effective. Even at the highest concentration of emetine used to block LTP, no effect on any intracellularly recorded membrane properties was observed. In contrast, the protein synthesis inhibitor anisomycin was unable to block LTP. Puromycin aminonucleoside, a structural analogue of puromycin which is inactive in inhibiting protein synthesis, was ineffective in blocking LTP. These experiments demonstrate that a variety of protein synthesis inhibitors are able to block the production of LTP in field CA1, suggesting the necessity for a set of newly synthesized or rapidly turned over proteins for hippocampal LTP.
Article
Full-text available
Electron microscopic studies of the dentate gyrus of the rat have revealed an apparent association between polyribosomes and dendritic spines. The present study was designed to elucidate the nature of this association. Our qualitative observations revealed that polyribosomes appeared primarily in two locations within the dendrite: (1) beneath the base of identified spines just subjacent to the intersection of the spine neck with the main dendritic shaft and (2) beneath mounds in the dendritic membrane which had the appearance of the base of a spine which extended out of the plane of section. To quantitatively define the nature of the apparent association, we attempted to determine (1) the proportion of spines with associated polyribosomes and (2) the proportion of the polyribosomes within dendrites which are associated with spine bases. Evaluation of profiles which were identifiable as spine neck-dendritic shaft intersections in a single section revealed that an average of 12.2% had associated polyribosomes. A serial section analysis revealed a somewhat higher incidence, however. Of a collection of 34 through-sectioned spines, 29% had polyribosomes which were revealed in one or more of the sections comprising the series. To evaluate what proportion of polyribosomes within the dendrite was associated with spines, we evaluated a series of photographs covering approximately 1250 micrometer2 of the dentate molecular layer from five animals, identifying all polyribosomes within dendrites and scoring their location as being (1) under spines, (2) under mounds, or (3) other. An average of 9.6% of the polyribosomes were found under processes identifiable as spine neck-dendritic shaft intersections, while 71.4% of the polyribosomes were found under mounds. Only 19% were not obviously associated with spines or mounds. Spine bases and mounds comprise only 3 of 35%, respectively, of the outline of dendritic profiles, however, indicating that the high incidence of polyribosomes under these elements cannot be accounted for by chance. To attempt to determine whether the mounds represent the base of dendritic spines, 68 mounds in 21 dentritic profiles were selected from the middle of the series of 20 serial sections. Ninetine of these mounds (28%) were continuous with an identified spine, and an additional 31% were continuous with thin processes of the size and appearance of spine necks. Thus, most of the mounds probably do represent the base of spines which extend out of the plane of a single section.
Article
Full-text available
A major difference between short- and long-term memory is that long-term memory is dependent on new protein synthesis. Long-term memory can be further subdivided into a transient, initial phase that is readily susceptible to disruption and a later, more stable and persistent stage. To analyze this transition on the cellular level, we have examined the steps whereby short-term facilitation is converted to a long-term form in the sensorimotor connection of the Aplysia gill-withdrawal reflex. We found that stable long-term facilitation (at 24 hr) requires a higher concentration (100 nM) of serotonin (5-HT) than does short-term facilitation (10 nM). By using low concentrations of 5-HT, which do not produce long-term facilitation, we now have been able to explore the intermediate phases between the short- and long-term processes. By this means we have uncovered a new transient phase that involves three mechanistically different mechanisms--covalent modification, translation, and transcription--each of which can be recruited as a function of the concentration of 5-HT.
Article
Full-text available
Behavioral and pharmacological experiments in many animal species have suggested that memory is consolidated from an initial, disruptable form into a long-lasting, stable form within a few hours after training. We combined these traditional approaches with genetic analyses in Drosophila to show that consolidated memory of conditioned (learned) odor avoidance 1 day after extended training consisted of two genetically distinct, functionally independent memory components: anesthesia-resistant memory (ARM) and long-term memory (LTM). ARM decayed away within 4 days, was resistant to hypothermic disruption, was insensitive to the protein synthesis inhibitor cycloheximide (CXM), and was disrupted by the radish single-gene mutation. LTM showed no appreciable decay over 7 days, was sensitive to CXM, and was not disrupted by the radish mutation.
