ArticlePDF Available

DNA Barcoding Evaluation and Its Taxonomic Implications in the Species-Rich Genus Primula L. in China

PLOS
PLOS ONE
Authors:
  • Guangdong Institute of Chinese Materia Medica

Abstract and Figures

The genus Primula is extremely diverse in the east Himalaya-Hengduan Mountains (HHM) in China as a result of rapid radiation. In order to overcome the difficulty of morphological classification of this genus, we surveyed three plastid regions (rbcL, matK, and trnH-psbA) and two nuclear markers (ITS and ITS2) from 227 accessions representing 66 Primula species across 18 sections, to assess their discriminatory power as barcodes. We found that ITS alone or combined with plastid regions showed the best discrimination across different infrageneric ranks and at species level. We suggest rbcL + matK + ITS as the first choice at present to barcode Primula plants. Although the present barcoding combination performed poorly in many closely related species of Primula, it still provided many new insights into current Primula taxonomy, such as the underlying presence of cryptic species, and several potential improper taxonomic treatments. DNA barcoding is one useful technique in the integrative taxonomy of the genus Primula, but it still requires further efforts to improve its effectiveness in some taxonomically challenging groups.
Content may be subject to copyright.
RESEARCH ARTICLE
DNA Barcoding Evaluation and Its
Taxonomic Implications in the Species-Rich
Genus Primula L. in China
Hai-Fei Yan
1
, Yun-Jiao Liu
2
, Xiu-Feng Xie
3
, Cai-Yun Zhang
2
, Chi-Ming Hu
1
, Gang Hao
2
*,
Xue-Jun Ge
1
*
1Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical
Garden, Chinese Academy of Sciences, Guangzhou, China, 2College of Life Sciences, South China
Agricultural University, Guangzhou, China, 3Tropical Agriculture department, Guangdong Agriculture
Industry Business Polytechnic College, Guangzhou, China
*haogang@scau.edu.cn (GH); xjge@scbg.ac.cn (XJG)
Abstract
The genus Primula is extremely diverse in the east Himalaya-Hengduan Mountains (HHM)
in China as a result of rapid radiation. In order to overcome the difficulty of morphological
classification of this genus, we surveyed three plastid regions (rbcL, matK, and trnH-psbA)
and two nuclear markers (ITS and ITS2) from 227 accessions representing 66 Primula spe-
cies across 18 sections, to assess their discriminatory power as barcodes. We found that
ITS alone or combined with plastid regions showed the best discrimination across different
infrageneric ranks and at species level. We suggest rbcL+ matK + ITS as the first choice at
present to barcode Primula plants. Although the present barcoding combination performed
poorly in many closely related species of Primula, it still provided many new insights into cur-
rent Primula taxonomy, such as the underlying presence of cryptic species, and several po-
tential improper taxonomic treatments. DNA barcoding is one useful technique in the
integrative taxonomy of the genus Primula, but it still requires further efforts to improve its ef-
fectiveness in some taxonomically challenging groups.
Introduction
There is a critical need for rigorously delineated species for many theoretical studies and practi-
cal applications [1]. However, using traditional morphology-based taxonomy is difficult to dis-
cover morphologically cryptic taxa [2]. Species that are the product of rapid radiations within
single genera can represent suites of morphologically similar taxa that are difficult to distin-
guish both in the field and the herbarium [3]. DNA barcoding is a valuable addition to the tax-
onomic tool box. After 10 years development of DNA barcoding, it has been found that large
genera with rapid evolutionary radiations still pose a significant challenge for a universal bar-
coding system [4,5,6]. In order to understand better the overall discriminatory power of the
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 1/15
a11111
OPEN ACCESS
Citation: Yan H-F, Liu Y-J, Xie X-F, Zhang C-Y, Hu C-
M, Hao G, et al. (2015) DNA Barcoding Evaluation
and Its Taxonomic Implications in the Species-Rich
Genus Primula L. in China. PLoS ONE 10(4):
e0122903. doi:10.1371/journal.pone.0122903
Academic Editor: Shilin Chen, Chinese Academy of
Medical Sciences, Peking Union Medical College,
CHINA
Received: November 27, 2014
Accepted: February 24, 2015
Published: April 13, 2015
Copyright: © 2015 Yan et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.
Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
Funding: This study was financially supported by the
National Natural Science Foundation of China (grant
nos. 31270009, 31170205) [http://www.nsfc.gov.cn/].
Competing Interests: The authors have declared
that no competing interests exist.
plant barcoding loci, future work should focus on groups that experienced rapid evolutionary
radiations, for example, the closely related species within a single genus.
Primula L. is an extraordinarily species-rich group within the east Himalaya-Hengduan
Mountains (HHM) in China. The genus consists of about 500 species with over 300 of these
found in China, and most of them (approximately 200 species) are restricted to populations in
Southwest China, and are mainly confined to the HHM [7]. The HHM and its adjacent regions
have been considered to represent the modern diversification centre of the genus [8]. The ex-
ceptionally high Primula species and/or lineage diversity in China occurred no more than 10
Mya [9], and may have been triggered by the extensive uplifts of the Qinghai-Tibet Plateau
(QTP) since the early Miocene and strengthened by topographical complexity of the QTP and
climate oscillations during the Quaternary [10]. Like other large plant groups co-occurring on
the QTP (such as Pedicularis,Rhododendron,Gentiana and Saussurea), Primula is a taxonomi-
cally challenging group because: 1) many key diagnostic features are tiny and empirical, and
cannot be determined correctly by non-specialists, these features include the shape of calyx
and bracts [7]; 2) many dwarf species (such as Primula section Minutissimae) are too small in
size to separate; and 3) frequent hybridization or introgression can confuse the Primula species
boundaries. Primula species, even distantly related ones, can be hybridized readily in green-
house conditions [11] and in the wild, as reported recently [1214]. In addition, new Primula
species in the HHM and adjacent area have been described a number of times in recent years
[1520]. This suggests that the species diversity of Primula is still underestimated. Although
monographs describing Primula do exist [7,11,21,22], the use of keys for the genus requires a
high level of specialized expertise. A more efficient approach to facilitate delimitating Primula
species and discovering cryptic species or lineages in the genus is urgently required. Despite the
promise of DNA barcoding, only a few studies have used it in plant groups that have a high di-
versity in the HHM or in neighboring regions [2327].
