Article

Stachytarpheta cayennensis-mediated copper nanoparticles shows anticancer activity in both in vitro and in vivo models

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Melanoma is an extremely malignant skin cancer with a probability of metastasis and accountable for the mainstream skin associated mortality. In the present exploration, we described the novel usage of Stachytarpheta cayennensis-mediated copper nanoparticles (Cu-NPs) and its anticancer potential in both in vitro and in vivo model of skin cancer. The synthesis of Cu-NPs was confirmed using UV-absorbance peak values ranging from 325 to 345 nm. The size of the nanoparticles was around 90 nm, as deduced by the dynamic light scattering study. Furthermore, transmission electron microscopy (TEM) established that the morphology of the copper particles. Cytotoxicity of Cu-NPs of Stachytarpheta cayennensis illustrates the toxicity level of Stachytarpheta cayennensis. Also, the anticancer potential of Cu-NPs was evaluated in A375 cells. In experimental animals, body biochemical parameters like superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were diminished in 7,12 dimethylbenzanthracene (DMBA) induced animals while Cu-NPs treatment raised the levels of the aforementioned enzymatic antioxidants compared to the control animals. Additionally, cytotoxicity assay, mitochondrial membrane potential (MMP), cell adhesion analysis, and the estimation of reactive oxygen species (ROS) in the presence of Cu-NPs was evaluated by standard protocols. The present study's outcomes confirm the defensive and valuable effects of copper loaded Stachytarpheta cayennensis against DMBA-induced skin melanoma, animal model.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Recently, the popular use of S. cayennensis for the treatment of COVID-19 in Jamaica has been also reported [15]. In the literature, extracts of S. cayennensis have been reported to display antiinflammatory [16,17], antinociceptive [17], antiulcerogenic [16], hypoglycemic [18], immunomodulatory [19], sedative and anxiolytic [20], anticancer [21], antimalarial [22], antileishmanial [23], and antimicrobial [16,24,25]. However, data on the antimicrobial activities of the essential oil of S. cayennensis are still scarce [25,26]. ...
Article
Full-text available
In this work, an ecofriendly approach for biogenic production of copper oxide nanoparticles (CuO-NPs) was proposed by utilizing the Bacopa monnieri leaf extract as a reducing and stabilizing agent. The synthesis of CuO-NPs was instantly confirmed by a shift in the color of the copper solution from blue to dark gray. The use of UV−visible spectroscopy revealed a strong narrow peak at 535 nm, confirming the existence of monoclinic-shaped nanoparticles. The average size of CuO-NPs was 34.4 nm, according to scanning electron microscopy and transmission electron microscopy studies. The pristine crystalline nature of CuO-NPs was confirmed by X-ray diffraction. The monoclinic form of CuO- NPs with a crystallite size of 22 nm was determined by the sharp narrow peaks corresponding to 273, 541, 698, 684, and 366 Bragg’s planes at different 2θ values. The presence of different reducing metabolites on the surface of CuO was shown by Fourier transform infrared analysis. The biological efficacy of CuO-NPs was tested against Helicobacter felis, Helicobacter suis, Helicobacter salomonis. and Helicobacter bizzozeronii. H. suis was the most susceptible strain with an inhibition zone of 15.84 ± 0.89 mm at 5 mg/mL of NPs, while the most tolerant strain was H. bizzozeronii with a 13.11 ± 0.83 mm of inhibition zone. In in vivo analgesic activity, CuO-NPs showed superior efficiency compared to controls. The maximum latency time observed was 7.14 ± 0.12 s at a dose level of 400 mg/kg after 90 min, followed by 5.21 ± 0.29 s at 400 mg/kg after 60 min, demonstrating 65 and 61% of analgesia, respectively. Diclofenac sodium was used as a standard with a latency time of 8.6 ± 0.23 s. The results observed in the rat paw edema assays showed a significant inhibitory activity of the plant-mediated CuO-NPs. The percentage inhibition of edema was 74% after 48 h for the group treated with CuO-NPs compared to the control group treated with diclofenac (100 mg/kg) with 24% edema inhibition. The solution of CuO-NPs produced 82% inhibition of edema after 21 days when compared with that of the standard drug diclofenac (73%). CuO-NPs vividly lowered glucose levels in STZ-induced diabetic mice, according to our findings. Blood glucose levels were reduced by about 33.66 and 32.19% in CuO-NP and (CuO-NP + insulin) groups of mice, respectively. From the abovementioned calculations, we can easily conclude that B. monnieri-synthesized CuO-NPs will be a potential antibacterial, anti-diabetic, and anti-inflammatory agent on in vivo and in vitro basis.
Article
Full-text available
Recently, nontoxic origin-mediated synthesis of copper oxide nanoparticles acquires further recognition because of the key role of bioapplications. The plant Cissus quadrangularis is one most prominent herbs used in the treatment of diabetes, asthma, tissue regeneration, etc. In this study, we tested the process of copper oxide nanoparticle synthesis and their role in many functions from Cissus quadrangularis. The synthesis of copper oxide nanoparticles uses plant extract and characterization by X-ray diffraction, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), atomic force microscope (AFM), and scanning electron microscope (SEM). The synthesized nanoparticles were analyzed for their biomedical applications such as antibacterial, antifungal, antioxidant, antidiabetic, and anti-inflammatory activity and antiproteinase action. The results show that the C. quadrangularis plant-mediated nanoparticles may be used in many biomedical applications related to arthritis, diabetes, and the production of various antimicrobial products in the future.
Article
Full-text available
Recent development in nanoscience and nanotechnology has contributed to the wide applications of metal and metal oxides nanoparticles in several field of sciences, research institutes and industries. Among all metal oxides, copper oxide nanoparticles (CuONPs) has gained more attention due to its distinctive properties and applications. The high cost of reagents, equipment and environmental hazards associated with the physical and chemical methods of synthesizing CuONPs has been a major setback. In order to puffer solution to the aforementioned challenges by reducing environmental pollution and production of cheaper nanoparticles with good properties and efficiency, this review focus on collection of comprehensive information from recent developments in the synthesis, characterization and applications from previous scientific findings on biological method of synthesizing CuONPs due to the acclaimed advantages of been cheap, environmentally friendly, convenient and possibility of been scale up in into large scale production reported by numerous researchers. Our finding also support the synthesis of CuONPs from plant sources due to relative abundance of plants for the production of reducing and stabilizing agents required for CuONPs synthesis, potential efficiency of plant biomolecules in enhancing the toxicity effect of CuONPs against microbes, prevention of environmental pollution due of nontoxic chemicals and degradation effectiveness of CuONPs synthesized from plant sources. Furthermore, this study provide useful information on the rapid synthesis of CuONPs with desired properties from plant extracts.