Article
Full-text available
Neurons are highly polarized cells with a mosaic of cytoplasmic and membrane proteins differentially distributed in axons, dendrites, and somata. In Drosophila and Xenopus, mRNA localization coupled with local translation is a powerful mechanism by which regionalized domains of surface or cytoplasmic proteins are generated. In neurons, there is substantial ultrastructural evidence positing the presence of protein synthetic machinery in neuronal processes, especially at or near postsynaptic sites. There are, however, remarkably few reports of mRNAs localized to these regions. We now present direct evidence that an unexpectedly large number of mRNAs, including members of the glutamate receptor family, second messenger system, and components of the translational control apparatus, are present in individual processes of hippocampal cells in culture.
Article
Full-text available
Repeated high-frequency trains of stimuli induce long-term potentiation (LTP) in the CA1 region that persists for up to 8 hours in hippocampal slices and for days in intact animals. This long time course has made LTP an attractive model for certain forms of long-term memory in the mammalian brain. A hallmark of long-term memory in the intact animal is a requirement for transcription, and thus whether the late phase of LTP (L-LTP) requires transcription was investigated here. With the use of different inhibitors, it was found in rat hippocampal slices that the induction of L-LTP [produced either by tetanic stimulation or by application of the cyclic adenosine monophosphate (cAMP) analog Sp-cAMPS (Sp-cyclic adenosine 3',5'-monophosphorothioate)] was selectively prevented when transcription was blocked immediately after tetanization or during application of cAMP. As with behavioral memory, this requirement for transcription had a critical time window. Thus, the late phase of LTP in the CA1 region requires transcription during a critical period, perhaps because cAMP-inducible genes must be expressed during this period.
Article
Full-text available
Effects of afferent stimulation on local synthesis of protein in CA1 pyramidal cell dendrites were studied using light microscope autoradiography. Tissue was fixed with paraformaldehyde immediately after 3 min exposure to 3H-leucine in order to trap 3H associated with macromolecules. The rate of 3H-leucine incorporation into dendrites of resting hippocampal slices was 10% the rate of incorporation into cell somata. Ninety percent of the incorporation into the somata was inhibited by cycloheximide (300 microM); none of the incorporation into dendrites was blocked by cycloheximide. Thus, there is no measurable extramitochondrial synthesis of protein in the dendrites of the resting slice. Slices were exposed to 50 microM carbachol and the Schaffer collateral afferents to the CA1 pyramidal cells were stimulated intermittently at 10 Hz over a 20 min period. In this case, 3H incorporation into dendrites was increased almost threefold over resting levels, with no effect on label over the cell somata. There was no associated increase in uptake of free 3H-leucine, and the increase in label was completely blocked by cycloheximide. Thus, associating carbachol and afferent stimulation appears to activate de novo protein synthesis in the dendrites. Neither the carbachol alone nor the Schaffer collateral stimulation alone increased synthesis. The activation of dendrite synthesis was completely blocked by 5 microM atropine, and also by 50 microM D-aminophosphonovalerate. It did not occur when carbachol was paired with steady stimulation of the Schaffer collaterals at 1 Hz for 20 min, rather than with the patterned high-frequency stimulation. Thus, associating a cholinergic agonist with a level of neural activity that occurs in CA3 and CA1 pyramidal cells during exploratory behavior (Muller et al., 1987) initiates local protein synthesis in target dendrites. This effect is dependent on muscarinic cholinergic receptors and NMDA-type glutamate receptors. The possible relationship of this phenomenon to mechanisms of learning is discussed.
Article
Full-text available
The corpora pedunculata, or mushroom bodies (MBs), in the brain of Drosophila melanogaster adults consist of approximately 2500 parallel Kenyon cell fibers derived from four MB neuroblasts. Hydroxyurea fed to newly hatched larvae selectively deletes these cells, resulting in complete, precise MB albation. Adult flies developing without MBs behave normally in most respects, but are unable to perform in a classical conditioning paradigm that tests associative learning of odor cues and electric shock. This deficit cannot be attributed to reductions in olfactory sensitivity, shock reactivity, or locomotor behavior. The results demonstrate that MBs mediate associative odor learning in flies.