Although the limited ability of DNA barcoding to discriminate species in large genera is
well known, the following questions are still unclear: 1) to what extent could DNA barcoding
discriminate infrageneric levels (i.e., subgenus, section, and series) within large genera? 2)
Could DNA barcodes discriminate between certain closely related species pairs? 3) In rapidly
evolved genera, could DNA barcoding reveal cryptic species? As a typical rapidly evolved plant
taxon in the HHM, the genus Primula provides a good opportunity to answer these questions.
In the current study, we sampled 66 species representing 18 sections of Primula in China; these
contained many closely related groups. The discriminatory ability of three common plastid
barcoding candidates (rbcL, matK, and trnH-psbA) and nuclear regions (ITS and ITS2)
were evaluated.
Materials and Methods
Ethics statement
All samples employed in this study are not endangered nor protected in the sampled area, and
none of the sampled locations are privately owned or protected by any law. No specific permits
were required for the described field studies.
Taxon sampling, DNA extraction and sequencing
During this study we examined a total of 227 accessions of 66 Primula species from 18 of the
24 sections of the genus in China recognized by Hu [21]. We used Omphalogramma delavayi
Franch. as an outgroup [28,29]. In order to explore the pattern of genetic variability in mor-
phological species, more than two individuals of each species were collected. Taking account of
the effect of geographical sampling scale on DNA barcoding [30], more individuals (>10)
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 2/15
were sampled from widespread species, such as P.secundiflora Franch. and P.Poissonii
Franch., across their ranges to allow for their intraspecific variability.
To test the effectiveness of DNA barcoding in more closely related groups, section Proliferae
was exhaustively sampled in this study. There are approximately 23 species in this section [11].
In China, nineteen species have been described [7,8,21], and a new record species, P.burma-
nica Balf. f. et Ward, in the section was recently discovered on the south side of Ailao Mountain
in Simao (Szemao) region, China (Yan et al., unpublished data). We collected 84 accessions
representing all species of the section in China except P.stenodonta Balf. f. ex W. W. Smith et
Fletcher. In addition, we selected several of the most closely related species groups in the genus,
such as P.chungensis Balf. f. et Ward vs. P.cockburinana Hemsl., P.ovalifolia Franch. vs. P.tar-
diflora C. M. Hu, P.prattii Hemsl. vs. P.pulchella Franch., P.fasciculata Balf. f. et Ward vs. P.
munroi ssp. yagongensis (Petitm) W. W. Smith et Forr., and the P.poissonii complex. Collec-
tion details, voucher numbers, taxonomy, and GenBank accession numbers are listed in S1
Table.
Genomic DNA was extracted from silica gel-dried leaf material following a modified version
of the cetyltrimethyl ammonium bromide (CTAB) protocol of Doyle & Doyle [31]. Five candi-
date DNA barcodes, containing two coding plastid genes (rbcL and matK), one intergenic plas-
tid spacer (trnH-psbA), the nuclear ribosomal internal transcribed spacer (ITS, including ITS1,
5.8s and ITS2) and the internal transcribed spacer2 (ITS2), were evaluated in this study. RbcL
was amplified using the primer combination (rbcLa_f and 724R) as suggested by Fay et al.[
32]
and Kress & Erickson [33], respectively. The amplification of matK was achieved using the
primer pair 3F-KIM and XF ([34]; Kim unpublished data). For trnH-psbA, the primers trnH05
and psbA3 were used [35,36]. ITS was amplified with the primers proposed by White et al.[37].
PCR amplification and sequencing conditions followed Yan et al.[24]. ITS2 was retrieved from
the ITS data in this study.
Data analyses
Sequences for each marker were aligned with Muscle 3.8 [38] and then manually adjusted
using Se-Al 2.0a11 [39]. We focused on evaluating five single markers and their combinations
(rbcL+ matK, rbcL+ matK+ trnH-psbA,rbcL+ matK+ITS, rbcL+ matK+ITS2, rbcL
+ matK+ trnH-psbA + ITS, and rbcL+ matK+ trnH-psbA + ITS2). For the pair-wise genetic
distance (PWG-distance) method, the genetic pairwise distance was determined by MEGA6
using the Kimura two-parameter distance model (K2P) with pairwise deletion of missing sites
[40]. Three parameters (average intraspecific distance, average theta (ө), and coalescent depth)
were calculated for all markers. In order to evaluate the localbarcoding gap for each species
[41,42], we plotted the maximum intraspecific divergences against the smallest interspecific
distances for each species [41,43].
To test whether accurate species assignments can be made among the samples using a single
marker or combinations of markers, we used another two distance-based methods the best
match(BM) and best close match(BCM) using the TaxonDNA/Species Identifier 1.7.7-dev3
program [44]. BM assigns the query to the species with the smallest distance sequence, whereas
BCM only identifies the query when the closest sequence is within a distance threshold. The
threshold value is determined by using the distance less than 95% of all intraspecific distances,
which was calculated by the pairwise summary function [44].
For the tree-building method, we calculated the proportion of monophyletic groups using a
Neighbor-Joining (NJ) tree. The test was performed using PAUPv4b10 with the K2P model
[45]. If all individuals of a species cluster together with a bootstrap value above 70%, then the
species was considered as having been successfully identified.
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 3/15
Results
Sequence characteristics and genetic divergence
All plastid markers (rbcL, matK, trnH-psbA) were successfully amplified across all individuals,
but amplification of ITS failed in two Primula species (P.virginis Lévl. and P.duclouxii Petitm.)
and one accession of P.gemmifera Batal. (GXJ253, voucher: Hao940) in this study (S1 Table).
The characteristics of the five DNA markers are presented in Table 1. Overall, the aligned
length of the five markers ranged from 241 bp (ITS2) to 857 bp (trnH-psbA). The proportion
of variable sites were the lowest for rbcL and highest for ITS2. RbcL exhibited the lowest intra-
specific and/or inter-specific divergence as well, whilst trnH-psbA showed the highest intra-
specific divergence (0.87%), followed by ITS2 (0.80%). However, the greatest interspecific dis-
tance was found in ITS2 (12.73%), followed by trnH-psbA (11.69%). The box-and-whisker
plots (Fig 1) indicate the distance distribution of inter- and intra-specific distances for all
single markers.
