Article

Prdm1a and olig4 act downstream of Notch signaling to regulate cell fate at the neural plate border

Authors:
  • California Department of Toxic Substances Control
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The zinc finger domain transcription factor prdm1a plays an integral role in the development of the neural plate border cell fates, including neural crest cells and Rohon-Beard (RB) sensory neurons. However, the mechanisms underlying prdm1a function in cell fate specification is unknown. Here, we test more directly how prdm1a functions in this cell fate decision. Rather than affecting cell death or proliferation at the neural plate border, prdm1a acts explicitly on cell fate specification by counteracting olig4 expression in the neighboring interneuron domain. olig4 expression is expanded in prdm1a mutants and olig4 knockdown can rescue the reduced or abrogated neural crest and RB neuron phenotype in prdm1a mutants, suggesting a permissive role for prdm1a in neural plate border-derived cell fates. In addition, prdm1a expression is upregulated in the absence of Notch function, and inhibiting Notch signaling fails to rescue prdm1a mutants. This suggests that prdm1a functions downstream of Notch in the regulation of cell fate at the neural plate border and that Notch regulates the total number of progenitor cells at the neural plate border.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... by Prdm1a-neural crest cells and Rohon-Beard cells [103,105,[107][108][109]. Further studies confirmed that Prdm1a represses Olig4 expression, and vice versa, to establish and maintain the neural plate border and interneuron domains [106]. As Prdm gene function in the neural tube becomes analyzed more closely, it is likely that additional cases of reciprocal repression will be identified. ...
... Second, Prdm genes are involved in multiple aspects of CNS development. Prdm12b and Prdm1a play roles in early patterning by controlling the formation of expression domain boundaries (Prdm12b controls the p1/p2 boundary and Prdm1a the neural plate border; [73,106]), while Prdm13 acts on cell fate decisions to control the formation of inhibitory (GABAergic) over excitatory (glutamatergic) neurons [43,80]. In contrast, Prdm14 acts during motor neuron maturation to control proper axonal outgrowth [46] and Prdm8 acts to control appropriate axonal targeting during neural circuit formation [47]. ...
Article
Full-text available
The embryonic vertebrate neural tube is divided along its dorsoventral (DV) axis into eleven molecularly discrete progenitor domains. Each of these domains gives rise to distinct neuronal cell types; the ventral-most six domains contribute to motor circuits, while the five dorsal domains contribute to sensory circuits. Following the initial neurogenesis step, these domains also generate glial cell types-either astrocytes or oligodendrocytes. This DV pattern is initiated by two morphogens-Sonic Hedgehog released from notochord and floor plate and Bone Morphogenetic Protein produced in the roof plate-that act in concentration gradients to induce expression of genes along the DV axis. Subsequently, these DV-restricted genes cooperate to define progenitor domains and to control neuronal cell fate specification and differentiation in each domain. Many genes involved in this process have been identified, but significant gaps remain in our understanding of the underlying genetic program. Here we review recent work identifying members of the Prdm gene family as novel regulators of DV patterning in the neural tube. Many Prdm proteins regulate transcription by controlling histone modifications (either via intrinsic histone methyltransferase activity, or by recruiting histone modifying enzymes). Prdm genes are expressed in spatially restricted domains along the DV axis of the neural tube and play important roles in the specification of progenitor domains, as well as in the subsequent differentiation of motor neurons and various types of interneurons. Strikingly, Prdm proteins appear to function by binding to, and modulating the activity of, other transcription factors (particularly bHLH proteins). The identity of key transcription factors in DV patterning of the neural tube has been elucidated previously (e.g. the nkx, bHLH and pax families), but it now appears that an additional family is also required and that it acts in a potentially novel manner.
... Zebrafish were maintained as described (Westerfield, 1993). Wild-type (WT) strains include AB, TAB and EKK lines (ZIRC) and mutant lines include prdm1a m805 (nrd) (Artinger et al., 1999;Hernandez-Lagunas et al., 2011) and foxd3 zdf10 (formerly sym1) . Developmental staging followed published standards (Kimmel et al., 1995). ...
... We hypothesize that Prdm1a acts as a transcriptional repressor during NPB stages to repress neural plate and non-neural ectoderm from expanding into the NPB, thus specifying the neural crest domain. One candidate for Prdm1a transcriptional repression is olig4, a transcription factor that is expressed within the interneuron domain of the neural plate, is upregulated in prdm1a morphants and is known to repress NPB and NCC fates (Hernandez-Lagunas et al., 2011). Once the NPB is specified, Prdm1a then activates the neural crest specifiers foxd3, tfap2a and others to promote the NCC fate. ...
Article
Full-text available
The neural crest comprises multipotent precursor cells that are induced at the neural plate border by a series of complex signaling and genetic interactions. Several transcription factors, termed neural crest specifiers, are necessary for early neural crest development; however, the nature of their interactions and regulation is not well understood. Here, we have established that the PR/SET domain-containing transcription factor Prdm1a is co-expressed with two essential neural crest specifiers, foxd3 and tfap2a, at the neural plate border. Through rescue experiments, chromatin immunoprecipitation and reporter assays, we have determined that Prdm1a directly binds to and transcriptionally activates enhancers for foxd3 and tfap2a and that they are functional, direct targets of Prdm1a at the neural plate border. Additionally, analysis of dominant activator and dominant repressor Prdm1a constructs suggests that Prdm1a is required both as a transcriptional activator and transcriptional repressor for neural crest development in zebrafish embryos.
... Another study suggests Notch acts via repression of Neurogenin-1 function, restricting neurogenesis without actively promoting NC formation[156]. More recent studies suggest Notch/Delta acts earlier, refining the border of the neural plate specifically through negative regulation of the transcription factor prdm1a (Blimp1)[157]. Prdm1a, necessary for NPB specification in zebrafish, antagonizes another factor olig4, which defines the lateral edge of the NP and promotes neural cell fates over NC[23,157,158]. ...
... More recent studies suggest Notch/Delta acts earlier, refining the border of the neural plate specifically through negative regulation of the transcription factor prdm1a (Blimp1)[157]. Prdm1a, necessary for NPB specification in zebrafish, antagonizes another factor olig4, which defines the lateral edge of the NP and promotes neural cell fates over NC[23,157,158]. It appears olig4 is restricted by BMP signals during gastrulation, as swirl/bmp2b mutant zebrafish demonstrate a laterally expanded expression of olig4[158]. Importantly, in all these zebrafish studies, inhibition or loss of Notch signaling primarily affected trunk, but not cranial NC cells, suggesting it is not responsible for the initial induction of all NC cells. ...
Article
Full-text available
The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.
... Retinoic acid signaling contributes to NC induction and migration (Villanueva et al., 2002;Martinez-Morales et al., 2011). Notch signaling is required for bmp4 and snail2 expression, regulating NC induction and cell fates at the neural NB (Endo et al., 2002(Endo et al., , 2003Hernandez-Lagunas et al., 2011). AKT signaling is required for premigratory NC induction and maintenance (Sittewelle and Monsoro-Burq, 2018). ...
Article
Full-text available
The neural crest (NC) cells and cranial placodes are two ectoderm-derived innovations in vertebrates that led to the acquisition of a complex head structure required for a predatory lifestyle. They both originate from the neural border (NB), a portion of the ectoderm located between the neural plate (NP), and the lateral non-neural ectoderm. The NC gives rise to a vast array of tissues and cell types such as peripheral neurons and glial cells, melanocytes, secretory cells, and cranial skeletal and connective cells. Together with cells derived from the cranial placodes, which contribute to sensory organs in the head, the NC also forms the cranial sensory ganglia. Multiple in vivo studies in different model systems have uncovered the signaling pathways and genetic factors that govern the positioning, development, and differentiation of these tissues. In this literature review, we give an overview of NC and placode development, focusing on the early gene regulatory network that controls the formation of the NB during early embryonic stages, and later dictates the choice between the NC and placode progenitor fates.
... In addition to expressing distinct combinations of bHLH and homeodomain transcription factors, subsets of spinal cord progenitors express specific PRDI-BF1 and RIZ homology domain containing (Prdm) proteins (Zannino and Sagerström, 2015). This family of proteins contains an N-terminal SET domain followed by a varied number of C-terminal zinc-finger repeats and they act as transcriptional regulators or co-factors implicated in nervous system patterning, neural stem cell maintenance and differentiation (Baizabal et al., 2018;Chittka et al., 2012;Hanotel et al., 2014;Hernandez-Lagunas et al., 2011;Kinameri et al., 2008;Ross et al., 2012;Thélie et al., 2015;Yildiz et al., 2019). In the ventral mouse spinal cord, neural progenitors express Prdm8 from embryonic (E) day 9.5 to E13.5 (Kinameri et al., 2008;Komai et al., 2009), corresponding to the period of motor neuron and OPC formation. ...