Article
Full-text available
Copper nanoparticles (CuNPs), due to their cost-effective synthesis, interesting properties, and a wide range of applications in conductive inks, cooling fluids, biomedical field, and catalysis, have attracted the attention of scientific community in recent years. The aim of the present study was to develop and characterize antibacterial and anticancer CuNPs synthesized via chemical and biological methods, and further synthesize CuNPs conjugated with doxycycline to study their synergic effect. During the chemical synthesis, ascorbic acid was used as a stabilizing agent, while Zingiber officinale and Allium sativum-derived extracts were used during the biological methods for synthesis of CuNPs. Characterization of CuNPs was performed by transmission electron microscopy (TEM), UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray crystallography (XRD). Antimicrobial evaluation of the nanomaterials against Pseudomonas aeruginosa and Escherichia coli was performed by using disk diffusion method, while anticancer behavior against HeLa and HepG2 cell lines was studied by MTT assay. TEM revealed spherical-shaped nanoparticles with mean size of 22.70 ± 5.67, 35.01 ± 5.84, and 19.02 ± 2.41 nm for CuNPs, Gin-CuNPs, and Gar-CuNPs, respectively, and surface plasmon resonance peaks were obtained at 570 nm, 575 nm, and 610 nm for CuNPs, Gar-CuNPs, and Gin-CuNPs, respectively. The results of FTIR confirmed the consumption of biomolecules from the plant extracts for the synthesis of CuNPs. XRD analysis also confirmed synthesis of CuNPs. Doxycycline-conjugated NPs exhibited more antibacterial effects than doxycycline or CuNPs alone. Copper nanoparticles prepared by biological synthesis are cost-effective and eco-friendly as compared to their chemical counterparts. The chemically synthesized nanoparticles displayed more significant antimicrobial activity when capped with doxycycline than Z. officinale and A. sativum-mediated CuNPs; however, green-synthesized nanoparticles showed greater anticancer activity than their chemical counterparts.
Article
Full-text available
Indigenous medicinal plant of Ethiopia has been applied for the first time to investigate the synergistic influence of phytoconstituents in green copper nanoparticles (g-Cu NPs) towards the enhancement of antimicrobial properties of NPs. We report the green synthesis of Cu NPs using Hagenia abyssinica (Brace) JF. Gmel. leaf extract. The synthesized g-Cu NPs were characterized by UV-visible, UV-DRS, FT-IR, XRD, SEM, EDXA, TEM, HRTEM, and SAED techniques. The maximum absorbance, λmax, was found to be 403 nm for g-Cu NPs due to surface plasmon resonance. The energy gap, Eg of NPs, was found to be 2.19 eV. FTIR spectra confirmed the presence of polyphenols, tannins, and glycosides in the leaf extract of Hagenia abyssinica. The spectral band at 740 cm-1 is a characteristic of interaction between Cu and biomolecules of the extract. The XRD analysis revealed that the g-Cu NPs appears to be more crystalline in nature. SEM and TEM micrographs showed a mix of spherical, hexagonal, triangular, cylindrical, and irregularly shaped Cu particles. The average particle size of NPs was found to be 34.76 nm by ImageJ analysis. EDX analysis confirmed the presence of copper in the g-Cu NPs. In addition, the SAED pattern of g-Cu NPs presented concentric circular patterns for 4 major planes of crystalline copper and its oxides. The experimental and calculated d-spacing values of one of the crystal planes (111) were found to be 0.2432 nm and 0.2444 nm, respectively. The d-spacing values of 0.2444 nm and 0.2040 nm correspond to d111Cu2O and d111Cu lattice fringes, respectively. The antibacterial test conducted on E. coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis showed good zone of inhibitions 12.7, 12.7, 14.7, and 14.2 mm, respectively, proving potentiality of g-Cu NPs as a remedy for infectious diseases caused by tested pathogens.
Article
Full-text available
Aim: Management of cutaneous melanoma (CM) is continually evolving with adjuvant treatment of earlier stage disease. The aim of this review was to identify published epidemiological data for stages II-III CM. Materials & methods: Systematic searches of Medline and Embase were conducted to identify literature reporting country/region-specific incidence, prevalence, survival or mortality outcomes in stage II and/or III CM. Screening was carried out by two independent reviewers. Results & conclusion: Of 41 publications, 14 described incidence outcomes (incidence rates per stage were only reported for US and Swedish studies), 33 reported survival or mortality outcomes and none reported prevalence data. This review summarizes relevant data from published literature and highlights an overall paucity of epidemiological data in stages II and III CM.
Article
Full-text available
Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.
Article
Full-text available
Cell membrane (CM)-camouflaged nanocarriers (CMNPs) are the tools of a biomimetic strategy that has attracted significant attention. With a wide range of nanoparticle cores and CMs available, various creative CMNP designs have been studied for cancer diagnosis and therapy. The various functional CM molecules available allow CMNPs to demonstrate excellent properties such as prolonged circulation time, immune escape ability, reduced systemic toxicity, and homologous targeting ability when camouflaged with CMs derived from various types of natural cells including red and white blood cells, platelets, stem cells, and cancer cells. In this review, we summarize various CMNPs employed for cancer chemotherapy, immunotherapy, phototherapy, and in vivo imaging. We also predict future challenges and opportunities for fundamental and clinical studies.