The mean intra and inter-specific genetic divergence for the main combinations varied in
the ranges 0.24% to 0.47% and 3.71% to 6.70%, respectively (Table 1). The combination of
rbcL+ matK+ trnH-psbA + ITS exhibited the highest mean intra- and inter-specific distance,
followed by rbcL+ matK + ITS. The core barcode rbcL+ matK exhibited the smallest intra-and
inter-specific genetic difference (Table 1).
Discrimination success of candidate barcodes
The local barcoding gap, with an interspecific distance larger than the intraspecific distance for
a species, directly reveals the species discrimination ability of barcodes. The proportion of the
local barcoding gap varied between the regions tested (Figs 2and 3,S2 Table). ITS showed the
best discriminatory power (54.69%) among the five single candidate barcodes, followed by
trnH-psbA (48.40%). In contrast, rbcL provided the lowest discrimination rate (24.24%). Of all
the combinations tested, the proportion of the barcoding gap of the core barcode combination
(rbcL+ matK) was the lowest (42.42%) (Fig 3,S2 Table), while rbcL+ matK+ trnH-psbA+
ITS exhibited the highest local barcoding gap (68.75%) followed by rbcL+ matK + ITS and
rbcL+ trnH-psbA + ITS (65.63%). TrnH-psbA and ITS2 individually and/or combined with
other plastid markers did not perform well enough to discriminate Primula species in this
study (Fig 3,S2 Table). For example, rbcL+ matK+ trnH-psbA and rbcL+ matK + ITS2 could
Table 1. Summary of genetic variability and sequence characteristics of the candidate barcodes and their main combinations in this study.
rbcLmatKtrnH-
psbA
ITS ITS2 R + M R + M
+T
R+M
+I
R+M
+I2
R+M+T
+I
Aligned length (bp) 614 718 857 680 241 1333 2191 2015 1575 2872
Average intra-distance 0.14% 0.33% 0.87% 0.75% 0.80% 0.24% 0.36% 0.41% 0.32% 0.47%
Average inter-distance 2.14% 5.12% 11.69% 11.10% 12.73% 3.71% 5.06% 6.04% 4.92% 6.70%
Average theta (ө)0.17% 0.24% 0.25% 0.48% 0.58% 0.21% 0.21% 0.29% 0.26% 0.29%
Coalescent Depth 5.57% 2.04% 4.15% 5.30% 6.36% 2.58% 1.91% 2.39% 2.19% 2.31%
Proportion of variable sites 15.79% 33.43% 47.37% 50.88% 51.19% 25.36% 32.63% 32.90% 29.21% 37.05%
Proportion of parsimony sites 12.38% 27.72% 32.56% 43.09% 48.13% 20.63% 25.33% 27.84% 24.57% 29.18%
Rate of PCR and sequencing
success
100% 100% 100% 97.80% 97.80% N/a N/a N/a N/a N/a
R, rbcL; M, matK; T, trnH-psbA; I, ITS; I2, ITS2.
doi:10.1371/journal.pone.0122903.t001
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 4/15
identify 36 Primula species (56.65%), while rbcL+ matK + ITS performed better and identified
65.63% of the Primula species.
Compared with the PWG-distance method, the BM and BCM analyses all showed better
discrimination success. BCM always had a lower identification rate than BM analysis (S2
Table). Based on the BM model, ITS performed best among the five single DNA regions, and
successfully assigned 81.98% sequences to the correct species (Fig 3). The identification rate of
the two-locus combinations ranged from 71.36% to 89.63%. Among them, the core barcode
combination rbcL+ matK correctly identified 72.24% of specimens, which was only slightly
better than rbcL+ trnH-psbA (71.36%). For three-locus combinations, matK+ trnH-psbA+
ITS, rbcL+trnH-psbA + ITS, and rbcL+ matK + ITS provided similar discrimination rates
(90.99%, 90.54%, and 89.18%), followed by rbcL+ matK+ trnH-psbA (78.41%). In addition,
combinations with ITS2 always produced a lower identification rate compared to combinations
with ITS (Fig 3,S2 Table).
The tree-building method provided a similar result to the distance-based method. In this
analysis, we found that ITS was the best of all single markers, successfully identifying 53.13% of
species. Of the combinations, rbcL+ matK showed the poorest discriminatory power (37.88%),
while rbcL+ matK+ trnH-psbA + ITS was the best one with a 64.06% discrimination rate, fol-
lowed by rbcL+ matK + ITS and matK+ trnH-psbA + ITS (60.94%) (Fig 3,S2 Table).
When we considered the previously recognized infrageneric taxa (the twenty four sections,
[21]), rbcL and trnH-psbA each only identified four sections (S1 Fig). The discrimination rate
of ITS was the best among all single barcodes, distinguishing eight sections (section Pycnoloba,
Fig 1. Comparisons of the distribution ranges of inter- and intraspecific distances using boxplots.
doi:10.1371/journal.pone.0122903.g001
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 5/15
section Auganthus, section Souliei, section Soldanelloides, section Sikkimensis, section Amethys-
tina, section Muscarioides, and section Petiolares)(S1 Fig). Among the main combinations, the
core barcode (rbcL+matK) only successfully identified five sections (section Pycnoloba, section
Fig 2. Relationships between inter- and intraspecific distance indicating the local gaps for species.
doi:10.1371/journal.pone.0122903.g002
Fig 3. Species discrimination rates of several main barcodes in Primula.R,rbcL; M, matK; T, trnH-psbA; I, ITS; I2, ITS2.
doi:10.1371/journal.pone.0122903.g003
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 6/15
Auganthus, section Souliei, section Soldanelloides, and section Sikkimensis), followed by the
combinations rbcL+ matK+trnH-psbA + ITS2, rbcL+ matK+ trnH-psbA + ITS and rbcL+
matK+ trnH-psbA, which all identified the same eight same sections as ITS. In contrast, rbcL+
matK + ITS was the best combination, and was able to discriminate nine sections (including
section Proliferae)(Fig 4). Our sampling represented four subgenera (subgenus Auriculastrum,
subgenus Auganthus, subgenus Carolinella and subgenus Aleuritia) according to the revised
classification of Primula [11], nevertheless, the majority of DNA barcodes singly or jointly could
only separate out subgenus Auriculastrum correctly.