Article
Spinal cord pMN progenitors sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Some OPCs differentiate rapidly as myelinating oligodendrocytes, whereas others remain into adulthood. How pMN progenitors switch from producing motor neurons to OPCs with distinct fates is poorly understood. pMN progenitors express prdm8 , which encodes a transcriptional repressor, during motor neuron and OPC formation. To determine whether prdm8 controls pMN cell fate specification, we used zebrafish as a model system to investigate prdm8 function. Our analysis revealed that prdm8 mutant embryos have fewer motor neurons resulting from a premature switch from motor neuron to OPC production. Additionally, prdm8 mutant larvae have excess oligodendrocytes and a concomitant deficit of OPCs. Notably, pMN cells of mutant embryos have elevated Shh signaling, coincident with the motor neuron to OPC switch. Inhibition of Shh signaling restored the number of motor neurons to normal but did not rescue the proportion of oligodendrocytes. These data suggest that Prdm8 regulates the motor neuron-OPC switch by controlling the level of Shh activity in pMN progenitors, and also regulates the allocation of oligodendrocyte lineage cell fates. This article has an associated ‘The people behind the papers’ interview.
... In zebrafish, Notch signaling has been implicated in neural crest development through the restriction of the neural fate. Studies at earlier stages in zebrafish have identified Prdm1a as a Notch/Delta target that is necessary for neural plate border specification by antagonizing the pro-neural factor Olig4 (Filippi et al., 2005;Hernandez-Lagunas, Powell, Law, Grant, & Artinger, 2011;Hernandez-Lagunas et al., 2005). Studies in zebrafish addressing the role of Notch signaling during neural crest development using loss-of-function analysis demonstrate an effect on the formation of trunk neural crest cells but not cranial neural crest cells (Cornell & Eisen, 2005). ...
... Conversely, DNMT3a represses the neural fate in the dorsal neural folds: DNMT3a is a DNA methyltransferase, repressing the neural genes sox2 and sox3 (Hu et al., 2012). In zebrafish, PRDM1a is expressed in the NB and inhibits olig4 that controls interneurons development, thus PRDM1a safeguards the prospective NC domain (Hernandez-Lagunas et al., 2011). Another series of negative molecular cross-talk separate NC from PPE. ...
Article
The neural crest is induced at the edge between the neural plate and the nonneural ectoderm, in an area called the neural (plate) border, during gastrulation and neurulation. In recent years, many studies have explored how this domain is patterned, and how the neural crest is induced within this territory, that also participates to the prospective dorsal neural tube, the dorsalmost nonneural ectoderm, as well as placode derivatives in the anterior area. This review highlights the tissue interactions, the cell-cell signaling and the molecular mechanisms involved in this dynamic spatiotemporal patterning, resulting in the induction of the premigratory neural crest. Collectively, these studies allow building a complex neural border and early neural crest gene regulatory network, mostly composed by transcriptional regulations but also, more recently, including novel signaling interactions.
... Recent studies in frog have placed its early function upstream of Pax3 and Zic1 in NPB induction(Hong, Devotta, Lee, Park, & Saint-Jeannet, 2014). In Xenopus, Tfap2 is directly activated by PRDM1A (BLIMP1), which is activated by Notch signaling in the NPB (Hernandez-Lagunas,Powell, Law, Grant, & Artinger, 2011;Powell, Hernandez-Lagunas, LaMonica, & Artinger, 2013). When establishing the NPB, TFAP2 activates many other NPB specifiers ...
... Disturbance of Notch signaling in mice leads to craniofacial structure abnormity, cardiac outflow deficiency, and decreased enteric neurons (Okamura and Saga, 2008;Mead and Yutzey, 2012). Notch signals refine the neural plate border region through negative regulation of PRDM1α in zebrafish (Hernandez-Lagunas et al., 2011). Studies using chick and Xenopus models demonstrate a similar BMP-regulating mechanism of Notch pathways in NC development (Endo et al., 2002). ...
Article
Full-text available
Ketamine is a potent dissociative anesthetic and the most commonly used illicit drug. Many addicts are women at childbearing age. Although ketamine has been extensively studied as a clinical anesthetic, its effects on embryonic development are poorly understood. Here, we applied the Xenopus model to study the effects of ketamine on development. We found that exposure to ketamine from pre-gastrulation (stage 7) to early neural plate (stage 13.5) resulted in disruption of neural crest (NC) derivatives. Ketamine exposure did not affect mesoderm development as indicated by the normal expression of Chordin, Xbra, Wnt8, and Fgf8. However, ketamine treatment significantly inhibited Zic5 and Slug expression at early neural plate stage. Overexpression of Zic5 rescued ketamine-induced Slug inhibition, suggesting the blockage of NC induction was mediated by Zic5. Furthermore, we found Notch signaling was altered by ketamine. Ketamine inhibited the expression of Notch targeted genes including Hes5.2a, Hes5.2b, and ESR1 and ketamine-treated embryos exhibited Notch-deficient somite phenotypes. A 15 bp core binding element upstream of Zic5 was induced by Notch signaling and caused transcriptional activation. These results demonstrated that Zic5 works as a downstream target gene of Notch signaling in Xenopus NC induction. Our study provides a novel teratogenic mechanism whereby ketamine disrupts NC induction via targeting a Notch-Zic5 signaling pathway.
... The translational block antisense MO against zebrafish Irs1 mRNA (irs1 MO: 5 0 -ACAGAAAAATTGCAGGATCGGAA-GT-3 0 ) and the standard control MO (ctr MO: 5 0 -CC-TCTTACCTCAGTTACAATTTATA-3 0 ) were designed and synthesized by Gene Tools, LLC. The previously validated antisense MOs against mRNAs for Prdm1a (prdm1a MO: 5 0 -TGGTGTCATACCTCTTTGGAGTCTG-3 0 ) and Sox10 (sox10 MO: 5 0 -ATGCTGTGCTCCTCCGCCGACATCG-3 0 ) were similarly prepared (24,25). The zebrafish Irs1 5 0 -UTR cDNA was amplified and subcloned into pCS2+Venus plasmid, and the plasmid was used for in vitro mRNA transcription (mMessage mMachine; Ambion, Austin, TX) to prepare the capped Venus mRNA harboring the irs1 MO target sequence (5 0 -Irs1 UTR -Venus). ...
Article
Most animals display retarded growth in adverse conditions; however, upon the removal of unfavorable factors, they often show quick growth restoration, which is known as “catch-up” growth. In zebrafish embryos, hypoxia causes growth arrest but subsequent reoxygenation induces the catch-up growth. Here we report the role of Irs1-mediated insulin/insulin-like growth factor signaling (IIS) and the involvement of stem cells in catch-up growth in reoxygenated zebrafish embryos. Disturbed irs1 expression attenuated IIS resulting in greater growth inhibition in catch-up growth than in normal growth, and forced IIS-activation restored the catch-up growth. The irs1 knockdown induced noticeable cell-death in neural crest cells (NCCs), multipotent stem cells, under hypoxia, and the pharmacological/genetic ablation of NCCs hindered the catch-up growth. Furthermore, inhibition of the apoptotic pathway by pan-Caspase inhibition or forced activation of Akt signaling in irs1 knocked-down embryos blocked NCC cell death and rescued catch-up growth. Our data indicate this multipotent stem cell is indispensable for the embryonic catch-up growth and the Irs1-mediated IIS is prerequisite for its survival under severe adverse environments such as prolonged hypoxia.
... A central component of neural crest maturation is a programmed epithelial-to-mesenchymal transition (EMT) (12,15). During embryogenesis, a series of transcriptional factors including ZIC1, PAX3, TPAP2a, Notch, and PRDM1A initiate the crest developmental pathway after the neural tube forms (16,17). This distinguishes early neural crest cells from primitive neuroectoderm. ...
Article
Neuroblastoma is a developmental tumor of young children arising from the embryonic sympathoadrenal lineage of the neural crest. Neuroblastoma is the primary cause of death from pediatric cancer for children between the ages of one and five years and accounts for ∼13% of all pediatric cancer mortality. Its clinical impact and unique biology have made this aggressive malignancy the focus of a large concerted translational research effort. New insights into tumor biology are driving the development of new classification schemas. Novel targeted therapeutic approaches include small-molecule inhibitors as well as epigenetic, noncoding-RNA, and cell-based immunologic therapies. In this review, recent insights regarding the pathogenesis and biology of neuroblastoma are placed in context with the current understanding of tumor biology and tumor/host interactions. Systematic classification of patients coupled with therapeutic advances point to a future of improved clinical outcomes for this biologically distinct and highly aggressive pediatric malignancy. Expected final online publication date for the Annual Review of Medicine Volume 66 is January 14, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
... Another transcription factor, Olig4, represses RB sensory neuron fate, potentially via Islet1 antagonism [43,44]. We tested whether olig4 expression increases upon loss of Islet1. ...