Article
Full-text available
The maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus has been reported to require both a persistent increase in phosphorylation and the synthesis of new proteins. The increased activity of protein kinase C (PKC) during the maintenance phase of LTP may result from the formation of PKMzeta, the constitutively active fragment of a specific PKC isozyme. To define the relationship among PKMzeta, long-term EPSP responses, and the requirement for new protein synthesis, we examined the regulation of PKMzeta after sub-threshold stimulation that produced short-term potentiation (STP) and after suprathreshold stimulation by single and multiple tetanic trains that produced LTP. We found that, although no persistent increase in PKMzeta followed STP, the degree of long-term EPSP potentiation was linearly correlated with the increase of PKMzeta. The increase was first observed 10 min after a tetanus that induced LTP and lasted for at least 2 hr, in parallel with the persistence of EPSP enhancement. Both the maintenance of LTP and the long-term increase in PKMzeta++ were blocked by the protein synthesis inhibitors anisomycin and cycloheximide. These results suggest that PKMzeta is a component of a protein synthesis-dependent mechanism for persistent phosphorylation in LTP.
Article
Full-text available
Serotonin (5HT)-induced short-term facilitation and long-term facilitation (STF and LTF) of the monosynaptic connection between tail sensory neurons (SNs) and motor neurons (MNs) in Aplysia have been useful in delineating possible cellular mechanisms contribution to short-term and long-term memory. Previous work from our laboratory showed that LTF can be produced in the absence of STF, suggesting that these processes may be functionally independent. In the present study, we explored this hypothesis by examining the temporal relationship between STF and LTF. We recorded intracellularly from pairs of monosynaptically connected SNs and MNs in isolated pleural-pedal ganglia. In the first experimental series, we followed the time course of LTF across a 24 hr period after its induction by five applications of 10 microM 5HT. STF completely decayed to baseline several hours before the expression of LTF. This biphasic expression profile of STF and LTF further supports the hypothesis that LTF is not a simple elaboration of STF. In the second experimental series, we monitored the immediate expression of facilitation during and after different numbers of 5HT applications. We identified a rapidly decaying STF (lasting 15-30 min) after one to four pulses of 50 microM 5HT and a unique, prolonged intermediate-term facilitation (ITF; lasting up to 90 min) after five pulses of 50 microM 5HT. These results raise the possibility that STF, ITF, and LTF may reflect components of different memory phases in the intact animal.
Article
Full-text available
The requirement for transcription during long-lasting synaptic plasticity has raised the question of whether the cellular unit of synaptic plasticity is the soma and its nucleus or the synapse. To address this question, we cultured a single bifurcated Aplysia sensory neuron making synapses with two spatially separated motor neurons. By perfusing serotonin onto the synapses made onto one motor neuron, we found that a single axonal branch can undergo long-term branch-specific facilitation. This branch-specific facilitation depends on CREB-mediated transcription and involves the growth of new synaptic connections exclusively at the treated branch. Branch-specific long-term facilitation requires local protein synthesis in the presynaptic but not the postsynaptic cell. In fact, presynaptic sensory neuron axons deprived of their cell bodies are capable of protein synthesis, and this protein synthesis is stimulated 3-fold by exposure to serotonin.
Article
Full-text available
Information is stored in neural circuits through long-lasting changes in synaptic strengths. Most studies of information storage have focused on mechanisms such as long-term potentiation and depression (LTP and LTD), in which synaptic strengths change in a synapse-specific manner. In contrast, little attention has been paid to mechanisms that regulate the total synaptic strength of a neuron. Here we describe a new form of synaptic plasticity that increases or decreases the strength of all of a neuron's synaptic inputs as a function of activity. Chronic blockade of cortical culture activity increased the amplitude of miniature excitatory postsynaptic currents (mEPSCs) without changing their kinetics. Conversely, blocking GABA (gamma-aminobutyric acid)-mediated inhibition initially raised firing rates, but over a 48-hour period mESPC amplitudes decreased and firing rates returned to close to control values. These changes were at least partly due to postsynaptic alterations in the response to glutamate, and apparently affected each synapse in proportion to its initial strength. Such 'synaptic scaling' may help to ensure that firing rates do not become saturated during developmental changes in the number and strength of synaptic inputs, as well as stabilizing synaptic strengths during Hebbian modification and facilitating competition between synapses.