Article
Full-text available
The purpose of this study is to investigate the ability of specific fungus to biosynthesize copper oxide nanoparticles (CuO NPs) by the aid of gamma rays and evaluate its performance as a unique antimicrobial agent in the agricultural fields. CuO NPs were synthesized by Penicillium chrysogenum filtrate utilizing copper sulfate at various gamma rays doses. The identification was performed by UV-Vis., FTIR, XRD, DLS, TEM, SEM, EDX and mapping images. Antimicrobial potential of CuO NPs against selected crop pathogenic microbes had been estimated. From the results, the preferred doses applied for CuO NPs synthesis was recorded at 50.0 kGy. The proposed reaction mechanism was studied. TEM image with DLS analysis confirmed the morphology of CuO NPs possesses a mean diameter at 9.70 nm. CuO NPs exhibited a maximum antifungal activity against Fusarium oxysporum (37.0 mm ZOI) followed by Alternaria solani (28.0 mm ZOI), and Aspergillus niger (26.5 mm ZOI). On the other hand, it was active as antibacterial agent against Ralstonia solanacearum (22.0 mm ZOI) and Erwinia amylovora (19.0 mm ZOI). Therefore, due to these outstanding properties, CuO NPs may be utilized as the significant antimicrobial agents in the agricultural area to restrain the plant pathogenic fungi and bacteria from proliferation.
Article
Full-text available
Advances in technology of the past decades led to development of new nanometer scale diagnosis and treatment approaches in cancer medicine leading to establishment of nanooncology. Inorganic and organic nanomaterials have been shown to improve bioimaging techniques and targeted drug delivery systems. Their favorable physico-chemical characteristics, like small sizes, large surface area compared to volume, specific structural characteristics, and possibility to attach different molecules on their surface transform them into excellent transport vehicles able to cross cell and/or tissue barriers, including the blood-brain barrier. The latter is one of the greatest challenges in diagnosis and treatment of brain cancers. Application of nanomaterials can prolong the circulation time of the drugs and contrasting agents in the brain, posing an excellent opportunity for advancing the treatment of the most aggressive form of the brain cancer-glioblastomas. However, possible unwanted side-effects and toxicity issues must be considered before final clinical translation of nanoparticles.
Article
Full-text available
This study reports the preparation and characterization of silver nanoparticles synthesized by the mediation of the plant weed Stachytarpheta cayennensis through solution method. Ultraviolet visible spectroscopy (UV-Vis) determines the presence of nanoparticles in the solution. Infrared spectroscopy (IR) proves organic molecules at the particles interface. Powder X-ray diffraction (PXRD) provides phase composition and crystallinity. Shape was showed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) demonstrated the elemental mapping of the silver nanoparticles. Hydrogen peroxide scavenging and phosphomolybdenum antioxidant assays, egg albumin denaturation anti-inflammation study, and the formation mechanism complete the study. The particles have been found composed of pure silver Ag and silver chloride AgCl nanocrystallites. The average crystallite sizes were found to be 13 nm and 20 nm for Ag and AgCl respectively. A Rietveld refinement based XRD pattern data followed by Williamson-Hall plot allows a size and strain analysis. Based on SEM, spherical agglomerates materials were formed and EDX proved the presence of Cl- ions. The reaction formation mechanism of Ag and AgCl is proposed to be simultaneous and competitive. The silver nanoparticles moderately inhibit the denaturation of egg albumin and exhibit antioxidant action; hence, the nanoparticles could be considered as a potential source for biomedical applications
Article
Full-text available
Background Treatment for melanoma is a challenging clinical problem, and some new strategies are worth exploring. Purpose The objective of this study was to investigate the in vitro and in vivo anti-melanoma effects of hydroxyapatite nanoparticles (HANPs) and discuss the involved material factors. Materials and methods Five types of HANPs, ie, HA-A, HA-B, HA-C, HA-D, and HA-E, were prepared by wet chemical method combining with polymer template and appropriate post-treatments. The in vitro effects of the as-prepared five HANPs on inhibiting the viability of A375 melanoma cells and inducing the apoptosis of the cells were evaluated by Cell Counting Kit-8 analysis, cell nucleus morphology observation, flow cytometer, and PCR analysis. The in vivo anti-melanoma effects of HANPs were studied in the tumor model of nude mice. Results The five HANPs had different physicochemical properties, including morphology, size, specific surface area (SSA), crystallinity, and so on. By the in vitro cell study, it was found that the material factors played important roles in the anti-melanoma effect of HANPs. Among the as-prepared five HANPs, HA-A with granular shape, smaller size, higher SSA, and lower crystallinity exhibited best effect on inhibiting the viability of A375 cells. At the concentration of 200 μg/mL, HA-A resulted in the lowest cell viability (34.90%) at day 3. All the HANPs could induce the apoptosis of A375 cells, and the relatively higher apoptosis rates of the cells were found in HA-A (20.10%) and HA-B (19.41%) at day 3. However, all the HANPs showed no inhibitory effect on the viability of the normal human epidermal fibroblasts. The preliminary in vivo evaluation showed that both HA-A and HA-C could delay the formation and growth speed of melanoma tissue significantly. Likely, HA-A exhibited better effect on inhibiting the growth of melanoma tissue than HA-C. The inhibition rate of HA-A for tumor tissue growth reached 49.1% at day 23. Conclusion The current study confirmed the anti-melanoma effect of HANPs and provided a new idea for the clinical treatment of melanoma.
Article
Full-text available
Introduction: Nanoparticles (NPs) can induce inflammatory responses and oxidative stress and are also cytotoxic to the genital organs of animals after exposure. The aim of this study was to assess the effects of copper oxide (CuO) and CuO NPs alone and in combination with thiamine on the ovaries of mice and on antioxidant enzymes. Methods: Sixty adult mice were randomly divided into five groups. Group A served as the control. Group B received CuO NPs and group C received CuO at 0.2 mL/kg intraperitoneally (IP). Mice in groups D and E respectively received CuO and CuO NPs along with thiamine (30 mg/L) therapy. The responses of the ovaries to the treatments were appraised by histopathology studies. The values for catalase (CAT), superoxide dismutase (SOD), and lipid peroxidation were determined after 20 days of treatment. Results: The degree of degeneration and apoptosis of the different zones within the ovaries were recorded in groups B and C. The decrease in CAT value and increase in SOD activity were significant for groups B and C at 20 days compared to the control group. The thiobarbituric acid reactive substances (TBARS) level in groups B, C and E were significantly higher at 20th day when compared with control group. The groups treated with thiamine showed histopathological and enzymatic results that were similar to those of the control group. Conclusion: These findings suggest the combination of CuO NPs and CuO with thiamine improves serum enzyme activity and has positive effects on the ovary.