Fig 4. Neighbor-joining tree based on the combination rbcL+ matK + ITS with the K2P distance model. (A) The whole tree of Primula except
section Proliferae. (B) The tree of section Proliferae.Asterisks along branches indicate monophyletic species with bootstrap values above 70%.
Accessions are suffixed by sample ID. Monophyletic sections are highlighted with grey shading.
doi:10.1371/journal.pone.0122903.g004
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 7/15
Discrimination ability of DNA barcoding in closely related groups
Section Proliferae is an example containing closely related taxa that is suitable for testing the
discriminatory performance of DNA barcoding. Using the tree-building method, the core bar-
code (rbcL+ matK) could only correctly identify P.smithiana Craib with a relatively high boot-
strap value (i.e. over 70%), whereas ITS alone could distinguish five species (S1 Fig). rbcL+
matK + ITS was the most efficient and precise combination in this study, as stated above, but it
only discriminated 10 species correctly (52.63%) in this section (Fig 4). Section Proliferae con-
tained three taxonomically challenging groups (or species complexes). Although the three
groups could be easily distinguished by rbcL+ matK + ITS, the species within each group were
difficult to discriminate using the current barcodes singly and/or in combination. For example,
the P.poissonii complex is resolved as monophyletic with high support by rbcL+ matK + ITS,
however, only two narrowly distributed species (P.anisodora Balf. f. et. Forr. and P.miyabeana
Ito et Kawakami) could be readily distinguished (Fig 4).
Compared with section Proliferae, the discrimination performance of DNA barcoding
in other Primula species was much better (64.44%, based on the tree-building result of
rbcL+matK + ITS). However, we found that a failure often occurred in the most closely re-
lated species groups (Table 2), such as P.chungensis vs. P.cockburinana,P.ovalifolia vs. P.
tardiflora,P.prattii vs. P.pulchella,andP.fasciculatavs. P.munroi ssp. yagongensis. In addi-
tion, some species showed extremely high intraspecific divergence (>1%); these included P.
moupingensis Franch., P.bella Franch., P.fasciculata,P.malvacea Franch. and P.yunnanen-
sis Franch. (Table 2). Most of the species with extremely high intraspecific divergence cannot
Table 2. Summary of the candidate barcode rbcL+ matK + ITS divergence pattern for unidentified species.
Taxon The nearest
relative
Mean intraspecic divergence
(%)
Maximum intraspecic distance
(%)
Minimum interspecic distance
(%)
P.prattii P pulchella 00 0
P.pulchella P.prattii 0.1 0.15 0
P.burmanica P.mallophylla 0.19 0.21 0.16
P.chungensis P.cockburniana 0.17 0.21 0.11
P.bulleyana P.aurantiaca 0.32 0.21 0.11
P.aurantiaca P.bulleyana 0.13 0.22 0.11
P.chrysochlora P.helodoxa 0.13 0.26 0.26
P.poissonii P.anidosora 0.12 0.38 0.38
P.chionantha P.melanops 0.18 0.41 0.1
P.beesiana P.bulleyana 0.02 0.43 0.21
P.wilsonii P.miyabeana 0.25 0.48 0.37
P.septemloba P.heucherifolia 0.32 0.56 0.46
P.prenantha P.helodoxa 0.21 0.58 0.26
P.ovalifolia P.tardiora 0.42 0.61 0.36
P.alpicola P.sikkimensis 0.26 0.77 0.48
P.
blattariformis
P.malvacea 0.6 0.93 0.83
P.moupinensis P.epilosa 0.54 1.24 0.61
P.denticulata P.kialensis 0.48 1.6 1.3
P.bella P.yunnanensis 0.9 1.7 1.03
P.fasciculata P.munroi 0.99 1.72 1.55
P.malvacea P.blattariformis 0.85 1.84 0.83
P.yunnanensis P.bella 1.82 2.39 1.03
doi:10.1371/journal.pone.0122903.t002
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 8/15
be correctly distinguished by any of the three methods, which probably indicates their status
should be further examined.
Discussion
The resolution of the tested DNA markers in Primula
In this study, all the three plastid regions tested individually showed a relatively low discrimi-
natory efficacy ranging from 15.16% to 31.82% (based on monophyletic analysis) in Primula
species (S2 Table). The core barcode rbcL+ matK also provided low discrimination at a rate of
37.88% (S2 Table). One of the most promising supplementary plastid barcodes, trnH-psbA,
varied in size from 154 bp (P.poissonii) to 523 bp (P.polynuera Franch.), so there were a large
number of gaps in the alignment matrix. Based on tree-building analysis, trnH-psbA identified
42.19% of species; this was the best among the plastid regions but lower than the nuclear mark-
ers (ITS) (S2 Table). The combination of trnH-psbA with rbcLormatK did not result in higher
resolution (S2 Table), which demonstrated that trnH-psbA is not a preferred barcode in
Primula.
The strong identification ability of ITS has been verified based on a comprehensive study
[46], even in some complex plant groups, such as Panassia [25], Ficus [47], Lysimachia [27],
and Sisyrinchium [48]. In this study, ITS exhibited the highest discriminatory power among
all five markers, and any combinations with ITS were able to discriminate more species than
combinations without ITS (Fig 3,S2 Table). Of the three-locus combinations, rbcL+ matK+
ITS and matK+trnH-psbA + ITS all distinguished 60.94% of monophyletic species, which was
the best discrimination performance (Appendix S2). Therefore, as suggested by Yan et al.[24],
rbcL+matK + ITS should be the first choice to barcode Primula plants. Compared with primer
problems associated with ITS, ITS2 has conserved regions for designing universal primers, and
can be readily amplified in various groups [49]. However, ITS2 itself or combined with plastid
markers did not produce better results than ITS and/or corresponding combinations (S2 Table).
We suggest that ITS2 may be an ideal supplementary barcode when ITS amplification fails.
Discrimination performance on section rank in Primula
DNA barcoding should be able to help identify some groups within large genera, thus reducing
the time required for morphological studies to produce definitive species lists. Although it is
well known that DNA barcoding has difficulties in resolving closely related species, it is not
clear whether such barcoding could identify samples correctly to section level within large gen-
era. There are more than 200 Primula species concentrated in the HHM region in China [11].
Primula has always been divided into subgroups, usually with the rank of section [22,50]. In a
well-accepted infrageneric system, Smith and Fletcher divided the genus into a total of 31 sec-
tions [22]. Twenty-four sections of the Chinese Primula were adopted by Hu [21].