Article
Full-text available
Both theoretical and experimental work have suggested that central neurons compensate for changes in excitatory synaptic input in order to maintain a relatively constant output. We report here that inhibition of excitatory synaptic transmission in cultured spinal neurons leads to an increase in mEPSC amplitudes, accompanied by an equivalent increase in the accumulation of AMPA receptors at synapses. Conversely, increasing excitatory synaptic activity leads to a decrease in synaptic AMPA receptors and a decline in mEPSC amplitude. The time course of this synaptic remodeling is slow, similar to the metabolic half-life of neuronal AMPA receptors. Moreover, inhibiting excitatory synaptic transmission significantly prolongs the half-life of the AMPA receptor subunit GluR1, suggesting that synaptic activity modulates the size of the mEPSC by regulating the turnover of postsynaptic AMPA receptors.
Article
Full-text available
Long-term enhancement of synaptic efficacy in the hippocampus is an important model for studying the cellular mechanisms of neuronal plasticity, circuit reorganization, and even learning and memory. Although these long-lasting functional changes are easy to induce, it has been very difficult to demonstrate that they are accompanied or even caused by morphological changes on the subcellular level. Here we combined a local superfusion technique with two-photon imaging, which allowed us to scrutinize specific regions of the postsynaptic dendrite where we knew that the synaptic changes had to occur. We show that after induction of long-lasting (but not short-lasting) functional enhancement of synapses in area CA1, new spines appear on the postsynaptic dendrite, whereas in control regions on the same dendrite or in slices where long-term potentiation was blocked, no significant spine growth occurred.
Article
Full-text available
mRNA for the alpha-subunit of CaMKII is abundant in dendrites of neurons in the forebrain (Steward, 1997). Here we show that tetanic stimulation of the Schaffer collateral pathway causes an increase in the concentration of alpha-CaMKII in the dendrites of postsynaptic neurons. The increase is blocked by anisomycin and is detected by both quantitative immunoblot and semiquantitative immunocytochemistry. The increase in dendritic alpha-CaMKII can be measured 100-200 micrometer away from the neuronal cell bodies as early as 5 min after a tetanus. Transport mechanisms for macromolecules from neuronal cell bodies are not fast enough to account for this rapid increase in distal portions of the dendrites. Therefore, we conclude that dendritic protein synthesis must produce a portion of the newly accumulated CaMKII. The increase in concentration of dendritic CaMKII after tetanus, together with the previously demonstrated increase in autophosphorylated CaMKII (Ouyang et al., 1997), will produce a prolonged increase in steady-state kinase activity in the dendrites, potentially influencing mechanisms of synaptic plasticity that are controlled through phosphorylation by CaMKII.
Article
Full-text available
In a culture system where a bifurcated Aplysia sensory neuron makes synapses with two motor neurons, repeated application of serotonin (5-HT) to one synapse produces a CREB-mediated, synapse-specific, long-term facilitation, which can be captured at the opposite synapse by a single pulse of 5-HT. Repeated pulses of 5-HT applied to the cell body of the sensory neuron produce a CREB-dependent, cell-wide facilitation, which, unlike synapse-specific facilitation, is not associated with growth and does not persist beyond 48 hr. Persistent facilitation and synapse-specific growth can be induced by a single pulse of 5-HT applied to a peripheral synapse. Thus, the short-term process initiated by a single pulse of 5-HT serves not only to produce transient facilitation, but also to mark and stabilize any synapse of the neuron for long-term facilitation by means of a covalent mark and rapamycin-sensitive local protein synthesis.