Article
Full-text available
Purpose The aim of this study was to design a new nanocomposite that would have high cytotoxicity against invasive breast cancer cells and minimum side effects on normal cells. Methods An albumin nano-carrier for delivery of CuNPs was developed. The ACuNPs formation was characterized by TEM, DLS and UV-Vis, fluorescence and circular dichroism spectroscopy. The cytotoxic efficacy of the ACuNPs against human breast cancer cells (MDA-MB 231) and normal cells (MCF-10A) was compared using a standard MTT assay. The mechanism of cell death induced by ACuNPs was considered by inverted and fluorescent microscopy, flow cytometry and gel electrophoresis. The effects of compounds on ROS generations in MDA-MB 231 cells were also studied. Results It was found that the resulted ACuNPs with a diameter of 62.7 nm and zeta potential of about -10.76 mV, are suitable for extravasation into tumor cells. In ACuNPs, the 90% of the secondary structure and almost all the tertiary structure of albumin remained intact. Comparing to CuNPs, ACuNPs could significantly suppress the viability of cancer cells while they were less toxic on normal cells. Compared with the untreated cells, the MDA-MB 231 cell line showed higher levels of ROS production after treatment with ACuNPs. The increase in ROS production after 24 hours indicated that ACuNPs induce apoptosis. Conclusions The ACuNPs characteristics such as intact structure of albumin, high toxicity against cancer cells comparing to normal cells and apoptosis induction as the mechanism of cell death, revealed that this nanocomposite is a good candidate to be used as a chemotherapeutic agent against invasive breast cancer cells.
Article
Full-text available
Ultraviolet-B radiation (285–320 nm) elicits a number of cellular signaling elements. We investigated the preventive effect of linalool, a natural monoterpene, against UVB-induced oxidative imbalance, activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling in HDFa cells. We observed that linalool treatment (30 μM) prevented acute UVB-irradiation (20 mJ/cm 2) mediated loss of activities of antioxidant enzymes in HDFa cells. The comet assay results illustrate that linalool significantly prevents UVB-mediated 8-deoxy guanosine formation (oxidative DNA damage) rather than UVB-induced cyclobutane pyrimidine (CPD) formation. This might be due to its ability to prevent UVB-induced ROS formation and to restore the oxidative imbalance of cells. This has been reflected in UVB-induced overexpression of MAPK and NF-κB signaling. We observed that linalool inhibited UVB-induced phosphorylation of ERK1, JNK and p38 proteins of MAPK family. Linalool inhibited UVB-induced activation of NF-κB/p65 by activating IκBa. We further observed that UVB-induced expression of TNF-α, IL6, IL-10, MMP-2 and MMP-9 was modulated by linalool treatment in HDFa cells. Thus, linalool protects the human skin cells from the oxidative damages of UVB radiation and modulates MAPK and NF-κB signaling in HDFa cells. The present findings substantiate that linalool may act as a photoprotective agent against UVB-induced skin damages.
Chapter
Full-text available
Mitochondrial function, a key indicator of cell health, can be assessed by monitoring changes in mitochondrial membrane potential (MMP). Cationic fluorescent dyes are commonly used tools to assess MMP. We used a water-soluble mitochondrial membrane potential indicator (m-MPI) to detect changes in MMP in HepG2 cells. A homogenous cell-based MMP assay was optimized and performed in a 1536-well plate format to screen several compound libraries for mitochondrial toxicity by evaluating the effects of chemical compounds on MMP.
Article
Full-text available
Melatonin is a hormone identified in plants and pineal glands of mammals and possesses diverse physiological functions. Fisetin is a bio-flavonoid widely found in plants and exerts antitumor activity in several types of human cancers. However, the combinational effect of melatonin and fisetin on antitumor activity, especially in melanoma treatment, remains unclear. Here, we tested the hypothesis that melatonin could enhance the antitumor activity of fisetin in melanoma cells and identified the underlying molecular mechanisms. The combinational treatment of melanoma cells with fisetin and melatonin significantly enhanced the inhibitions of cell viability, cell migration and clone formation, and the induction of apoptosis when compared with the treatment of fisetin alone. Moreover, such enhancement of antitumor effect by melatonin was found to be mediated through the modulation of the multiply signaling pathways in melanoma cells. The combinational treatment of fisetin with melatonin increased the cleavage of PARP proteins, triggered more release of cytochrome-c from the mitochondrial inter-membrane, enhanced the inhibition of COX-2 and iNOS expression, repressed the nuclear localization of p300 and NF-κB proteins, and abrogated the binding of NF-κB on COX-2 promoter. Thus, these results demonstrated that melatonin potentiated the anti-tumor effect of fisetin in melanoma cells by activating cytochrome-c-dependent apoptotic pathway and inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways, and our study suggests the potential of such a combinational treatment of natural products in melanoma therapy.
Article
Full-text available
Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the particles to treat mouse subcutaneous melanoma and metastatic lung tumors, based on B16-F10 mouse melanoma cells, by intratumoral and systemic injections, respectively. The results showed that CONPs significantly reduced the growth of melanoma, inhibited the metastasis of B16-F10 cells and increased the survival rate of tumor-bearing mice. Importantly, the results also indicated that CONPs were rapidly cleared from the organs and that these particles exhibited little systemic toxicity. Furthermore, we observed that CONPs targeted the mitochondria, which resulted in the release of cytochrome C from the mitochondria and the activation of caspase-3 and caspase-9 after the CONPs entered the cells. In conclusion, CONPs can induce the apoptosis of cancer cells through a mitochondrion-mediated apoptosis pathway, which raises the possibility that CONPs could be used to cure melanoma and other cancers.
Article
Full-text available
Copper oxide nanoparticles (CuO NPs) are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 2-50 µg/ml) were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level.
Article
Full-text available
Objective To investigate the antimicrobial activity of the methanol leaf extract (ME), n-hexane fraction (HF), ethylacetate fraction (EF) and methanol fraction (MF), of Stachytarpheta cayennensis C. Rich (verbenaceae) as well as to ascertain the antispasmodic effects of the ME and the various fractions (HF, EF and MF) on acetylcholine (Ach) and histamine (H) induced contractions on isolated guinea pig ileum.