Article
Full-text available
Background In the spinal cord, stereotypic patterns of transcription factor expression uniquely identify neuronal subtypes. These transcription factors function combinatorially to regulate gene expression. Consequently, a single transcription factor may regulate divergent development programs by participation in different combinatorial codes. One such factor, the LIM-homeodomain transcription factor Islet1, is expressed in the vertebrate spinal cord. In mouse, chick and zebrafish, motor and sensory neurons require Islet1 for specification of biochemical and morphological signatures. Little is known, however, about the role that Islet1 might play for development of electrical membrane properties in vertebrates. Here we test for a role of Islet1 in differentiation of excitable membrane properties of zebrafish spinal neurons. Results We focus our studies on the role of Islet1 in two populations of early born zebrafish spinal neurons: ventral caudal primary motor neurons (CaPs) and dorsal sensory Rohon-Beard cells (RBs). We take advantage of transgenic lines that express green fluorescent protein (GFP) to identify CaPs, RBs and several classes of interneurons for electrophysiological study. Upon knock-down of Islet1, cells occupying CaP-like and RB-like positions continue to express GFP. With respect to voltage-dependent currents, CaP-like and RB-like neurons have novel repertoires that distinguish them from control CaPs and RBs, and, in some respects, resemble those of neighboring interneurons. The action potentials fired by CaP-like and RB-like neurons also have significantly different properties compared to those elicited from control CaPs and RBs. Conclusions Overall, our findings suggest that, for both ventral motor and dorsal sensory neurons, Islet1 directs differentiation programs that ultimately specify electrical membrane as well as morphological properties that act together to sculpt neuron identity.
... For example, Prdm1/Blimp1 specifies photoreceptor over bipolar neurons in the mouse and zebrafish retina (Brzezinski et al., 2010;Katoh et al., 2010). It also controls cell fate decision at the neural plate border in zebrafish embryos (Roy and Ng, 2004;Hernandez-Lagunas et al., 2011). Prdm8 regulates target gene expression in postmitotic cortical neurons by forming a repressor complex with the transcription factor Bhlhb5 (Ross et al., 2012). ...
Article
The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.
... This represents a significant enrichment (p o0.001) of neural crest signature genes among Pax3 targets. Among these, we found several known neural border specifiers (tfap2b, pax3, zic1) (reviewed in Pegoraro and Monsoro-Burq, 2013), known neural crest specifiers (snail1, snail2, foxd3, twist1, ets1) (reviewed in Rogers et al., 2012) and other neural border/crest regulators such as irx1/2/3, cyp26c1, nrp1, pdgfra, olig4, (Alarcon et al., 2008;Bellefroid et al., 1998;Hernandez-Lagunas et al. 2011;Itoh et al., 2002;Liu et al., 2002;Martinez-Morales et al. 2011;Reijntjes et al., 2004;Rodriguez-Seguel et al., 2009;Schwarz et al., 2009;Tallquist and Soriano, 2003). In addition, several transcripts such as plekhn1, prtg, tfap2e, dact1, axin2, and ror2 remain to be analyzed in neural border/crest development. ...
Article
Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.
... In zebrafish embryos, recent evidence has shown that Prdm1a downstream of Notch signaling is required for cell fate specification of NPB cells and acts by promoting them toward a presumptive NC fate 81 at the expense of Rohon-Beard cell fate. However, the cranial but not the trunk NPB phenotype recovers by the 5-somite stage, suggesting a requirement for Notch during trunk NC development. ...
Article
Full-text available
The neural crest is a transient population of multipotent and migratory cells unique to vertebrate embryos. Initially derived from the borders of the neural plate, these cells undergo an epithelial to mesenchymal transition to leave the central nervous system, migrate extensively in the periphery, and differentiate into numerous diverse derivatives. These include but are not limited to craniofacial cartilage, pigment cells, and peripheral neurons and glia. Attractive for their similarities to stem cells and metastatic cancer cells, neural crest cells are a popular model system for studying cell/tissue interactions and signaling factors that influence cell fate decisions and lineage transitions. In this review, we discuss the mechanisms required for neural crest formation in various vertebrate species, focusing on the importance of signaling factors from adjacent tissues and conserved gene regulatory interactions, which are required for induction and specification of the ectodermal tissue that will become neural crest. WIREs Dev Biol 2012, 1:52–68. doi: 10.1002/wdev.8 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Development to the Basic Body Plan
... In zebrafish embryos, recent evidence has shown that Prdm1a downstream of Notch signaling is required for cell fate specification of NPB cells and acts by promoting them toward a presumptive NC fate 81 at the expense of Rohon-Beard cell fate. However, the cranial but not the trunk NPB phenotype recovers by the 5-somite stage, suggesting a requirement for Notch during trunk NC development. ...
Article
Full-text available
The neural crest is a transient population of multipotent and migratory cells unique to vertebrate embryos. Initially derived from the borders of the neural plate, these cells undergo an epithelial to mesenchymal transition to leave the central nervous system, migrate extensively in the periphery, and differentiate into numerous diverse derivatives. These include but are not limited to craniofacial cartilage, pigment cells, and peripheral neurons and glia. Attractive for their similarities to stem cells and metastatic cancer cells, neural crest cells are a popular model system for studying cell/tissue interactions and signaling factors that influence cell fate decisions and lineage transitions. In this review, we discuss the mechanisms required for neural crest formation in various vertebrate species, focusing on the importance of signaling factors from adjacent tissues and conserved gene regulatory interactions, which are required for induction and specification of the ectodermal tissue that will become neural crest.
... Our observations indicate that Runx1 is also under the control of Pax3 and Zic1, suggesting that the regulatory network underlying the emergence of the NC and PE (Meulemans and Bronner-Fraser, 2004;Litsiou et al., 2005) can be extended to RB sensory neurons, and we propose that Runx1 represents a bona fide RB specifier downstream of the NPB specifiers Pax3 and Zic1 (Fig 8). Recent work in zebrafish indicates that the transcription factor prdm1a is an important upstream regulator of NPB cell fates, through the selective activation of two target genes, sox10 in the NC, and islet1 in RB neurons (Olesnicki et al., 2010), and the repression of the basic helixloop-helix gene olig4 (Hernandez-Lagunas et al., 2011). In light of these results it would be of particular importance to also evaluate the role of Prdm1 in the regulation of cell fate at the NPB in Xenopus. ...
Article
Lower vertebrates develop a unique set of primary sensory neurons located in the dorsal spinal cord. These cells, known as Rohon-Beard (RB) sensory neurons, innervate the skin and mediate the response to touch during larval stages. Here we report the expression and function of the transcription factor Xaml1/Runx1 during RB sensory neurons formation. In Xenopus embryos Runx1 is specifically expressed in RB progenitors at the end of gastrulation. Runx1 expression is positively regulated by Fgf and canonical Wnt signaling and negatively regulated by Notch signaling, the same set of factors that control the development of other neural plate border cell types, i.e. the neural crest and cranial placodes. Embryos lacking Runx1 function fail to differentiate RB sensory neurons and lose the mechanosensory response to touch. At early stages Runx1 knockdown results in a RB progenitor-specific loss of expression of Pak3, a p21-activated kinase that promotes cell cycle withdrawal, and of N-tub, a neuronal-specific tubulin. Interestingly, the pro-neural gene Ngnr1, an upstream regulator of Pak3 and N-tub, is either unaffected or expanded in these embryos, suggesting the existence of two distinct regulatory pathways controlling sensory neuron formation in Xenopus. Consistent with this possibility Ngnr1 is not sufficient to activate Runx1 expression in the ectoderm. We propose that Runx1 function is critically required for the generation of RB sensory neurons, an activity reminiscent of that of Runx1 in the development of the mammalian dorsal root ganglion nociceptive sensory neurons.
Article
Full-text available
The neural crest is a migratory population of stem-like cells that contribute to multiple traits including the bones of the skull, peripheral nervous system, and pigment. How neural crest cells differentiate into diverse cell types is a fundamental question in the study of vertebrate biology. Here, we use single-cell RNA sequencing to characterize transcriptional changes associated with neural crest cell development in the zebrafish trunk during the early stages of migration. We show that neural crest cells are transcriptionally diverse and identify pre-migratory populations already expressing genes associated with differentiated derivatives, specifically in the xanthophore lineage. Further, we identify a population of Rohon–Beard neurons in the data. The data presented identify novel genetic markers for multiple trunk neural crest cell populations and Rohon–Beard neurons providing insight into previously uncharacterized genes critical for vertebrate development.
Article
Full-text available
Neuroblastoma (NB) is an aggressive pediatric cancer that originates from neural crest tissues of the sympathetic nervous system. NB is highly heterogeneous both from a clinical and a molecular perspective. Clinically, this cancer represents a wide range of phenotypes ranging from spontaneous regression of 4S disease to unremitting treatment-refractory progression and death of high-risk metastatic disease. At a cellular level, the heterogeneous behavior of NB likely arises from an arrest and deregulation of normal neural crest development. In the present review, we summarize our current knowledge of neural crest development as it relates to pathways promoting ‘stemness’ and how deregulation may contribute to the development of tumor-initiating CSCs. There is an emerging consensus that such tumor subpopulations contribute to the evolution of drug resistance, metastasis and relapse in other equally aggressive malignancies. As relapsed, refractory disease remains the primary cause of death for neuroblastoma, the identification and targeting of CSCs or other primary drivers of tumor progression remains a critical, clinically significant goal for neuroblastoma. We will critically review recent and past evidence in the literature supporting the concept of CSCs as drivers of neuroblastoma pathogenesis.