Article
We examined dendritic protein synthesis after a prolonged blockade of action potentials alone and after a blockade of both action potentials and miniature excitatory synaptic events (minis). Relative to controls, dendrites exposed to a prolonged blockade of action potentials showed diminished protein synthesis. Dendrites in which both action potentials and minis were blocked showed enhanced protein synthesis, suggesting that minis inhibit dendritic translation. When minis were acutely blocked or stimulated, an immediate increase or decrease, respectively, in dendritic translation was observed. Taken together, these results reveal a role for miniature synaptic events in the acute regulation of dendritic protein synthesis in neurons.
Article
Synaptoneurosomes, a subcellular fraction of resealed presynaptic plus postsynaptic entities, contain polyribosomal aggregates and are capable of protein synthesis. Upon treatment with K+, which has been shown to cause depolarization, we observed a rapid increase followed by a decrease in the size of polyribosomal complexes. These were shown by sucrose density gradient analysis to represent a shift of part of the total RNA into polyribosomes; accelerated incorporation of amino acids into polypeptides was also demonstrated. Calcium chelators in the medium reduce the steady-state size of polyribosomal complexes, but do not eliminate the response to depolarization, while intracellular calcium chelators have more profound effects, suggesting that there is mobilization of intracellular calcium stores. Thus depolarization-related changes may affect binding and release of translation initiation complexes with messenger RNA found near synaptic junctions.
Article
SHORT bursts of tetanic stimulation (10-50 Hz for 10-15 s) give rise to long-lasting potentiation (LLP) of synaptic transmission in the intact hippocampal formation1 and in hippocampal slices2. The potentiation may last several hours. Because of the time course and the small number of conditioning impulses required, the process may have general interest as a model for long-term plasticity in the nervous system. Studies of the mechanisms underlying LLP have been hampered, however, by lack of control with the size of the input volley and of data on membrane potential changes of the participating cells. Further, it is not known whether the potentiation is specific for the tetanised input. Schwartzkroin and Wester2 found an unchanged antidromic field potential, and concluded that there were no general postsynaptic changes. Lynch et al.3, however, found a reduction in glutamate sensitivity during the potentiated stage, and suggested that a reduction in excitability had taken place. We report here experiments on transverse hippocampal slices4 of guinea pigs in which we have monitored the size of two independent afferent inputs, one of which is tetanised to produce LLP, leaving the other as a control line to check for non-specific changes in excitability. Furthermore, intracellular recordings support our suggestion that LLP is caused by a specific augmentation of transmitter release.
Article
In 14 transversal hippocampal slices from rats the extracellular field-EPSP (excitatory postsynaptic potential) in the dendritic region of the CA1 subfield was recorded after isolating the apical dendrites from their somata by microsurgical cuts through the proximal stratum radiatum. Contrary to intact slices which, after tetanic stimulation of the Schaffer collaterals, showed long-term potentiation (LTP) until the end of registration after 8-10 h, LTP declined in the isolated dendrites to baseline values after 3 h. It is concluded that de-novo protein synthesis in postsynaptic cell bodies might be necessary for the maintenance of late phases of LTP.
Article
Long-term potentiation (LTP) with its extremely long duration has been frequently regarded as an elementary mechanism of information storage in the nervous system or at least as a suitable model for the study of mechanisms underlying functional plasticity and processes of learning and memory formation. Considering the necessity of an increased protein synthesis for memory consolidation and for the maintenance of LTP in granular synapses in vivo it was of interest to determine whether the LTP of the CA1 region of the hippocampus depends on protein synthesis as well. For the solution of this question anisomycin (ANI), a reversible blocker of protein synthesis, was used at a concentration of 20 microM, which blocked the [3H]leucine incorporation in hippocampal slices by at least 85%. It has been shown that in the CA1 region in vitro the maintenance of LTP (i.e. a late phase greater than 5 h) depends on an ongoing protein synthesis. A 3-h treatment with ANI immediately following multiple tetanization resulted in gradually developing loss of field excitatory postsynaptic potential (EPSP) and population spike (PS) potentiation (15 +/- 19% increase of the PS instead of the 96 +/- 14% increase in non-treated control experiments at the 8th h after tetanization). Furthermore, a late PS potentiation (greater than 6 h) of a second non-tetanized pathway to CA1 pyramidal cells has been observed (increase by 64 +/- 18% at the 8th h) for the first time. This potentiation was ANI-sensitive as well and suggests that the maintenance of LTP is dependent on a postsynaptic mechanism.