Article
Full-text available
Antibacterial activity of Allium sativum (garlic), Zingiber officinale (ginger) and Piper nigrum (pepper) extracts has been evaluated against Klebsiella pneumoniae, Staphylococcus aureus, Morganella morgani, Candida albicans, Escherichia coli and Proteus vulgaris. Among ten extracts evaluated for antimicrobial activity garlic extract showed excellent antibacterial activity against P. vulgaris and M. morgani and the garlic extracts showed excellent antimicrobial activity against almost of all pathogens tested. The ginger extract, however, showed only a moderate antimicrobial activity against P. aureus, whereas the pepper extract showed the least activity against the test organisms.
Article
Full-text available
Abstract The release of nanoparticles (NPs) to the environment poses an increasing potential threat to biological systems. This study investigated the phytotoxicity and accumulation of copper oxide (CuO) NPs to Elsholtzia splendens (a Cu-tolerant plant) under hydroponic conditions. The 50 % effective concentration (EC(50)) of CuO NPs to E. splendens was about 480 mg/L, implying the tolerance of E. splendens to CuO NPs. The Cu content in the shoots treated with 1000 mg/L CuO NPs was much higher than those exposed to the comparable 0.5 mg/L soluble Cu and CuO bulk particles (BPs). CuO NPs-like deposits were found in the root cells and leaf cells. Cu K-edge X-ray absorption near-edge structure (XANES) analysis further revealed that the accumulated Cu species dominated as CuO NPs in the plant tissues. All these results suggested that CuO NPs can be absorbed by the roots and translocated to the shoots in E. splendens.
Article
Full-text available
Metal oxide nanoparticles (NPs) are among the most highly produced nanomaterials, and have many diverse functions in catalysis, environmental remediation, as sensors, and in the production of personal care products. In this study, the toxicity of several widely used metal oxide NPs such as copper oxide, silica, titanium oxide and ferric oxide NPs, were evaluated In vitro. We exposed A549, H1650 and CNE-2Z cell lines to metal oxide NPs, and found CuO NPs to be the most toxic, SiO2 mild toxic, while the other metal oxide NPs had little effect on cell viability. Furthermore, the autophagic biomarker LC3-II significantly increased in A549 cells treated with CuO NPs, and the use of the autophagy inhibitors wortmannin and 3-methyladenin significantly improved cell survival. These results indicate that the cytoxicity of CuO NPs may involve the autophagic pathway in A549 cells.
Article
Full-text available
A rapid, cost-efficient, spectrophotometric assay for serum catalase activity was developed. It was a combination of optimized enzymatic conditions and the spectrophotometric assay of hydrogen peroxide based on formation of its stable complex with ammonium molybdate. Lipemic and icteric sera increased the absorbance without influencing the catalase assay. Due to the high catalase activity in erythrocytes artificial hemolysis increased serum catalase activity. The imprecision of the method was CV less than 5.8% within run as well and day-to-day. The catalase assay performed using polarographic and spectrophotometric determination of hydrogen peroxide yielded a good correlation (r = 0.9602, b = 1.011, a = -0.648, n = 440). In 742 healthy individuals the mean and SD values of serum catalase were 50.5 +/- 18.1 kU/l with 17.7% higher activity in males than in females. Between 14-60 yr the serum catalase increased with age.
Article
Full-text available
Analyzing apoptosis has been an integral component of many biological studies. However, currently available methods for quantifying apoptosis have various limitations including multiple, sometimes cell-damaging steps, the inability to quantify live, necrotic and apoptotic cells at the same time, and non-specific detection (i.e. "false positive"). To overcome the shortcomings of current methods that quantify apoptosis in vitro and to take advantage of the 96-well plate format, we present here a modified ethidium bromide and acridine orange (EB/AO) staining assay, which may be performed entirely in a 96-well plate. Our method combines the advantages of the 96-well format and the conventional EB/AO method for apoptotic quantification. We compared our method and the conventional EB/AO method for quantifying apoptosis of suspension cells (Jurkat) and adherent cells (A375) under normal growth and apoptosis-inducing conditions. We found that our new EB/AO method achieved quantification results comparable to those produced using the conventional EB/AO method for both suspension and adherent cells. By eliminating the detaching and washing steps, our method drastically reduces the time needed to perform the test, minimizes damage to adherent cells, and decreases the possibility of losing floating cells. Overall, our method is an improvement over the currently available techniques especially for adherent cells.
Article
Metallic nanoparticles such as gold, zinc, copper possess anti-microbial activity. These nanoparticles have a small size which provides a large surface area for the interaction with microbes and there are various mechanisms through which copper nanoparticles (CuNPs) act. The demand of these nanoparticles are increasing in the textile industry as they decrease the catalytic degradation property of various dyes as well as being helpful in the treatment of various topical infections. Our aim is to formulate the copper nanoparticle which is capped with Tinospora cardifolia and incorporate these nanoparticles on fabric and to study the anti-microbial activity of these nanoparticles formulated along with their study on the fabric. Formulated nanoparticles were tested for various characterizations such as SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope) for the microscopical study. The interaction of excipients with the drug was studied using FTIR, XRD, and Raman and the anti-microbial study was studied to determine the activity of the nanoparticles on gram-positive and gram-negative bacteria. Least particle size of 63.3 nm was used as optimized formulation (CuNPs-5) and further used for testing. Laundry durability, ZOI study and %efficacy of copper nanoparticles along with nanoparticle-coated fabric was tested and it was found that fabric was more efficacious for gram-positive bacteria as ZOI for gram positive and gram negative was 21.99 mm and 11 mm. The %efficacy of copper nanoparticle-coated fabric was 101% and 74% at the highest concentration for gram positive and gram negative bacteria respectively.