Article
Full-text available
The zinc finger transcription factor Blimp1 plays fundamentally important roles in many cell lineages and in the early development of several cell types, including B and T lymphocytes and germ cells. Although Blimp1 expression in developing retinal photoreceptor cells has been reported, its function remains unclear. We identified Blimp1 as a downstream factor of Otx2, which plays an essential role in photoreceptor cell fate determination. To investigate Blimp1 function in the mouse retina, we ablated Blimp1 in the developing retina by conditional gene targeting. In the Blimp1 conditional knockout (CKO) retina, the number of photoreceptor cells was markedly reduced in the differentiated retina. We found that the numbers of both bipolar-like cells and proliferating retinal cells increased noticeably, with ectopic localizations in the postnatal developing retina. In contrast, a reduction of the number of photoreceptor precursors was observed during development. Forced expression of Blimp1 by in vivo electroporation suppressed bipolar cell genesis in the developing retina. Multiple genes involved in bipolar development, including Chx10, were upregulated in the Blimp1 CKO retina. Furthermore, we showed that Blimp1 can bind to the Chx10 enhancer and repress Chx10 enhancer activity. These results suggest that Blimp1 plays a crucial role in photoreceptor development by repressing genes involved in bipolar cell fate specification and retinal cell proliferation in differentiating photoreceptor precursors.
Article
Full-text available
In a screen for embryonic mutants in the zebrafish a large number of mutants were isolated with abnormal brain morphology. We describe here 26 mutants in 13 complementation groups that show abnormal development of large regions of the brain. Early neurogenesis is affected in white tail (wit). During segmentation stages, homozygous wit embryos display an irregularly formed neural keel, particularly in the hindbrain. Using a variety of molecular markers, a severe increase in the number of various early differentiating neurons can be demonstrated. In contrast, late differentiating neurons, radial glial cells and some nonneural cell types, such as the neural crest-derived melanoblasts, are much reduced. Somitogenesis appears delayed. In addition, very reduced numbers of melanophores are present posterior to the mid-trunk. The wit phenotype is reminiscent of neurogenic mutants in Drosophila, such as Notch or Delta. In mutant parachute (pac) embryos the general organization of the hindbrain is disturbed and many rounded cells accumulate loosely in the hindbrain and midbrain ventricles. Mutants in a group of 6 genes, snakehead(snk), natter (nat), otter (ott), fullbrain (ful), viper (vip) and white snake (wis) develop collapsed brain ventricles, before showing signs of general degeneration. atlantis (atl), big head (bid), wicked brain (win), scabland (sbd) and eisspalte (ele) mutants have different malformation of the brain folds. Some of them have transient phenotypes, and mutant individuals may grow up to adults.
Article
Full-text available
The vertebrate spinal cord consists of a large number of different cell types in close proximity to one another. The identities of these cells appear to be specified largely by information acquired from their local environments. We report here that local cell-cell interactions, mediated by zebrafish homologues of the Drosophila melanogaster neurogenic gene, Delta, regulate specification of diverse neuronal types in the ventral spinal cord. We describe identification of a novel zebrafish Delta gene expressed specifically in the nervous system and show, by expressing a dominant negative form of Delta protein in embryos, that Delta proteins mediate lateral inhibition in the zebrafish spinal cord. Furthermore, we find that Delta function is important for specification of a variety of spinal cord neurons, suggesting that lateral inhibition serves to diversify neuronal fate during development of the vertebrate spinal cord.
Article
Full-text available
Notch signaling defines an evolutionarily ancient cell interaction mechanism, which plays a fundamental role in metazoan development. Signals exchanged between neighboring cells through the Notch receptor can amplify and consolidate molecular differences, which eventually dictate cell fates. Thus, Notch signals control how cells respond to intrinsic or extrinsic developmental cues that are necessary to unfold specific developmental programs. Notch activity affects the implementation of differentiation, proliferation, and apoptotic programs, providing a general developmental tool to influence organ formation and morphogenesis.
Article
Full-text available
In the developing vertebrate nervous system, both neural crest and sensory neurons form at the boundary between non-neural ectoderm and the neural plate. From an in situ hybridization based expression analysis screen, we have identified a novel zebrafish mutation, narrowminded (nrd), which reduces the number of early neural crest cells and eliminates Rohon-Beard (RB) sensory neurons. Mosaic analysis has shown that the mutation acts cell autonomously suggesting that nrd is involved in either the reception or interpretation of signals at the lateral neural plate boundary. Characterization of the mutant phenotype indicates that nrd is required for a primary wave of neural crest cell formation during which progenitors generate both RB sensory neurons and neural crest cells. Moreover, the early deficit in neural crest cells in nrd homozygotes is compensated later in development. Thus, we propose that a later wave can compensate for the loss of early neural crest cells but, interestingly, not the RB sensory neurons. We discuss the implications of these findings for the possibility that RB sensory neurons and neural crest cells share a common evolutionary origin.
Article
Full-text available
We examined the role of Delta signaling in specification of two derivatives in zebrafish neural plate: Rohon-Beard spinal sensory neurons and neural crest. deltaA-expressing Rohon-Beard neurons are intermingled with premigratory neural crest cells in the trunk lateral neural plate. Embryos homozygous for a point mutation in deltaA, or with experimentally reduced delta signalling, have supernumerary Rohon-Beard neurons, reduced trunk-level expression of neural crest markers and lack trunk neural crest derivatives. Fin mesenchyme, a putative trunk neural crest derivative, is present in deltaA mutants, suggesting it segregates from other neural crest derivatives as early as the neural plate stage. Cranial neural crest derivatives are also present in deltaA mutants, revealing a genetic difference in regulation of trunk and cranial neural crest development.
Article
Full-text available
Inhibition of amyloid beta-peptide (Abeta) production by blocking gamma-secretase activity is at present one of the most promising therapeutic strategies to slow progression of Alzheimer's disease pathology. gamma-secretase inhibitors apparently block Abeta generation via interference with presenilin (PS) function. Besides being an essential component of the gamma-secretase complex, PS itself may be an aspartyl protease with gamma-secretase activity, which is not only required for Abeta production but also for a similar proteolytic process involved in Notch signaling. Here we demonstrate that treatment of zebrafish embryos with a known gamma-secretase inhibitor affects embryonic development in a manner indistinguishable from Notch signaling deficiencies at morphological, molecular and biochemical levels. This indicates severe side-effects of gamma-secretase inhibitors in any Notch-dependent cell fate decision and demonstrates that the zebrafish is an ideal vertebrate system to validate compounds that selectively affect Abeta production, but not Notch signaling, under in vivo conditions.
Article
Full-text available
The neural crest is a population of cells that originates at the interface between the neural plate and non-neural ectoderm. Here, we have analyzed the role that Notch and the homeoprotein Xiro1 play in the specification of the neural crest. We show that Xiro1, Notch and the Notch target gene Hairy2A are all expressed in the neural crest territory, whereas the Notch ligands Delta 1 and Serrate are expressed in the cells that surround the prospective crest cells. We have used inducible dominant-negative and activator constructs of both Notch signaling components and Xiro1 to analyze the role of these factors in neural crest specification without interfering with mesodermal or neural plate development. Activation of Xiro1 or Notch signaling led to an enlargement of the neural crest territory, whereas blocking their activity inhibited the expression of neural crest markers. It is known that BMPs are involved in the induction of the neural crest and, thus, we assessed whether these two elements might influence the expression of Bmp4. Activation of Xiro1 and of Notch signaling upregulated Hairy2A and inhibited Bmp4 transcription during neural crest specification. These results, in conjunction with data from rescue experiments, allow us to propose a model wherein Xiro1 lies upstream of the cascade regulating Delta 1 transcription. At the early gastrula stage, the coordinated action of Xiro1, as a positive regulator, and Snail, as a repressor, restricts the expression of Delta 1 at the border of the neural crest territory. At the late gastrula stage, Delta 1 interacts with Notch to activate Hairy2A in the region of the neural fold. Subsequently, Hairy2A acts as a repressor of Bmp4 transcription, ensuring that levels of Bmp4 optimal for the specification of the neural plate border are attained in this region. Finally, the activity of additional signals (WNTs, FGF and retinoic acid) in this newly defined domain induces the production of neural crest cells. These data also highlight the different roles played by BMP in neural crest specification in chick and Xenopus or zebrafish embryos.