In this study, DNA barcoding performed well for distinguishing sections, and could resolve
nine of the current 18 sections [21]. However, of the resolved sections, three (namely section
Auganthus,sectionSouliei, and section Soldanelloides) together with the monotypic section Pyc-
noloba were each represented by one species in the current study. Considering the fact that the
phylogeny of many sections and their close relatives, such as section Soldanelloides,Minutissimae,
and Souliei, still lack detailed studies [28,29], the discrimination rate of DNA barcoding would
probably drop further if we expanded the number of members in these sections. These results
demonstrated that DNA barcoding is useful in some sections of Primula. In addition to barcoding
discriminatory ability, the infragenetric classification system will also influence the results. A reli-
able and well-recognized infrageneric rank in a large genus is a prerequisite for applying DNA
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 9/15
barcoding. Therefore, a number of new sectional delimitations will be necessary in the genus
Primula [11,28].
Resolving ability of DNA barcoding in section Proliferae
The Primula section Proliferae is a well-delimited and natural group characterized by numer-
ous whorls of flowers resembling candelabra [11]. It is mainly concentrated in the HHM [7]. In
China, 19 species have been described and, with the exception of P.miyabeana (endemic to
Taiwan), they are narrowly distributed in southwest China [7]. This section contains several
taxonomically challenging groups, such as the P.poissonii complex, which consists of P.aniso-
dora,P.wilsonii Dunn and P.poissonii, and the P.beesiana group with P.beesiana Forr., P.bul-
leyana Forr., P.burmanica and P.pulverulenta Duthie. This complex section provides a good
example to test the discriminatory ability of candidate barcodes in closely related species, espe-
cially those formed through rapid evolutionary radiation.
Although the discriminatory power of DNA barcoding is limited in section Proliferae (dis-
crimination rate of 52.63%), in the current study it confirmed the monophyly of section Prolif-
erae (tree-building method) (Fig 4), and divided the section into three clades with high support
(over 85%), which agree well with the study based on their morphology [51]. It is convenient
for us to assign unknown Primula specimens to a rough position in the section. This could
help to narrow the scope of identification. Within each complex or clade, DNA barcoding
could still provide some clues for identification and taxonomic treatment. For example, P.pois-
sonii and P.anisodora have the closest relationship and they were confirmed by the current
barcodes (Fig 4), but only P.anisodora exhibited monophyly. DNA barcoding could also help
to solve several classification disputes in this section. For example, barcoding supported treat-
ing P.wilsonii and P.anisodora,P.burmarica and P.beesiana as separate species [7,11,21,51]
(Fig 4). Therefore, even for very closely related species, DNA barcoding may still provide help
to some extent, and narrow the identification range.
It is well known that using the universal DNA barcode (two core barcodes and two alterna-
tive barcodes, trnH-psbA, ITS) it is almost impossible to separate very closely related species
formed through rapid radiation. Therefore, species-specific barcodes need to be developed for
difficult taxa [6]. These markers may be based on other rapidly evolved molecular markers such
as low or single copy nuclear genes (e.g. waxy and leafy)[52] or even using high-throughput se-
quencing methods (such as RAD and GBS).
Biological implications of DNA barcoding in Primula
Traditional taxonomy mainly depends on morphological diagnosis, and it should be corrobo-
rated by other sources of data, such as geographical, ecological, reproductive and DNA se-
quence information [53]. However, constructing a robust taxonomy for recently diverged plant
taxa is more difficult, because they often show little difference in their morphological and ge-
netic profiles. In addition, many other aspects could also cause the failure of DNA barcoding,
such as imperfect taxonomy, interspecific hybridization, paralogy, and incomplete lineage sort-
ing [42,52,54,55]. For many such taxa, DNA barcoding provides an opportunity to solve some
of the taxonomic problems through discovering the underlying biological issues.
By surveying the non-monophyletic taxa at species level and examining genetic distance (Fig
4,Table 2), we filtered out barcoding failures in several species probably caused by incomplete
lineage sorting. For example, narrowly distributed P.tardiflora,P.prattii, and P.cockburiana
each experienced peripheral isolated speciation from their widely distributed relatives (putative
parents) (P.ovalifolia,P.pulchella, and P.chungensis)[55]. The barcoding results were partial-
ly supported by a complementary phylogeographic study [56]. It is a question for taxonomy to
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 10 / 15
reflect on these incomplete speciation processes by synonymizing the nested and parent species
or elevating lineages in the paraphyletic lineage to species status [55]. In the context, we prefer
to treat the nested and parent species as one species because of their similarity in morphology
[7,21], but of course additional research is necessary.
Imperfect taxonomy in several plant and animal taxa has been detected by DNA barcoding
(e.g. [27,42,5759]), providing significant support for the taxonomic value of the technique. P.
bella examined in this study is an excellent example of over-lumping in traditional taxonomy,
as the species appeared polyphyletic and exhibited unexpectedly large intraspecific divergence
(Table 2,Fig 4). Given the variable morphological characters (such as shape of bracts and the
stem length), there are classification disputes about the delimitation of P.bella [7,11,21,60].
DNA barcoding supported the suggestion that the anomalous individual P.bella GXJ096
(voucher: Hao & Yan 956) should be raised to species status (P.cyclostegia Hand.-Mazz.) on
the basis of its genetic profile, although additional work is essential to validate this as a robust
species. A similar situation is also probably the case for P.denticulata Smith.
Discovering the potential presence of cryptic species and/or lineages is an important appli-
cation of DNA barcoding, and this remains within the domain of taxonomy [53]. The taxo-
nomic usefulness of DNA barcoding has been validated in a wide range of animals (see, for
example [6167]), but there are few studies of large plant groups that have recently experienced
evolutionary radiation. It is plausible that the frequent occurrence of cryptic species in Chinese
Primula represents adaptation to the variable habitats on the HHM and rapid radiation evolu-
tion in a relatively short time [7,9,11,21]. By iteratively reexamining peculiar specimens de-
tected by DNA barcoding (such as P.yunnanensis GXJ099, P.fasciculata GXJ249, and P.
moupinensis GXJ259) (Table 2,Fig 4), several tiny morphological or geographical divergences
may be identified in these taxa, which indicate the possibility of cryptic species; however, fur-
ther taxonomic scrutiny is required.