Article
Metal nanoparticles (MNPs) have been widely used in a range of recent scientifi c and technological applications. They can be produced by conventional chemical synthesis or green synthesis methods. Green synthesis consists of a myriad of promising approaches for the production of MNPs with desired properties. Plants represent the most explored group of living organisms for the green synthesis of MNPs, and to date, hundreds of species have been used. However, several factors that should be taken into account when performing green synthesis of MNPs remain underestimated or unexplored. This chapter does not focus on any specifi c plant species or experimental conditions leading to the synthesis of MNPs since there are numerous recent publications reviewing the literature in this outstanding fi eld. The present chapter instead focuses on the trends and challenges in MNPs synthesis using plants which include reproducibility, scale-up, predictability, and development of strategies for effective management of governance, regulatory, andcompliance risks. Finally, the major aim of this chapter is to provide an overview of relevant concerns raised or neglected by the available scientifi c literature regarding the green synthesis of MNPs using plants.
Article
Pomegranate, a constituent of flavonoids, ellagitannins and ellagic acid is exposed to exert compelling anti-carcinogenic effects. In the present study, we examined the anti-angiogenic and anti-tumorigenic potential of pomegranate juice on benzo(a)pyrene-induced mice lung carcinoma by analyzing the SOD and CAT anti-oxidants, MDA for oxidative stress and the marker of angiogenesis (CD34). Oral administration of pomegranate (10% w/v) to Swiss albino mice suppressed the development of lung carcinoma by disappointment MDA, histopathological lesions and the Micro-Vessels Density (MVD). The significant correlation (p<0.05) was present in an improvements the SOD and CAT anti-oxidants. The results obtained from the present study show that pomegranate inhibits the development of mice lung carcinogenesis through its ability to induce apoptosis and disappointment the formation of new vessels (angiogenesis). Our present findings were that the protective benefits of pomegranate juice may be due in part to its potent anti-oxidant properties and ability to reduce oxidative stress, histopathological injuries by suppressing the formation of reactive oxygen species and protecting the anti-oxidant mechanism and inhibition of MVD. So, this study suggested that the pomegranate is anti-angiogenic effectiveness in the benzo(a)pyrene induced lung carcinoma in mice.
Article
The optical and catalytic properties of metal nanoparticles have attracted significant attention for applications in a wide variety of fields, thus prompting interest in developing sustainable synthetic strategies that leverage the redox properties of natural compounds or extracts. Here, we investigate the surface chemistry of nanoparticles synthesized using coffee as a biogenic reductant. Building on our previously developed synthetic protocols for the preparation of silver and palladium nanoparticle/carbon composite microspheres a combination of thermogravimetric and spectroscopic methods were used to characterize the carbon microsphere and nanoparticle surfaces. Infrared reflectance spectroscopy and single particle surface enhanced Raman spectroscopy were used to characterize Pd and Ag metal surfaces, respectively, following synthesis. Strongly adsorbed organic layers were found to be present at metal nanoparticle surfaces after synthesis. The catalytic activity of Pd nanoparticles in hydrogenation reactions were leveraged to study the availability of surface sites, and coffee-synthesized nanomaterials were compared to commercial Pd-based hydrogenation catalysts. Our results demonstrate that biogenic adsorbates block catalytic surface sites and affect nanoparticle functionality. These findings highlight the need for careful analysis of surface chemistry as it relates to the specific applications of nanomaterials produced using greener or more sustainable methods.
Article
Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30nm) induce autophagy in human breast cancer cell line, MCF7 in a time and dose dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein-light chain 3 (GFP- LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and western blotting of autophagy marker proteins LC3B, beclin1 and ATG5. Further, inhibition of autophagy by 3- MA decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, de-phosphorylation of Bad and increase cleavage product of caspase3. siRNA mediated inhibition of autophagy related gene beclin1, also demonstrated similar results. Finally induction of apoptosis by 3-MA in CuO NPs treated cells was observed by TEM. This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NPs mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. General significance CuO NPs induced autophagy is a survival strategy of MCF7 cells and inhibition of autophagy render cellular fate to apoptosis.
Article
The use of optical measurements to monitor electrochemical changes on the surface of nanosized metal particles is discussed within the Drude model. The absorption spectrum of a metal sol in water is shown to be strongly affected by cathodic or anodic polarization, chemisorption, metal adatom deposition, and alloying. Anion adsorption leads to strong damping of the free electron absorption. Cathodic polarization leads to anion desorption. Underpotential deposition (upd) of electropositive metal layers results in dramatic blue-shifts of the surface plasmon band of the substrate. The deposition of just 0.1 monolayer can be readily detected by eye. In some cases alloying occurs spontaneously during upd. Alloy formation can be ascertained from the optical absorption spectrum in the case of gold deposition onto silver sole. The underpotential deposition of silver adatoms onto palladium leads to the formation of a homogeneous silver shell, but the mean free path is less than predicted, due to lattice strain in the shell.
Article
Aim: To investigate whether luteolin, a highly prevalent flavonoid, reverses the effects of epithelial-mesenchymal transition (EMT) in vitro and in vivo and to determine the mechanisms underlying this reversal. Methods: Murine malignant melanoma B16F10 cells were exposed to 1% O2 for 24 h. Cellular mobility and adhesion were assessed using Boyden chamber transwell assay and cell adhesion assay, respectively. EMT-related proteins, such as E-cadherin and N-cadherin, were examined using Western blotting. Female C57BL/6 mice (6 to 8 weeks old) were injected with B16F10 cells (1×106 cells in 0.2 mL per mouse) via the lateral tail vein. The mice were treated with luteolin (10 or 20 mg/kg, ip) daily for 23 d. On the 23rd day after tumor injection, the mice were sacrificed, and the lungs were collected, and metastatic foci in the lung surfaces were photographed. Tissue sections were analyzed with immunohistochemistry and HE staining. Results: Hypoxia changed the morphology of B16F10 cells in vitro from the cobblestone-like to mesenchymal-like strips, which was accompanied by increased cellular adhesion and invasion. Luteolin (5−50 μmol/L) suppressed the hypoxia-induced changes in the cells in a dose-dependent manner. Hypoxia significantly decreased the expression of E-cadherin while increased the expression of N-cadherin in the cells (indicating the occurrence of EMT-like transformation), which was reversed by luteolin (5 μmol/L). In B16F10 cells, luteolin up-regulated E-cadherin at least partly via inhibiting the β3 integrin/FAK signal pathway. In experimental metastasis model mice, treatment with luteolin (10 or 20 mg/kg) reduced metastatic colonization in the lungs by 50%. Furthermore, the treatment increased the expression of E-cadherin while reduced the expression of vimentin and β3 integrin in the tumor tissues. Conclusion: Luteolin inhibits the hypoxia-induced EMT in malignant melanoma cells both in vitro and in vivo via the regulation of β3 integrin, suggesting that luteolin may be applied as a potential anticancer chemopreventative and chemotherapeutic agent.