Article
Full-text available
Vertebrate skeletal muscles comprise distinct fiber types that differ in their morphology, contractile function, mitochondrial content and metabolic properties. Recent studies identified the transcriptional coactivator PGC-1alpha as a key mediator of the physiological stimuli that modulate fiber-type plasticity in postembryonic development. Although myoblasts become fated to differentiate into distinct kinds of fibers early in development, the identities of regulatory proteins that determine embryonic fiber-type specification are still obscure. Here we show that the gene u-boot (ubo), a mutation in which disrupts the induction of embryonic slow-twitch fibers, encodes the zebrafish homolog of Blimp-1, a SET domain-containing transcription factor that promotes the terminal differentiation of B lymphocytes in mammals. Expression of ubo is induced by Hedgehog (Hh) signaling in prospective slow muscle precursors, and its activity alone is sufficient to direct slow-twitch fiber-specific development by naive myoblasts. Our data provide the first molecular insight into the mechanism by which a specific group of muscle precursors is driven along a distinct pathway of fiber-type differentiation in response to positional cues in the vertebrate embryo.
Article
Full-text available
During vertebrate development the dorsal gastrula or Spemann-Mangold organizer orchestrates axis formation largely by limiting the ventralizing and posteriorizing activity of bone morphogenetic proteins (BMPs). In mouse and Xenopus laevis, genes encoding the zinc finger transcriptional repressor Prdm1/Blimp1 (PR domain containing 1, with ZNF domain; previously named B lymphocyte-induced maturation protein 1) were recently shown to be expressed in the visceral endoderm and anterior endomesoderm, respectively, and the prechordal plate of gastrula stage embryos. Later in development Prdm1/Blimp1 is expressed in many other tissues, including pharyngeal arches, limb buds, otic vesicles, photoreceptor cell layer, slow muscle and cloaca. Based on misexpression and dominant-negative studies, Prdm1/Blimp1 was proposed to promote anterior endomesoderm and head development in Xenopus laevis. Here we report the isolation and functional characterization of zebrafish prdm1 exhibiting a dynamic and evolutionarily conserved expression pattern. Misexpression of prdm1 inhibits the formation of dorsoanterior structures and reduces expression of chordin, which encodes a BMP antagonist. Conversely, interference with Prdm1 translation using antisense morpholino oligonucleotides, increases chordin expression, while reducing expression of Bmp genes, and consequently dorsalizing the embryo. At the end of the gastrula period, prdm1 morphant embryos have enlarged animal-vegetal and anteroposterior embryonic axes. This altered embryo morphology is associated with augmented extension movements of dorsal tissues and normal posterior migration of ventral tissues. Additionally, Prdm1 activity is essential for proper development of slow muscle, the photoreceptor cell layer, branchial arches and pectoral fins. Our studies reveal essential roles for prdm1 in limiting the function of the gastrula organizer and regulating cell fate specification and morphogenetic processes in precise correspondence with its intricate expression pattern.
Article
Full-text available
olig genes encode a previously unrecognized group of vertebrate-specific basic helix–loop–helix transcription factors. As shown in mice, chickens, and zebrafish, two members of this group, olig1 and olig2, are involved in the differentiation of motoneurons and oligodendrocytes, but nothing is known about the role of the third member, olig3. Here, we show that olig3 plays an essential role in the establishment of the neural crest–lateral neural plate boundary. In zebrafish embryos, morpholino-induced olig3 inactivation dramatically increases the number of neural crest cells, but lateral neural plate fates (interneurons and astrocytes) are missing. Zebrafish swirl mutants that have impaired bone morphogenetic protein signaling and lack neural crest cells display an expanded olig3 expression domain. Moreover, olig3 is up-regulated in mindbomb mutants lacking the neural crest because of an impaired notch signaling, and olig3 repression in such mutants rescues the neural crest. In addition, olig3 regulates ngn1 and deltaA expression in interneuron precursors. Our results indicate that olig3 has an essential proneural activity in the dorsal spinal cord and cooperates with the Delta/Notch regulatory loop to establish the boundary between the neural crest and the lateral neural plate. Thus, a proper regulation of the olig gene family is essential for the formation of three cell types (oligodendrocytes, astrocytes, and neural crest) that are unique to vertebrates. • interneurons • neural crest • olig3 • zebrafish • glia
Article
Full-text available
Neurons of the dorsal horn integrate and relay sensory information and arise during development in the dorsal spinal cord, the alar plate. Class A and B neurons emerge in the dorsal and ventral alar plate, differ in their dependence on roof plate signals for specification, and settle in the deep and superficial dorsal horn, respectively. We show here that the basic helix-loop-helix (bHLH) gene Olig3 is expressed in progenitor cells that generate class A (dI1-dI3) neurons and that Olig3 is an important factor in the development of these neuronal cell types. In Olig3 mutant mice, the development of class A neurons is impaired; dI1 neurons are generated in reduced numbers, whereas dI2 and dI3 neurons are misspecified and assume the identity of class B neurons. Conversely, Olig3 represses the emergence of class B neurons in the chick spinal cord. We conclude that Olig3 expression distinguishes the two major classes of progenitors in the dorsal spinal cord and determines the distinct specification program of class A neurons.
Article
Full-text available
Vertebrate limb induction is triggered in the lateral plate mesoderm (LPM) by a cascade of signaling events originating in the axial mesoderm. While it is known that Fgf, Wnt and retinoic acid (RA) signals are involved in this cascade, their precise regulatory hierarchy has not been determined in any species. tbx5 is the earliest gene expressed in the limb bud mesenchyme. Recently, another transcription factor, Prdm1, has been shown to be crucial for zebrafish forelimb development. Here, we show that Prdm1 is downstream of RA, Wnt2b and Tbx5 activity. We find that RA activity, but not Fgf signaling, is necessary for wnt2b expression. Fgf signaling is required for prdm1 expression in the fin bud, but is not necessary for the initiation of tbx5 expression. We propose a model in which RA signaling from the somitic mesoderm leads to activation of wnt2b expression in the intermediate mesoderm, which then signals to the LPM to trigger tbx5 expression. tbx5 is required for Fgf signaling in the limb bud leading to activation of prdm1 expression, which in turn is required for downstream activation of fgf10 expression.
Article
Full-text available
In addition to rapid signaling, electrical activity provides important cues to developing neurons. Electrical activity relies on the function of several different types of voltage-gated ion channels. Whereas voltage-gated Ca2+ channel activity regulates several aspects of neuronal differentiation, much less is known about developmental roles of voltage-gated Na+ channels, essential mediators of electrical signaling. Here, we focus on the zebrafish Na+ channel isotype, Nav1.6a, which is encoded by the scn8a gene. A restricted set of spinal neurons, including dorsal sensory Rohon-Beard cells, two motoneuron subtypes with different axonal trajectories, express scn8a during embryonic development. CaP, an early born primary motoneuron subtype with ventrally projecting axons expresses scn8a, as does a class of secondary motoneurons with axons that project dorsally. To test for developmental roles of scn8a, we knocked down Nav1.6a protein using antisense morpholinos. Na+ channel protein and current amplitudes were reduced in neurons that express scn8a. Furthermore, Nav1.6a knockdown altered axonal morphologies of some but not all motoneurons. Dorsally projecting secondary motoneurons express scn8a and displayed delayed axonal outgrowth. By contrast, CaP axons developed normally, despite expression of the gene. Surprisingly, ventrally projecting secondary motoneurons, a population in which scn8a was not detected, displayed aberrant axonal morphologies. Mosaic analysis indicated that effects on ventrally projecting secondary motoneurons were non cell-autonomous. Thus, voltage-gated Na+ channels play cell-autonomous and non cell-autonomous roles during neuronal development.
Article
Full-text available
In all vertebrates, the neurogenic placodes are transient ectodermal thickenings that give rise to sensory neurons of the cranial ganglia. Epibranchial (EB) placodes generate neurons of the distal facial, glossopharyngeal and vagal ganglia, which convey sensation from the viscera, including pharyngeal endoderm structures, to the CNS. Recent studies have implicated signals from pharyngeal endoderm in the initiation of neurogenesis from EB placodes; however, the signals underlying the formation of placodes are unknown. Here, we show that zebrafish embryos mutant for fgf3 and fgf8 do not express early EB placode markers, including foxi1 and pax2a. Mosaic analysis demonstrates that placodal cells must directly receive Fgf signals during a specific crucial period of development. Transplantation experiments and mutant analysis reveal that cephalic mesoderm is the source of Fgf signals. Finally, both Fgf3 and Fgf8 are sufficient to induce foxi1-positive placodal precursors in wild-type as well as Fgf3-plus Fgf8-depleted embryos. We propose a model in which mesoderm-derived Fgf3 and Fgf8 signals establish both the EB placodes and the development of the pharyngeal endoderm, the subsequent interaction of which promotes neurogenesis. The coordinated interplay between craniofacial tissues would thus assure proper spatial and temporal interactions in the shaping of the vertebrate head.