Another great challenge for barcoding plant species is linked to hybridization events
[23,52,54,68]. Natural or artificial hybrids in Primula have been reported recently [1114], and
these may cause a failure in barcoding Primula species. In the current study, underlying hy-
bridization might occur in P.anisodora and its most close relative P.poissonii. They were
found in the same populations, and a putative hybrid (P.poissonii Y640) was also discovered
(S2 Fig). Additional research is needed to resolve the biological situation (e.g. [69,70]).
Conclusion
Primula species examined in the present study are difficult to distinguish using the core bar-
code (rbcL+ matK). Another plastid marker, trnH-psbA, varied in size and exhibited lower dis-
crimination compared to ITS, suggesting that it is not a suitable barcode for studies of Primula.
In contrast, ITS showed the best discriminatory ability of all the single markers tested, discrimi-
nating 65.63% and 60.94% of species (according to the PWG-distance method and tree-build-
ing method) when combined with rbcL+ matK, which performed best among all three-locus
combinations. We propose that rbcL+ matK+ITS should be treated as the first local barcode
in the genus Primula at present, although its discrimination rates with respect to infrageneric
rank and separating closely related Primula species are limited.
Despite the limited discrimination for closely related pairs, DNA barcoding provided many
new insights into the current Primula taxonomy, such as detecting potential cryptic species, and
revealing several probably improper taxonomic treatments. Obviously, it is difficult to resolve
all closely related groups based on the current limited and relatively conserved molecular mark-
ers, especially in taxa such as Primula, which have experienced recent rapid radiation. Other
more rapidly evolved molecular markers should be incorporated into future DNA barcoding
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 11 / 15
projects, for example low or single copy nuclear genes, nuclear SNPs, nuclear SSRs [23,52], and
the complete chloroplast genome [7174]. As proposed by Twyford [6], we are building a robust
phylogeny framework for the Primula section Proliferae using RAD (restriction-site-associated
DNA, [75]), and expect to resolve the true evolutionary relationships; these may be necessary to
develop robust species-specific barcodes in the future [6]. Overall, DNA barcoding is a useful
technique for the integrative taxonomy of the genus, but it still requires further work to improve
its value for studying taxonomically challenging groups.
Supporting Information
S1 Fig. Neighbor-joining trees based on candidate barcodes and their main combinations
with K2P distance model. Asterisks along branches indicate monophyletic species with boot-
strap values above 70%. Accessions are suffixed by sample ID. Monophyletic sections are
highlighted with grey shading.
(PDF)
S2 Fig. Three individuals of Primula poissonii complex and their flowers.
(DOCX)
S1 Table. Taxon, voucher, collection information, and Genbank accession numbers.
(XLSX)
S2 Table. Discrimination success based on different analysis methods.
(DOCX)
Acknowledgments
We are grateful to Drs. Lian-Ming Gao, Zhi-Kun Wu, Xun Gong, Yu-Ming Shui, Zhong-Lai
Luo, Yuan Xu, Bing-Qiang Xu, and Xin Wu for their help in collecting plant material. We also
thank Dr. Juan Liu and Ms. Yu-Ying Zhou for help in data analysis and laboratory work.
Author Contributions
Conceived and designed the experiments: HFY GH XJG. Performed the experiments: HFY YJL
CYZ. Analyzed the data: HFY YJL CYZ. Contributed reagents/materials/analysis tools: CMH
GH XFX XJG. Wrote the paper: HFY XJG GH.
References
1. Dayrat B (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society 85: 407415.
2. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA bar-
codes. Proceedings of the Royal Society B: Biological Sciences 270: 313321. PMID: 12614582
3. Elliott TL, Davies TJ (2014) Challenges to barcoding an entire flora. Molecular Ecology Resources 14:
883891. doi: 10.1111/1755-0998.12277 PMID: 24813242
4. Kekkonen M, Hebert PDN (2014) DNA barcode-based delineation of putative species: efficient start for
taxonomic workflows. Molecular Ecology Resources 14: 706715. doi: 10.1111/1755-0998.12233
PMID: 24479435
5. Miller SE (2007) DNA barcoding and the renaissance of taxonomy. Proceedings of the National Acade-
my of Sciences of the United States of America 104: 47754776. PMID: 17363473
6. Twyford AD (2014) Testing evolutionary hypotheses for DNA barcoding failure in willows. Molecular
Ecology 23: 46744676. doi: 10.1111/mec.12892 PMID: 25263402
7. Hu CM, Kelso S (1996) Primulaceae; Wu ZY, Raven PH, editors. Beijing: Science Press; St. Louis:
Missouri Botanical Garden Press.
8. Hu CM (1994) On the geographical distribution of the Primulaceae. Journal of Tropical and Subtropical
Botany 2: 114.
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 12 / 15
9. de Vos JM, Hughes CE, Schneeweiss GM, Moore BR, Conti E (2014) Heterostyly accelerates diversifi-
cation via reduced extinction in primroses. Proceedings of the Royal Society B: Biological Sciences
281: 20140075. doi: 10.1098/rspb.2014.0075 PMID: 24759859
10. Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H (2014) Evolutionary diversifications of plants on the Qing-
hai-Tibetan Plateau. Frontiers in Genetics 5: 4. doi: 10.3389/fgene.2014.00004 PMID: 24575120
11. Richards J (2003) Primula. Portland, OR, USA: Timber Press.
12. Cianchi R, Arduino P, Mosco MC, Bullini L (2013) Evidence of hybrid speciation in the North American
primroses Primula suffrutescens,P.parryi,P.rusbyi and P.angustifolia (Primulaceae). Plant Biosys-
tems-An International Journal Dealing with All Aspects of Plant Biology: doi: 10.1080/11263504.2013.
826745
13. Ma Y, Xie W, Tian X, Sun W, Wu Z, Milne R (2014) Unidirectional hybridization and reproductive barri-
ers between two heterostylous primrose species in north-west Yunnan, China. Annals of Botany: 113:
763775. doi: 10.1093/aob/mct312 PMID: 24492637
14. Zhu XF, Li Y, Wu GL, Fang ZD, Li QJ, Liu JQ (2009) Molecular and morphological evidence for natural
hybridization between Primula secundiflora Franchet and P.poissonii Franchet (Primulaceae). Acta
Biologica Cracoviensia Series Botanica 51: 2936.