Article
The toxicity of CuO nanoparticles (NPs) to human lung epithelial (A549) cells was investigated in this study. CuO NPs (10-100 mg/L) had significant toxicity to A549 cells, whereas CuO bulk particles (BPs) showed much lower toxicity (24 h IC(50), 58 and 15 mg/L for CuO BPs and NPs, respectively). Transmission electron microscopic analysis demonstrated CuO NP entry into A549 cells and organelles, including lysosomes, mitochondria, and nucleus. Endocytosis was the primary pathway of CuO NPs uptake. CuO NPs (15 mg/L) induced mitochondrial depolarization, possibly mediated by reactive oxygen species (ROS) generation. Intracellular CuO NPs first generate ROS, which subsequently induces the expression of p38 and p53 and ultimately causes DNA damage (Comet assay). We confirm for the first time that the primary cytotoxic response is oxidative stress rather than DNA damage. A fraction of the CuO NPs was exported to the extracellular environment. In this study, centrifugal ultrafiltration tubes were successfully employed to determine the dissolved Cu(2+) from CuO NPs in the cell medium. Dissolved Cu(2+) ions contributed less than half of the total toxicity caused by CuO NPs, including ROS generation and DNA damage. This study provided useful data for understanding transport and toxicity of metal oxide NPs in human cells.
Article
This study elucidates the process of synthesis of copper (Cu) nanorods using almond skin extract as stabilizing cum capping agent. These nanorods were (about 200 nm long and 40 nm wide) characterized by transmission electron microscopy (TEM). Further, cytotoxicity potential of these nanorods was evaluated in A549 cells (Human lung carcinoma cell line) via cell viability assay and extracellular lactate dehydrogenase (LDH) release. Also, reduced glutathione (GSH), lipid peroxidation (LPO), cellular oxidative stress (Rhodamine 123 florescence) and apoptosis (Annexin V FITC/Propidium iodide staining) were also investigated in control and treated cells. Results indicated that Cu nanorods induced apoptotic death of cancer cells by induction of oxidative stress, depletion of cellular antioxidants and mitochondrial dysfunction. This study reports a novel process of synthesis of almond skin extract capped Cu nanorods and its potential as an anticancer agent against A549 lung carcinoma cells.
Article
The alcoholic and n-butanolic extracts of dried leaves of Stachytarpheta cayennensis (L.C. Rich) Vahl (Verbenaceae) was assessed in antiinflammatory and antinociceptive models. Intraperitoneal pretreatment with the dried extracts at doses ranging from 100 to 200 mg/kg, significantly inhibited carrageenin inducing edema formation. The active extracts were then fractionated and monitored with the same bioassay. The iridoid ipolamiide and the phenylethanoid glycoside acteoside were isolated from the active fraction and showed inhibitory effect on histamine and bradykinin induced contractions of guinea-pig ileum. The compounds also showed in vivo antiinflammatory activity when administered orally to rats mainly in the fourth hour after the administration of the phlogistic agent (70.22% and 93.99%, respectively). These results indicate that S. cayennensis shows antiinflammatory properties which seems to be due, at least partly, to the inhibition of bradyknin and histamine. The extracts also exhibited antinociceptive activity measured by the hot-plate test both i.p. and p.o. in doses ranging from 100 to 300 mg/kg.
Article
We report the development of a chitosan nanocarrier (NC)-based delivery of silver nanoparticles (Ag NPs) to mammalian cells for induction of apoptosis at very low concentrations of the NPs. The cytotoxic efficacy of the Ag NP-nanocarrier (Ag-CS NC) system in human colon cancer cells (HT 29) was examined by morphological analyses and biochemical assays. Cell viability assay demonstrated that the concentration of Ag NPs required to reduce the viability of HT 29 cells by 50% was 0.33 μg mL(-1), much less than in previously reported data. The efficient induction of apoptosis by Ag-CS NCs was confirmed by flow cytometry. Additionally, the characteristic nuclear and morphological changes during apoptotic cell death were investigated by fluorescence and scanning electron microscopy (SEM), respectively. The involvement of mitochondrial pathway of cell death in the Ag-CS NCs induced apoptosis was evident from the depolarization of mitochondrial membrane potential (ΔΨ(m)). Real time quantitative RT-PCR analysis demonstrated the up-regulation of caspase 3 expression which was further reflected in the formation of oligo-nucleosomal DNA "ladders" in Ag-CS NCs treated cells, indicating the important role of caspases in the present apoptotic process. The increased production of intracellular ROS due to Ag-CS NCs treatment indicated that the oxidative stress could augment the induction of apoptosis in HT 29 cells in addition to classical caspase signaling pathway. The use of significantly low concentration of Ag NPs impregnated in chitosan nanocarrier is a much superior approach in comparison to the use of free Ag NPs in cancer therapy.
Article
Metal nanoparticles have distinctly different chemical and physical properties than currently investigated oxides. Since pure metallic nanoparticles are igniting at air, carbon stabilized copper nanoparticles were used as representative material for this class. Using copper as a representative example, we compare the cytotoxicity of copper metal nanoparticles stabilized by a carbon layer to copper oxide nanoparticles using two different cell lines. Keeping the copper exposure dose constant, the two forms of copper showed a distinctly different response. Whilst copper oxide had already been reported to be highly cytotoxic, carbon-coated copper nanoparticles were much less cytotoxic and more tolerated. Measuring the two material's intra- and extracellular solubility in model buffers explained this difference on the basis of altered copper release when supplying copper metal or the corresponding oxide particles to the cells. Control experiments using pure carbon nanoparticles were used to exclude significant surface effects. Reference experiments with ionic copper solutions confirmed a similar response of cultures if exposed to copper oxide nanoparticles or ionic copper. These observations are in line with a Trojan horse-type mechanism and illustrate the dominating influence of physico-chemical parameters on the cytotoxicity of a given metal. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Article
An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered saline. Sonication of particles for dispersion prior to exposure has a large effect on the initial copper release from Cu nanoparticles. A clear size-dependent effect is observed from both a copper release and a toxicity perspective. In agreement with greater released amounts of copper per quantity of particles from the nanometer-sized particles compared to the micrometer-sized particles, the nanometer particles cause a higher degree of DNA damage (single-strand breaks) and cause a significantly higher percentage of cell death compared to cytotoxicity induced by micrometer-sized particles. Cytotoxic effects related to the released copper fraction are found to be significantly lower than the effects related to particles. No DNA damage is induced by the released copper fraction.