Article
Full-text available
Epidermal ionocytes play essential roles in the transepithelial transportation of ions, water, and acid-base balance in fish embryos before their branchial counterparts are fully functional. However, the mechanism controlling epidermal ionocyte specification and differentiation remains unknown. In zebrafish, we demonstrated that Delta-Notch-mediated lateral inhibition plays a vital role in singling out epidermal ionocyte progenitors from epidermal stem cells. The entire epidermal ionocyte domain of genetic mutants and morphants, which failed to transmit the DeltaC-Notch1a/Notch3 signal from sending cells (epidermal ionocytes) to receiving cells (epidermal stem cells), differentiates into epidermal ionocytes. The low Notch activity in epidermal ionocyte progenitors is permissive for activating winged helix/forkhead box transcription factors of foxi3a and foxi3b. Through gain- and loss-of-function assays, we show that the foxi3a-foxi3b regulatory loop functions as a master regulator to mediate a dual role of specifying epidermal ionocyte progenitors as well as of subsequently promoting differentiation of Na(+),K(+)-ATPase-rich cells and H(+)-ATPase-rich cells in a concentration-dependent manner. This study provides a framework to show the molecular mechanism controlling epidermal ionocyte specification and differentiation in a low vertebrate for the first time. We propose that the positive regulatory loop between foxi3a and foxi3b not only drives early ionocyte differentiation but also prevents the complete blockage of ionocyte differentiation when the master regulator of foxi3 function is unilaterally compromised.
Article
Full-text available
The zinc-finger transcriptional repressor Blimp1 (Prdm1) controls gene expression patterns during differentiation of B lymphocytes and regulates epigenetic changes required for specification of primordial germ cells. Blimp1 is dynamically expressed at diverse tissue sites in the developing mouse embryo, but its functional role remains unknown because Blimp1 mutant embryos arrest at E10.5 due to placental insufficiency. To explore Blimp1 activities at later stages in the embryo proper, here we used a conditional inactivation strategy. A Blimp1-Cre transgenic strain was also exploited to generate a fate map of Blimp1-expressing cells. Blimp1 plays essential roles in multipotent progenitor cell populations in the posterior forelimb, caudal pharyngeal arches, secondary heart field and sensory vibrissae and maintains key signalling centres at these diverse tissues sites. Interestingly, embryos carrying a hypomorphic Blimp1gfp reporter allele survive to late gestation and exhibit similar, but less severe developmental abnormalities, whereas transheterozygous Blimp1(gfp/-) embryos with further reduced expression levels, display exacerbated defects. Collectively, the present experiments demonstrate that Blimp1 requirements in diverse cell types are exquisitely dose dependent.
Article
We describe a series of stages for development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad periods of embryogenesis—the zygote, cleavage, blastula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the changing spectrum of major developmental processes that occur during the first 3 days after fertilization, and we review some of what is known about morphogenesis and other significant events that occur during each of the periods. Stages subdivide the periods. Stages are named, not numbered as in most other series, providing for flexibility and continued evolution of the staging series as we learn more about development in this species. The stages, and their names, are based on morphological features, generally readily identified by examination of the live embryo with the dissecting stereomicroscope. The descriptions also fully utilize the optical transparancy of the live embryo, which provides for visibility of even very deep structures when the embryo is examined with the compound microscope and Nomarski interference contrast illumination. Photomicrographs and composite camera lucida line drawings characterize the stages pictorially. Other figures chart the development of distinctive characters used as staging aid signposts. ©1995 Wiley-Liss, Inc.
Article
The PR domain containing 1a, with ZNF domain factor, gene (prdm1a) plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon-Beard (RB) sensory neurons and the cranial neural crest-derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and RB neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis.
Article
Photoreceptors, rods and cones are the most abundant cell type in the mammalian retina. However, the molecules that control their development are not fully understood. In studies of photoreceptor fate determination, we found that Blimp1 (Prdm1) is expressed transiently in developing photoreceptors. We analyzed the function of Blimp1 in the mouse retina using a conditional deletion approach. Developmental analysis of mutants showed that Otx2(+) photoreceptor precursors ectopically express the bipolar cell markers Chx10 (Vsx2) and Vsx1, adopting bipolar instead of photoreceptor fate. However, this fate shift did not occur until the time when bipolar cells are normally specified during development. Most of the excess bipolar cells died around the time of bipolar cell maturation. Our results suggest that Blimp1 expression stabilizes immature photoreceptors by preventing bipolar cell induction. We conclude that Blimp1 regulates the decision between photoreceptor and bipolar cell fates in the Otx2(+) cell population during retinal development.
Article
Multiple tissue interactions and signaling within the pharyngeal arches are required for development of the craniofacial skeleton. Here, we focus on the role of the transcription factor prdm1a in the differentiation of the posterior skeleton. prdm1a is expressed in the presumptive pharyngeal arch region and later in an endodermal pouch, the otic vesicle, and pharyngeal teeth. prdm1a mutants display a reduction in pharyngeal arch markers, a loss of posterior ceratobranchial cartilages, and a reduction in most neural crest-derived dermal bones. This is likely caused by a decrease in the number of proliferating cells but not an increase in cell death. Finally, a reduction in two key developmental signaling pathways, Fgf and retinoic acid, alters prdm1a expression, suggesting that prdm1a expression is mediated by these signaling pathways to pattern the posterior craniofacial skeleton. Together, these results indicate an essential role for prdm1a in the development of the zebrafish craniofacial skeleton.
Article
Rohon-Beard (RB) mechanosensory neurons are among the first sensory neurons to develop, and the process by which they adopt their fate is not completely understood. RBs form at the neural plate border (NPB), the junction between neural and epidermal ectoderm, and require the transcription factor prdmla. Here, we show that prior to RB differentiation, prdmla overlaps extensively with the epidermal marker dlx3b but shows little overlap with the neuroectodermal markers sox3 and sox19a. Birthdating analysis reveals that the majority of RBs are born during gastrulation in zebrafish, suggesting that it is during this period that RBs become specified. Expression analysis in prdmla and neurogeninl mutant and dlx3b/dlx4b morpholino-injected embryos suggests that prdmla is upstream of dlx3b, dlx4b, and neurogeninl at the NPB. mRNA for neurogeninl or dlx3b/dlx4b can rescue the lack of RBs in prdmla mutants. Based on these data, we suggest a preliminary gene regulatory network for RB development.
Article
The members of the Olig gene family encode for basic helix-loop-helix (bHLH) transcription factors involved in neural cell type specification. Three Olig genes (Olig1, Olig2 and Olig3) have been identified in all known vertebrate models and a fourth one in anamniotes (olig4). Here we have performed a global analysis of olig genes during zebrafish embryonic development and determined which signaling pathways control their induction and regionalization in the CNS. Interestingly, zebrafish olig3 and olig4 together establish most of the expression domains corresponding to mouse Olig3. According to our data, olig1 is specifically confined to the oligodendrocyte lineage, whereas the other members display stratified expression in diencephalon, hindbrain, and spinal cord. We observed differential expression of olig genes within specific motoneuron and interneuron domains of the spinal cord. olig2, olig3, and olig4 expression appears to be regulated by nodal and FGF signaling during gastrulation and early somitogenesis, by RA signaling in the hindbrain, and by BMP and Hh signals along the dorsoventral axis of the embryonic CNS. Our findings suggest a role for olig genes in CNS patterning as well as in multiple cell fate decisions during neural differentiation.
Article
Skeletal muscles of vertebrates are typically composed of slow- and fast-twitch fibers that differ in their morphology, gene expression profiles, contraction speeds, metabolic properties and patterns of innervation. During myogenesis, how muscle precursors are induced to mature into distinct slow- or fast-twitch fiber-types is inadequately understood. We have previously shown that within the somites of the zebrafish embryo, the activity of the zinc finger and SET domain-containing transcriptional regulator Blimp1 is essential for the specification of slow muscle fibers. Here, we have investigated the mechanism by which Blimp1 programs myoblasts to adopt the slow-twitch fiber fate. In slow myoblasts, expression of the Blimp1 protein is transient, and precedes the expression of slow muscle-specific differentiation genes. We demonstrate that the competence of somitic myoblasts to commit to the slow lineage in response to Blimp1 changes as a function of developmental time. Furthermore, we provide evidence that mammalian Blimp1 can recapitulate the slow myogenic program in zebrafish, suggesting that zebrafish Blimp1 can recognize the same consensus DNA sequence that is bound by the mammalian protein. Finally, we show that zebrafish Blimp1 can repress the expression of fast muscle-specific myosin light chain, mylz2, through direct binding near the promoter of this gene, indicating that an important function of the transcriptional activity of Blimp1 in slow muscle development is the suppression of fast muscle-specific gene expression. Taken together, these findings provide new insights into the molecular basis of vertebrate muscle fiber-type specification, and underscore Blimp1 as the central determinant of this process.