15. Gong X, Fang RC (2003) Primula calyptrata, a new species in section Carolinella (Primulaceae) from
Yunnan, China. Novon 13: 193195. PMID: 12727512
16. Hu CM, Hao G (2011) New and noteworthy species of Primula (Primulaceae) from China. Edinburgh
Journal of Botany 68: 297300.
17. Hu CM (1990) A new species of Primula from Thailand with critical notes on the section Carolinella. Nor-
dic Journal of Botany 10: 399401.
18. Hu CM, Geng YY (2003) Two new species of Primula (Primulaceae) from China. Novon: 196199.
19. Li R, Hu CM (2009) Primula lihengiana (Primulaceae), a new species from Yunnan, China. Annales
Botanici Fennici 46: 130132.
20. Wu X, Xu Y, Hu CM, Hao G (2013) Primula mianyangensis (Primulaceae), a new species from Sichuan,
China. Phytotaxa 131: 4952.
21. Hu CM (1990) Primulaceae; Chen FW, Hu CM, editors. Beijing: Science Press.
22. Smith WW, Fletcher HR (1977) The genus Primula: A facsimile reprint of 22 papers published in various
journals, reprinted with original pagination as well as new continuous pagination. Plant Monograph Re-
prints II.: Copies: BR, FAS, G, M, NY.
23. Feng JJ, Jiang DC, Shang HY, Dong M, Wang GN, He XY, et al. (2013) Barcoding Poplars (Populus L.)
from Western China. PLoS ONE 8 (8): e71710. doi: 10.1371/journal.pone.0071710 PMID: 23977122
24. Yan HF, Hao G, Hu CM, Ge XJ (2011) DNA barcoding in closely related species: A case study of Prim-
ula L. sect. Proliferae Pax (Primulaceae) in China. Journal of Systematics and Evolution 49: 225236.
25. Yang JB, Wang YP, Moller M, Gao LM, Wu D (2012) Applying plant DNA barcodes to identify species
of Parnassia (Parnassiaceae). Molecular Ecology Resources 12: 267275. doi: 10.1111/j.1755-0998.
2011.03095.x PMID: 22136257
26. Yu WB, Huang PH, Ree RH, Liu ML, Li DZ, Wang H (2011) DNA barcoding of Pedicularis L.(Oroban-
chaceae): Evaluating four universal barcode loci in a large and hemiparasitic genus. Journal of System-
atics and Evolution 49: 425437.
27. Zhang CY, Wang FY, Yan HF, Hao G, Hu CM, Ge XJ (2012) Testing DNA barcoding in closely related
groups of Lysimachia L. (Myrsinaceae). Molecular Ecology Resources 12: 98108. doi: 10.1111/j.
1755-0998.2011.03076.x PMID: 21967641
28. Mast AR, Kelso S, Richards AJ, Lang DJ, Feller DMS, Conti E (2001) Phylogenetic relationships in
Primula L. and related genera (Primulaceae) based on noncoding chloroplast DNA. International Jour-
nal of Plant Sciences 162: 13811400.
29. Yan HF, He CH, Peng CI, Hu CM, Hao G (2010) Circumscription of Primula subgenus Auganthus (Pri-
mulaceae) based on chloroplast DNA sequences. Journal of Systematics and Evolution 48: 123132.
30. Bergsten J, Bilton DT, Fujisawa T, Elliott M, Monaghan MT, Balke M, et al. (2012) The effect of geo-
graphical scale of sampling on DNA barcoding. Systematic Biology 61: 851869. PMID: 22398121
31. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phy-
tochemical Bulletin 19: 1115.
32. Fay MF, Swensen SM, Chase MW (1997) Taxonomic affinities of Medusagyne oppositifolia (Medusa-
gynaceae). Kew Bulletin: 111120.
33. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene
complements the non-coding trnH-psbA spacer region. PLoS ONE 2 (6): e508. PMID: 17551588
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 13 / 15
34. Ford CS, Ayres KL, Toomey N, Haider N, Stahl JV, Kelly LJ, et al. (2009) Selection of candidate coding
DNA barcoding regions for use on land plants. Botanical Journal of the Linnean Society 159: 111.
35. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and
biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 11201136. PMID:
21708667
36. Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid spe-
cies. Systematic Botany 28: 723737.
37. White TJ, Bruns T, Lee S, Taylor J (1990) Amplication and direct sequencing of fungal ribosomal RNA
genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White TJ, editors. PCR protocols: A guide to
methods and applications. San Diego: Academic Press. pp. 315322.
38. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nu-
cleic Acids Research 32: 17921797. PMID: 15034147
39. Rambaut A (2002) Se-al version2.0a11. http://treebioedacuk/software/seal/.
40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genet-
ics Analysis Version 6.0. Molecular Biology and Evolution 30: 27252729. doi: 10.1093/molbev/
mst197 PMID: 24132122
41. Collins RA, Cruickshank RH (2013) The seven deadly sins of DNA barcoding. Molecular Ecology Re-
sources 13: 969975. doi: 10.1111/1755-0998.12046 PMID: 23280099
42. Meyer CP, Paulay G (2005) DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol-
ogy 3: 22292238.
43. Robinson EA, Blagoev GA, Hebert PDN, Adamowicz SJ (2009) Prospects for using DNA barcoding to
identify spiders in species-rich genera. Zookeys: 2746.
44. Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in diptera: A tale of high
intraspecific variability and low identification success. Systematic Biology 55: 715728. PMID:
17060194
45. Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version
4.0b10. Sunderland: Sinauer.
46. Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, et al. (2011) Comparative analysis of a large dataset indi-
cates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed
plants. Proceedings of the National Academy of Sciences of the United States of America 108: 19641
19646. doi: 10.1073/pnas.1104551108 PMID: 22100737
47. Li HQ, Chen JY, Wang S, Xiong SZ (2012) Evaluation of six candidate DNAbarcoding loci in Ficus
(Moraceae) of China. Molecular Ecology Resources 12: 783790. doi: 10.1111/j.1755-0998.2012.