Article
At present, more than 20 countries worldwide are manufacturing and marketing different varieties of nanotech-based consumer products of which cosmetics form the largest category. Due to the extremely small size of the nanoparticles (NPs) being used, there is a concern that they may interact directly with macromolecules such as DNA. The present study was aimed to assess the genotoxicity of zinc oxide (ZnO) NPs, one of the widely used ingredients of cosmetics, and other dermatological preparations in human epidermal cell line (A431). A reduction in cell viability as a function of both NP concentration as well as exposure time was observed. ZnO NPs demonstrated a DNA damaging potential as evident from an increased Olive tail moment (OTM) of 2.13 +/- 0.12 (0.8 g/ml) compared to control 1.37 +/- 0.12 in the Comet assay after an exposure of 6 h. ZnO NPs were also found to induce oxidative stress in cells indicated by depletion of glutathione (59% and 51%); catalase (64% and 55%) and superoxide dismutase (72% and 75%) at 0.8 and 0.08 g/ml respectively. Our data demonstrates that ZnO NPs even at low concentrations possess a genotoxic potential in human epidermal cells which may be mediated through lipid peroxidation and oxidative stress. Hence, caution should be taken in their use in dermatological preparations as well as while handling.
Article
A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation. The assay detects living, but not dead cells and the signal generated is dependent on the degree of activation of the cells. This method can therefore be used to measure cytotoxicity, proliferation or activation. The results can be read on a multiwell scanning spectrophotometer (ELISA reader) and show a high degree of precision. No washing steps are used in the assay. The main advantages of the colorimetric assay are its rapidity and precision, and the lack of any radioisotope. We have used the assay to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.
Article
In the present work, the anti-inflammatory and gastroprotective properties of ethanolic extracts of Stachytarpheta cayennesis (L.C. Rich) Vahl (Verbenaceae) were assessed. Chromatographic analysis of the crude ethanolic extract, SC01, revealed high concentrations of the iridoid ipolamiide, whereas the SC02, the second ethanolic extract, presented the arylpropanoid verbacoside as a major constituent. The oral administration of SC01 (100 mg/kg) into Swiss mice failed to inhibit paw oedema and pleural exudation induced by carrageenan and zymosan, whereas SC02 (100 mg/kg, p.o.) inhibited oedema and protein extravasation in all instances. Both extracts inhibited total leukocyte accumulation into the pleural cavity 4 and 24h after the intrathoracic (i.t.) injection of carrageenan, due to the inhibition of neutrophil and mononuclear cell influx, whereas only SC02 was able to inhibit leukocyte mobilization induced by zymosan (100 microg/cavity, i.t.). SC02 inhibited LPS (250 ng/cavity)-induced total leukocyte, neutrophil and eosinophil accumulation in the pleural cavity, whereas SC01 selectively inhibited neutrophil influx. In addition, our data indicates that the extract SC02 presents an important anti-ulcerogenic activity, since it inhibited diclofenac-induced (100 mg/kg, p.o.) gastric ulcera. Overall, these data provide evidence for the anti-inflammatory and gastroprotective properties of Stachytarpheta cayennensis, supporting its use in folk medicine for such purposes.
Article
The aqueous infusion (tea) of Stachytarpheta cayennensis leaves is used ethnomedically in Peru, Nigeria and other tropical countries for the management of diabetes. Oral administration (p. o.) of aqueous (125 mg/kg) and methanolic (2000 mg/kg) extracts of the leaves to alloxan-diabetic rats showed significant blood glucose reductions by 43 and 53%, respectively, at the end of a 4 hour period similar to the strong effect of glibenclamide (5 mg/kg, P. O.). The methanolic extract was successively partitioned into ethyl acetate, butanol and water fractions, and the same test showed that the butanol fraction (2000 mg/kg) had the highest (50%) hypoglycaemic activity at 4 hours after oral administration. It was also the most active fraction when tested in vitro [insulin release from an insulin secreting cell line (INS-1)] and was also active in normal rats and rats made hyperglycaemic by a glucose load. Its activity was comparable to that of glibenclamide (positive control) in these models. This active butanol fraction was subjected to chromatographic subfractionation; some subfractions reduced hyperglycaemia in alloxan-diabetic rats to 60 and 78% and induced insulin release from the INS-1 cells; other subfractions, however, gave hyperglycaemic activities IN VIVO and inhibition of insulin release from the INS-1 cells. Three major compounds of the butanol fraction were isolated and characterised as 6beta-hydroxyipolamide, ipolamide and isoverbascoside; they increased insulin secretion from INS-1 cells to 125, 128 and 127%, respectively, whereas glibenclamide increased insulin secretion to 157%. The results justify the ethnomedical use of the plant in the management of diabetes and suggest that the butanol fraction and some of its isolated constituents mediate their actions primarily by stimulating insulin release directly.
Antimicrobial activity of some common spices against certain human pathogens
  • Melvin Joe
  • M Jayochitra
  • J Vijayapriaya
Hypoglycemic Constituent of Stachytarpheta cayennensis Leaf
  • A C Adebajo
  • O R Olawode
  • S A Adesanya
  • F Begrow
  • A Elkhawad
  • R Akanmum
  • M Edrada
  • P Aproksh
  • T J Scmidt
Unexplored vegetal for the green synthesis of silver nanoparticles: a preliminary study with corchorus olitorus linn and Ipomoea batas (L.) Lam
  • F E Meva
  • M L Segnou
  • C O Ebongue
  • A A Ntoumba
  • D Y Steve
  • Fea Malolo
  • L Ngah
  • H Massai
  • E M Mpondo