Article
The vertebrate spinal cord contains distinct classes of cells that form at precise dorsal-ventral locations and express specific combinations of transcription factors. In amniotes, V2 cells develop in the ventral spinal cord, just dorsal to motoneurons. All V2 cells develop from the same progenitor domain and hence are initially molecularly identical. However, as they start to become post-mitotic and differentiate they subdivide into two intermingled molecularly-distinct subpopulations of cells, V2a and V2b cells. Here we show that the molecular identities of V2a and V2b cells are conserved between zebrafish and amniotes. In zebrafish, these two cell types both develop into interneurons with very similar morphologies, but while V2a cells become excitatory Circumferential Descending (CiD) interneurons, V2b cells become inhibitory Ventral Lateral Descending (VeLD) interneurons. In addition, we demonstrate that Notch signalling is required for V2 cells to develop into V2b cells. In the absence of Notch signalling, all V2b cells develop as V2a cells.
Article
The time of origin (birthday) of Rohon-Beard cells in Xenopus laevis was studied by 3H-thymidine autoradiography. Rohon-Beard cells were selected because they are a morphologically identifiable population of neurons in which the development of chemical and electrical excitability has been studied. A single injection of a radioactive DNA precursor was given to animals in successive stages of development from blastula to late tail bud (Nieuwkoop and Faber stages 8--33/34). The label was available throughout the stage of injection and longer. The labeling pattern was examined when animals had reached stage 42, when Rohon-Beard cells are easily recognized. All neurons including Rohon-Beard cells were labeled in animals injected with 3H-thymidine before stage 10 1/2 (early gastrula). Unlabeled Rohon-Beard cells were observed in animals injected with 3H-thymidine in and after stage 10 1/2. The percentage of unlabeled Rohon-Beard cells increased as development progressed. About 80% were born by the completion of gastrulation (stage 13). The other approximately 20% were born during neurulation and early tail bud stages. By stage 27, no Rohon-Beard neuron incorporated 3H-thymidine. In addition to Rohon-Beard neurons, five other neuronal populations begin generation during gastrulation: Mauthner neurons (Vargas-Lizardi and Lyser, '74), trigeminal ganglion cells, large basal plate cells of the medulla, extramedullary neurons, and primary motor neurons. The first birthdays in any of the six populations are temporally close to but appear to be independent of the others.
Article
A study of the induction of the prospective neural crest in Xenopus laevis embryos has been carried out, using the expression of Xslug as a specific marker for the neural crest. We have analyzed the competence and the specification of the neural crest. The competence to express Xslug was analyzed using two different approaches: (1) in vitro culture of conjugates of dorsal mesoderm and ectoderm taken from embryos at different ages and (2) grafts of equivalent pieces of ectoderm in the neural fold region of a gastrula or a neurula. Similar results were obtained with both methods: the ectoderm loses the competence to respond to neural fold induction at the end of gastrulation. Neural crest specification was analyzed by culturing a region of the ectoderm that contained the prospective neural crest and analyzing Xslug expression. Our results show that neural folds are specified autonomously to express Xslug by the end of gastrulation. By grafting labeled neural plate into lateral epidermis we have shown that neural crest can be induced by an interaction between neural plate and epidermis. Furthermore, neural crest cells come from both tissues. We have discarded the possibility that these neural crest cells are induced by a signal coming from the underlying lateral plate, by a homeogenetic signal coming from the host neural plate, or by regeneration of crest cells from the dissected neural plate. We propose a model to explain how the neural crest cells are induced at the border of the neural plate in X. laevis.
Article
Transcription of c-myc in plasma cells, which are terminally differentiated B cells, is repressed by plasmacytoma repressor factor. This factor was identified as Blimp-1, known for its ability to induce B cell differentiation. Blimp-1 repressed c-myc promoter activity in a binding site-dependent manner. Treatment of BCL1 lymphoma cells with interleukin-2 (IL-2) plus IL-5 induced Blimp-1 and caused a subsequent decline in c-Myc protein. Ectopic expression of Blimp-1 in Abelson-transformed precursor B cells repressed endogenous c-Myc and caused apoptosis; Blimp-1-induced death was partially overcome by ectopic expression of c-Myc. Thus, repression of c-myc is a component of the Blimp-1 program of terminal B cell differentiation.
Article
Signals delivered via Notch and its ligands Delta and Serrate control developmental choices made by individual cells according to the states of their immediate neighbours. Lateral inhibition mediated by Notch governs neurogenesis. In the inner ear, it generates fine-grained patterns of contrasting cell types. In stem-cell systems, it may regulate the decision to differentiate. Notch signalling can create specialised cells at gene expression boundaries, as at the limb-bud apex. It is crucial for segmentation of the mesoderm into somites, for development of skin appendages, and for many other functions that we do not yet understand.
Article
In zebrafish, cells at the lateral edge of the neural plate become Rohon-Beard primary sensory neurons or neural crest. Delta/Notch signaling is required for neural crest formation. ngn1 is expressed in primary neurons; inhibiting Ngn1 activity prevents Rohon-Beard cell formation but not formation of other primary neurons. Reducing Ngn1 activity in embryos lacking Delta/Notch signaling restores neural crest formation, indicating Delta/Notch signaling inhibits neurogenesis without actively promoting neural crest. Ngn1 activity is also required for later development of dorsal root ganglion sensory neurons; however, Rohon-Beard neurons and dorsal root ganglion neurons are not necessarily derived from the same precursor cell. We propose that temporally distinct episodes of Ngn1 activity in the same precursor population specify these two different types of sensory neurons.
Article
B-cell lineage-specific activator protein (BSAP), encoded by the Pax-5 gene, is critical for B-cell lineage commitment and B-cell development but is not expressed in terminally differentiated B cells. We demonstrate a direct connection between BSAP and B-lymphocyte-induced maturation protein 1 (Blimp-1), a transcriptional repressor that is sufficient to drive plasmacytic differentiation. Blimp-1 binds a site on the Pax-5 promoter in vitro and in vivo and represses the Pax-5 promoter in a binding-site-dependent manner. By ectopically expressing Blimp-1 or a competitive inhibitor of Blimp-1, we show that Blimp-1 is both necessary and sufficient to repress Pax-5 during plasmacytic differentiation of primary splenic B cells. Blimp-1-dependent repression of Pax-5 is sufficient to regulate BSAP targets CD19 and J chain and is necessary but not sufficient to induce XBP-1. We further show that repression of Pax-5 is required for Blimp-1 to drive differentiation of splenocytes to immunoglobulin M-secreting cells. Thus, repression of Pax-5 plays a critical role in the Blimp-1-dependent program of plasmacytic differentiation.
Article
Blimp-1, a transcriptional repressor, drives the terminal differentiation of B cells to plasma cells. Using DNA microarrays, we found that introduction of Blimp-1 into B cells blocked expression of a remarkably large set of genes, while a much smaller number was induced. Blimp-1 initiated this cascade of gene expression changes by directly repressing genes encoding several transcription factors, including Spi-B and Id3, that regulate signaling by the B cell receptor. Blimp-1 also inhibited immunoglobulin class switching by blocking expression of AID, Ku70, Ku86, DNA-PKcs, and STAT6. These findings suggest that Blimp-1 promotes plasmacytic differentiation by extinguishing gene expression important for B cell receptor signaling, germinal center B cell function, and proliferation while allowing expression of important plasma cell genes such as XBP-1.
Article
Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneural gene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. These observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell. This facilitates intramembranous cleavage of the remaining Notch receptor, release of the Notch intracellular fragment, and activation of target genes in neighboring cells.
Article
In this review, we outline the gene-regulatory interactions driving neural crest development and compare these to a hypothetical network operating in the embryonic ectoderm of the cephalochordate amphioxus. While the early stages of ectodermal patterning appear conserved between amphioxus and vertebrates, later activation of neural crest-specific factors at the neural plate border appears to be a vertebrate novelty. This difference may reflect co-option of genetic pathways which conferred novel properties upon the evolving vertebrate neural plate border, potentiating the evolution of definitive neural crest.
Article
Developmental origins of the neural crest (NC), a quintessential and pluripotent vertebrate cell type, has historically been a topic of extensive investigation but continues to remain poorly understood. In the zebrafish embryo, NC and primary sensory neurons are thought to segregate from a common population of progenitor cells in response to lateral inhibition. Here, we show that the zebrafish homolog of the B-lymphocyte-induced maturation protein (Blimp-1) gene, u-boot (ubo), is induced by BMP signaling in cells at the boundary of the neural plate and nonneural ectoderm. Loss of Ubo activity not only inhibits specification of the NC but also impairs development of the primary sensory neurons. Conversely, misexpression of ubo results in the generation of supernumerary primary sensory neurons consistent with this cell type representing the default fate within the progenitor equivalence group. These results establish a link between the activity of the transcriptional regulator Blimp-1 and the inductive effects of BMP signaling in the inception of NC progenitor fate.