Article
shortly after training, but within minutes to hours it becomes insusceptible to these agents.l-3 This change in susceptibility to disruption suggests that memory becomes fixed after training. Correlations between changes in brainl metabolism and deficits in fixed memory produced by various agents may provide insights into the biochenical basis of memory formation. Puromycin, an antibiotic compound which inhibits protein synthesis, blocks memory in mice4 and in goldfish5, C when given after training. The extent and duration of inhibition of protein synthesis in goldfish brain produced by intracranial injectiolns of different amounts of puromycin has been studied.7 In the present investigations we measured the memory deficits obtained by injecting different amounts of puromycin at different times after training. We have also found evidence which suggests that puronycin specifically disrupts t,he fixation of memory. Materials and Methods.--The training procedure and apparatus have beenl described.t Goldfish were placed in individual shuttle boxes in which light was paired with repetitive electrical shock (0.2 sec of shock of 3 vac, 0.1 ma, at the rate of 40/1min). To avoid the shock, fish had to swim over a hurdle from the light to the dark end of the box. The trial cycle was 20 sec of light alone, 20 sec of light paired with the shock, followed by 20 sec of darknless. A correct response was scored when the fish swam over the hurdle before the onset of the shock. All fish were given 20 trials in a 40-min session on day 1 of an experiment and 10 trials in a 20-min session on day 4. Intracranial (IC) injections of 10 ul of saline or of puromycin dihydrochloride (Nutritional Biochemicals Corp.) in 10 ul of saline were made with a 30-gauge needle. The solutions were injected inito the cranial cavity over the tectum. at specified times on day 1. On both days 1 and 4, fish were placed in the shuttle boxes in darkness 5 min before the first trial. The trials were given in blocks of 5 separated by 5 min rest in darkness. Six fish were run simultaneously in individual shuttle boxes, and responses were recorded by direct observation. Mleasurement of memory: Memory is inferred from ann increase in correct responses between blocks of 10 trials. In the development of procedures in earlier work, we evaluated differences in menory between groups of fish by comparing the mnean day-4 scores. We subsequently found an alternate method based on a regression analysis of day-i scores on day-4 scores for uninjected (control) fish. The retention score of a fish is obtained by subtracting the score it "achieved" (A) on day 4 from the score which was "predicted" (P) for that fish from its day-i score. The retention score of a group of fish is evaluated by a t-test of the achieved and predicted (A vs. P) scores. Discrepancies in the results of the two methods have been minor, but the retention scores of groups of fish have tended to give the most consistent measures of memory.
Article
The morphological basis of the persistent synaptic plasticity that underlies long-term habituation and sensitization of the gill withdrawal reflex in Aplysia californica was explored by examining the fine structure of sensory neuron presynaptic terminals (the critical site of plasticity for the short-term forms of both types of learning) in control animals and in animals whose behavior had been modified by training. The number, size, and vesicle complement of sensory neuron active zones were larger in animals showing long-term sensitization than in control animals and smaller in animals showing long-term habituation. These changes are likely to represent an anatomical substrate for the memory consolidation of these tasks.
Article
Impairment of retention of a brightness discrimination in rats was obtained when anisomycin (80 microgram bilaterally into both hippocampi) was injected 10 min before and 80 min after training or 240 and 360 min after training. No amnesia was observed when anisomycin was injected 45 and 165 min post training. The two separate sensitive periods for the amnesic effect of the inhibitor obviously correspond to the two phases of increased protein synthesis during the consolidation of the same learning procedure. The results support the previous findings of the two independent and qualitatively different macromolecular processes. They also argue for the inhibition of protein synthesis as an important mechanism in the amnesic effect of anisomycin.