Article
Specification of both neural crest cells and Rohon-Beard (RB) sensory neurons involves a complex series of interactions between the neural and non-neural ectoderm. The molecular mechanisms directing this process are not well understood. The zebrafish narrowminded (nrd) mutation is unique, since it is one of two mutations in which defects are observed in both cell populations: it leads to a complete absence of RB neurons and a reduction in neural crest cells and their derivatives. Here, we show that nrd is a mutation in prdm1, a SET/zinc-finger domain transcription factor. A Morpholino-mediated depletion of prdm1 phenocopies the nrd mutation, and conversely overexpression of prdm1 mRNA rescues the nrd RB sensory neuron and neural crest phenotype. prdm1 is expressed at the border of the neural plate within the domain where neural crest cells and RB sensory neurons form. Analysis of prdm1 function by overexpression indicates that prdm1 functions to promote the cell fate specification of both neural crest cells and RB sensory neurons, most likely as a downstream effector of the BMP signaling pathway.
Article
Here, we review recent studies that suggest that Notch signaling has two roles during neural crest development: first in establishing the neural crest domain within the ectoderm via lateral induction and subsequently in diversifying the fates of cells that arise from the neural crest via lateral inhibition. The first of these roles, specification of neural crest via lateral induction, has been explored primarily in the cranial neural folds from which the cranial neural crest arises. Evidence for such a role has thus far only been obtained from chick and frog; results from these two species differ, but share the feature that Notch signaling regulates genes that are expressed by cranial neural crest through effects on expression of Bmp family members. The second of these roles, diversification of neural crest progeny via lateral inhibition, has been identified thus far only in trunk neural crest. Evidence from several species suggests that Notch-mediated lateral inhibition functions in multiple episodes in this context, in each case inhibiting neurogenesis. In the 'standard' mode of lateral inhibition, Notch promotes proliferation and in the 'instructive' mode, it promotes specific secondary fates, including cell death or glial differentiation. We raise the possibility that a single molecular mechanism, inhibition of so-called proneural bHLH genes, underlies both modes of lateral inhibition mediated by Notch signaling.
Article
We examined the migration and differentiation of cells expressing Olig3, a basic helix-loop-helix transcriptional factor, in the developing spinal cord. Distribution of Olig3 lineage cells was demonstrated with in situ hybridization and X-gal staining in an Olig3-lacZ knock-in mouse. Olig3-positive cells first appeared in the dorsal spinal cord, except for the roof plate. Some of the dorsal Olig3 lineage cells co-expressed Islet1/2, Math1, or Brn3a, markers for dorsal interneuron. LacZ-positive cells were observed in the ventral-most part of the E10.5 spinal cord, suggesting that some dorsal Olig3 lineage cells migrate into the ventral-most part by E10.5. Ventral-ward migration of dorsal cells and contribution to commissural interneurons were substantiated by electroporation of EGFP expression plasmid in the dorsal spinal cord of chick embryo. Dorsal midline cells were also LacZ-positive during development. These findings suggest that dorsal Olig3 cells contribute to dorsal midline cells and commissural interneurons at intermediate and ventral levels.
Article
Ectodermal placodes, from which many cranial sense organs and ganglia develop, arise from a common placodal primordium defined by Six1 expression. Here, we analyse placodal Six1 induction in Xenopus using microinjections and tissue grafts. We show that placodal Six1 induction occurs during neural plate and neural fold stages. Grafts of anterior neural plate but not grafts of cranial dorsolateral endomesoderm induce Six1 ectopically in belly ectoderm, suggesting that only the neural plate is sufficient for inducing Six1 in ectoderm. However, extirpation of either anterior neural plate or of cranial dorsolateral endomesoderm abolishes placodal Six1 expression indicating that both tissues are required for its induction. Elevating BMP-levels blocks placodal Six1 induction, whereas ectopic sources of BMP inhibitors expand placodal Six1 expression without inducing Six1 ectopically. This suggests that BMP inhibition is necessary but needs to cooperate with additional factors for Six1 induction. We show that FGF8, which is expressed in the anterior neural plate, can strongly induce ectopic Six1 in ventral ectoderm when combined with BMP inhibitors. In contrast, FGF8 knockdown abolishes placodal Six1 expression. This suggests that FGF8 is necessary and together with BMP inhibitors sufficient to induce placodal Six1 expression in cranial ectoderm, implicating FGF8 as a central component in generic placode induction.
Article
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Article
The neural crest is a stem population critical for development of the vertebrate craniofacial skeleton and peripheral ganglia. Neural crest cells originate along the border between the neural plate and epidermis, migrate extensively and generate numerous derivatives, including neurons and glia of the peripheral nervous system, melanocytes, bone and cartilage of the head skeleton. Impaired neural crest development is associated with human defects, including cleft palate. Classically, the neural crest has been thought to form by interactions at the border between neural and non-neural ectoderm or mesoderm, and defined factors such as bone morphogenetic proteins (BMPs) and Wnt proteins have been postulated as neural crest-inducers. Although competence to induce crest cells declines after stage 10 (ref. 14), little is known about when neural crest induction begins in vivo. Here we report that neural crest induction is underway during gastrulation and well before proper neural plate appearance. We show that a restricted region of chick epiblast (stage 3-4) is specified to generate neural crest cells when explanted under non-inducing conditions. This region expresses the transcription factor Pax7 by stage 4 + and later contributes to neural folds and migrating neural crest. In chicken embryos, Pax7 is required for neural crest formation in vivo, because blocking its translation inhibits expression of the neural crest markers Slug, Sox9, Sox10 and HNK-1. Our results indicate that neural crest specification initiates earlier than previously assumed, independently of mesodermal and neural tissues, and that Pax7 has a crucial function during neural crest development.
Article
Sensory information from the periphery is integrated and transduced by excitatory and inhibitory interneurons in the dorsal spinal cord. Recent studies have identified a number of postmitotic factors that control the generation of these sensory interneurons. We show that Gsh1/2 and Ascl1 (Mash1), which are expressed in sensory interneuron progenitors, control the choice between excitatory and inhibitory cell fates in the developing mouse spinal cord. During the early phase of neurogenesis, Gsh1/2 and Ascl1 coordinately regulate the expression of Tlx3, which is a critical postmitotic determinant for dorsal glutamatergic sensory interneurons. However, at later developmental times, Ascl1 controls the expression of Ptf1a in dIL(A) progenitors to promote inhibitory neuron differentiation while at the same time upregulating Notch signaling to ensure the proper generation of dIL(B) excitatory neurons. We propose that this switch in Ascl1 function enables the cogeneration of inhibitory and excitatory sensory interneurons from a common pool of dorsal progenitors.
Article
In the developing spinal cord, signals of the roof plate pattern the dorsal progenitor domain and control the specification of three neuron types, dorsal interneurons dI1, dI2, and dI3. Bmp and Wnt/beta-catenin signals as well as transcription factors like Olig3 or Ngn1/2 are essential in this process. We have studied the epistatic relationship between Bmp and Wnt/beta-catenin signals and the transcription factor Olig3 in dorsal spinal cord patterning. Using beta-catenin gain-of-function and compound beta-catenin gain-of-function/Olig3 loss-of-function mutations in mice, we could show that Wnt/beta-catenin signals act upstream of Olig3 in the specification of dI2 and dI3 neurons. The analysis of such compound mutant mice allowed us to distinguish between the two functions of Wnt/beta-catenin signaling in proliferation and patterning of dorsal progenitors. Using electroporation of chick spinal cords, we further demonstrate that Bmp signals act upstream of Wnt/beta-catenin in the regulation of Olig3 and that Wnt/beta-catenin signals play an instructive role in controlling Olig3 expression. We conclude that Wnt/beta-catenin and BMP signals coordinately control the specification of dorsal neurons in the spinal cord.
Article
Rohon-Beard mechanosensory neurons (RBs), neural crest cells, and neurogenic placodes arise at the border of the neural- and non-neural ectoderm during anamniote vertebrate development. Neural crest cells require BMP expressing non-neural ectoderm for their induction. To determine if epidermal ectoderm-derived BMP signaling is also involved in the induction of RB sensory neurons, the medial region of the neural plate from donor Xenopus laevis embryos was transplanted into the non-neural ventral ectoderm of host embryos at the same developmental stage. The neural plate border and RBs were induced at the transplant sites, as shown by expression of Xblimp1, and XHox11L2 and XN-tubulin, respectively. Transplantation studies between pigmented donors and albino hosts showed that neurons are induced both in donor neural and host epidermal tissue. Because an intermediate level of BMP4 signaling is required to induce neural plate border fates, we directly tested BMP4's ability to induce RBs; beads soaked in either 1 or 10 ng/ml were able to induce RBs in cultured neural plate tissue. Conversely, RBs fail to form when neural plate tissue from embryos with decreased BMP activity, either from injection of noggin or a dominant negative BMP receptor, was transplanted into the non-neural ectoderm of un-manipulated hosts. We conclude that contact between neural and non-neural ectoderm is capable of inducing RBs, that BMP4 can induce RB markers, and that BMP activity is required for induction of ectopic RB sensory neurons.