Article
K+ depolarization or addition of glutamate to a synaptoneurosome preparation triggers a rapid increase in size of polyribosomal aggregates isolated by centrifugation of lysate through 1 M sucrose. The profile of response to the glutamate analogues quisqualate, ibotenate, and 1-aminocyclopentane-1,3-dicarboxylate corresponds to that of metabotropic receptors. Glutamate stimulation is mimicked by the diacylglycerol analogue 1-oleoyl-2-acetylglycerol and by the protein kinase C activator phorbol dibutyrate. The phospholipase blockers 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate and quinacrine reduce the late phase of the response. The protein kinase C inhibitor calphostin C suppresses the response to 1-aminocyclopentane-1,3-dicarboxylate. These data indicate that glutamatergic synapses upregulate postsynaptic protein synthesis via metabotropic glutamate receptors coupled to the phosphatidylinositol second-messenger system. This mechanism could underlie the reported involvement of metabotropic glutamate receptors in long-term potentiation and other forms of neural plasticity.
Article
Serotonin (5-HT) induces both short-term and long-term facilitation of the identified synaptic connections between sensory and motor neurons of Aplysia. Three independent experimental approaches showed that long-term facilitation can normally be expressed in the absence of short-term facilitation: (i) The 5-HT antagonist cyproheptadine blocked the induction of short-term but not long-term facilitation; (ii) concentrations of 5-HT below threshold for the induction of short-term facilitation nonetheless induced long-term facilitation; and (iii) localized application of 5-HT to the sensory neuron cell body and proximal synapses induced long-term facilitation in distal synapses that were not exposed to 5-HT and had not expressed short-term facilitation. These results suggest that short-term and long-term synaptic facilitation are induced in parallel in the sensory neurons and that the short-term process, because it is induced and expressed at the synapse, can occur locally, but the long-term process, because of its dependence on a nuclear signal, is expressed throughout the neuron.
Article
The long-lasting increase in synaptic strength known as long-term potentiation has been advanced as a potential physiological mechanism for many forms of both developmental and adult neuronal plasticity. In many models of plasticity, intercellular communication has been proposed to account for observations in which simultaneously active neurons are strengthened together. The data presented here indicate that long-term potentiation can be communicated between synapses on neighboring neurons by means of a diffusible messenger. This distributed potentiation provides a mechanism for the cooperative strengthening of proximal synapses and may underlie a variety of plastic processes in the nervous system.
Article
Two neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are able to produce a long-lasting enhancement of synaptic transmission in the hippocampus. Unlike other forms of plasticity, neurotrophin-induced plasticity exhibited an immediate requirement for protein synthesis. Plasticity in rat hippocampal slices in which the synaptic neuropil was isolated from the principal cell bodies also required early protein synthesis. Thus, the neurotrophins may stimulate the synthesis of proteins in either axonal or dendritic compartments, allowing synapses to exert local control over the complement of proteins expressed at individual synaptic sites.
Article
Repeated stimulation of hippocampal neurons can induce an immediate and prolonged increase in synaptic strength that is called long-term potentiation (LTP)-the primary cellular model of memory in the mammalian brain. An early phase of LTP (lasting less than three hours) can be dissociated from late-phase LTP by using inhibitors of transcription and translation, Because protein synthesis occurs mainly in the cell body, whereas LTP is input-specific, the question arises of how the synapse specificity of late LTP is achieved without elaborate intracellular protein trafficking. We propose that LTP initiates the creation of a short-lasting protein-synthesis-independent 'synaptic tag' at the potentiated synapse which sequesters the relevant protein(s) to establish late LTP. In support of this idea, we now show that weak tetanic stimulation, which ordinarily leads only to early LTP, or repeated tetanization in the presence of protein-synthesis inhibitors, each results in protein-synthesis-dependent late LTP, provided repeated tetanization has already been applied at another input to the same population of neurons. The synaptic tag decays in less than three hours. These findings indicate that the persistence of LTP depends not only on local events during its induction, but also on the prior activity of the neuron.
Article
Long-term potentiation (LTP), the long-lasting increase in synaptic transmission, has been proposed to be a cellular mechanism essential for learning and memory, neuronal development, and circuit reorganization. In the original theoretical and experimental work it was assumed that only synapses that had experienced concurrent pre- and postsynaptic activity are subject to synaptic modification. It has since been shown, however, that LTP is also expressed in synapses on neighbouring neurons that have not undergone the induction procedure. Yet, it is still believed that this spread of LTP is limited to adjacent postsynaptic cells, and does not occur for synapses on neighbouring input fibres. However, for technical reasons, tests for 'input specificity' were always done for synapses relatively far apart. Here we have used a new local superfusion technique, which allowed us to assess the synaptic specificity of LTP with a spatial resolution of approximately 30 microm. Our results indicate that there is no input specificity at a distance of less than 70 microm. Synapses in close proximity to a site of potentiation are also potentiated regardless of their own history of activation, whereas synapses far away show no potentiation.
Article
We examined the role of TrkB ligands in hippocampal long-term potentiation (LTP) using function-blocking TrkB antiserum (Ab) and Trk-IgG fusion proteins. Incubation of hippocampal slices with TrkB Ab had no effect on basal synaptic transmission, short-term plasticity, or LTP induced by several trains of tetanic stimulation. The TrkB Ab-treated slices, however, showed significant deficits in LTP induced by either theta-burst stimulation (TBS) or "pairing." Slices exposed to the same number of inducing stimuli, delivered either as TBS or as a single 100 Hz epoch, only exhibited TrkB-sensitive LTP when TBS was used, indicating that the temporal pattern of stimulation determines the neurotrophin dependence. The late phase of LTP (2-3 hr) was also significantly impaired in slices pretreated with TrkB Ab or a TrkB-IgG. The application of a TrkB-IgG 30 min after LTP induction caused previously potentiated synaptic transmission to return to baseline levels, indicating that TrkB ligands are required to maintain LTP for up to 1 hr after induction. Taken together, these results indicate that both the temporal patterns of synaptic activity and the different temporal phases of synaptic enhancement are important in determining the neurotrophin dependence of plasticity in the hippocampus.
Article
Induction of long-term synaptic changes at one synapse can facilitate the induction of long-term plasticity at another synapse. Evidence is presented here that if Aplysia sensory neuron somata and their remote motor neuron synapses are simultaneously exposed to serotonin pulses insufficient to induce long-term facilitation (LTF) at either site alone, processes activated at these sites interact to induce LTF. This coincident induction of LTF requires that (i) the synaptic pulse occur within a brief temporal window of the somatic pulse, and (ii) local protein synthesis occur immediately at the synapse, followed by delayed protein synthesis at the soma.
Article
A hippocampal pyramidal neuron receives more than 104excitatory glutamatergic synapses. Many of these synapses contain the molecular machinery for messenger RNA translation, suggesting that the protein complement (and thus function) of each synapse can be regulated on the basis of activity. Here, local postsynaptic protein synthesis, triggered by synaptic activation of metabotropic glutamate receptors, was found to modify synaptic transmission within minutes.
Article
Activity-dependent change in the efficacy of transmission is a basic feature of many excitatory synapses in the central nervous system. The best understood postsynaptic modification involves a change in responsiveness of AMPAR (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor)-mediated currents following activation of NMDA (N-methyl-D-aspartate) receptors or Ca2+-permeable AMPARs. This process is thought to involve alteration in the number and phosphorylation state of postsynaptic AMPARs. Here we describe a new form of synaptic plasticity--a rapid and lasting change in the subunit composition and Ca2+ permeability of AMPARs at cerebellar stellate cell synapses following synaptic activity. AMPARs lacking the edited GluR2 subunit not only exhibit high Ca2+ permeability but also are blocked by intracellular polyamines. These properties have allowed us to follow directly the involvement of GluR2 subunits in synaptic transmission. Repetitive synaptic activation of Ca2+-permeable AMPARs causes a rapid reduction in Ca2+ permeability and a change in the amplitude of excitatory postsynaptic currents, owing to the incorporation of GluR2-containing AMPARs. Our experiments show that activity-induced Ca2+ influx through GluR2-lacking AMPARs controls the targeting of GluR2-containing AMPARs, implying the presence of a self-regulating mechanism.