03147.x PMID: 22537273
48. Alves TLS, Chauveau O, Eggers L, de Souza-Chies TT (2014) Species discrimination in Sisyrinchium
(Iridaceae): assessment of DNA barcodes in a taxonomically challenging genus. Molecular Ecology
Resources 14: 324335. doi: 10.1111/1755-0998.12182 PMID: 24119215
49. Yao H, Song JY, Liu C, Luo K, Han JP, Li Y, et al. (2010) Use of ITS2 region as the universal dna bar-
code for plants and animals. PLoS ONE 5(10): e13102. doi: 10.1371/journal.pone.0013102 PMID:
20957043
50. Trift I, Kallersjo M, Anderberg AA (2002) The monophyly of Primula (Primulaceae) evaluated by analy-
sis of sequences from the chloroplast gene rbcL. Systematic Botany 27: 396407.
51. Smith WW, Fletcher HR (1941) The Genus Primula: Section Candelabra, Balf. Fil; 1941. Taylor &
Francis. pp. 122181.
52. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE
6(5): e19254. doi: 10.1371/journal.pone.0019254 PMID: 21637336
53. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA bar-
coding. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 19051916.
PMID: 16214748
54. Fazekas AJ, Kesanakurti PR, Burgess KS, Percy DM, Graham SW, Barrett SCH, et al. (2009) Are plant
species inherently harder to discriminate than animal species using DNA barcoding markers? Molecu-
lar Ecology Resources 9: 130139. doi: 10.1111/j.1755-0998.2009.02652.x PMID: 21564972
55. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: Frequency, causes, and conse-
quences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Sys-
tematics 34: 397423.
56. Xie XF, Yan HF, Wang FY, Ge XJ, Hu CM, Hao G (2012) Chloroplast DNA phylogeography of Primula
ovalifolia in central and adjacent southwestern China: Past gradual expansion and geographical isola-
tion. Journal of Systematics and Evolution 50: 284294.
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 14 / 15
57. Edwards D, Horn A, Taylor D, Savolain V, Hawkins JA (2008) DNA barcoding of a large genus, Aspa-
lathus L. (Fabaceae). Taxon 57: 13171327.
58. Huang JH, Zhang AB, Mao SL, Huang Y (2013) DNA Barcoding and species boundary delimitationof
selected species of Chinese Acridoidea (Orthoptera: Caelifera). PLoS ONE 8(12): e82400. doi: 10.
1371/journal.pone.0082400 PMID: 24376533
59. Pettengill JB, Neel MC (2010) An evaluation of candidate plant dna barcodes and assignment methods
in diagnosing 29 species in the Genus Agalinis (Orobanchaceae). American Journal of Botany 97:
13911406. doi: 10.3732/ajb.0900176 PMID: 21616891
60. Smith WW, Fletcher HR (1942) The Genus Primula: Section Minutissimae; 1942. Taylor & Francis. pp.
227266.
61. Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN (2008) DNA barcodes and cryptic spe-
cies of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste, Costa Rica.
Proceedings of the National Academy of Sciences of the United States of America 105: 63506355.
doi: 10.1073/pnas.0712181105 PMID: 18436645
62. Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN (2007) DNA barcoding of Neotropical bats: spe-
cies identification and discovery within Guyana. Molecular Ecology Notes 7: 184190.
63. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcod-
ing reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the
National Academy of Sciences of the United States of America 101: 1481214817. PMID: 15465915
64. Janzen DH, Hallwachs W, Burns JM, Hajibabaei M, Bertrand C, Hebert PDN (2011) Reading the com-
plex skipper butterfly fauna of one tropical place. PLoS ONE 6(8): e19874. doi: 10.1371/journal.pone.
0019874 PMID: 21857895
65. Janzen DH, Hallwachs W, Harvey DJ, Darrow K, Rougerie R, Hajibabaei M, et al. (2012) What happens
to the traditional taxonomy when a well-known tropical saturniid moth fauna is DNA barcoded? Inverte-
brate Systematics 26: 478505.
66. Puckridge M, Andreakis N, Appleyard SA, Ward RD (2013) Cryptic diversity in flathead fishes (Scor-
paeniformes: Platycephalidae) across the Indo-West Pacific uncovered by DNA barcoding. Molecular
Ecology Resources 13: 3242. doi: 10.1111/1755-0998.12022 PMID: 23006488
67. Saitoh T, Sugita N, Someya S, Iwami Y, Kobayashi S, Kamigaichi H, et al. (2014) DNA barcoding re-
veals 24 distinct lineages as cryptic bird species candidates in and around the Japanese Archipelago.
Molecular Ecology Resources 15: 177186.68. doi: 10.1111/1755-0998.12282 PMID: 24835119
68. Percy DM, Argus GW, Cronk QC, Fazekas AJ, Kesanakurti PR, Burgess KS, et al. (2014) Understand-
ing the spectacular failure of DNA barcoding in willows (Salix): Does this result from a trans-specific se-
lective sweep? Molecular Ecology 23: 47374756. doi: 10.1111/mec.12837 PMID: 24944007
69. Liu BB, Abbott RJ, Lu ZQ, Tian B, Liu JQ (2014) Diploid hybrid origin of Ostryopsis intermedia (Betula-
ceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change. Molecular Ecology 23:
30133027. doi: 10.1111/mec.12783 PMID: 24805369
70. Sun YS, Abbott RJ, Li LL, Li L, Zou JB, Liu JQ (2014) Evolutionary history of Purple cone spruce (Picea
purpurea) in the Qinghai-Tibet Plateau: homoploid hybrid origin and Pleistocene expansion. Molecular
Ecology 23: 343359.
71. Kane NC, Cronk Q (2008) Botany without borders: barcoding in focus. Molecular Ecology 17: 51755176.
doi: 10.1111/j.1365-294X.2008.03972.x PMID: 19067801
72. Li XW, Yang Y, Henry RJ, Rossetto M, Wang YT, Chen SL (2014) Plant DNA barcoding: from gene to
genome. Biological Reviews 90: 157166. doi: 10.1111/brv.12104 PMID: 24666563
73. Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using
massively parallel sequencing of chloroplast genomes. BMC Biology 7: 84. doi: 10.1186/1741-7007-7-
84 PMID: 19954512
74. Yang JB, Tang M, Li HT, Zhang ZR, Li DZ (2013) Complete chloroplast genome of the genus Cymbidi-
um: lights into the species identification, phylogenetic implications and population genetic analyses.
BMC Evolutionary Biology 13: 84. doi: 10.1186/1471-2148-13-84 PMID: 23597078
75. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymor-
phism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Re-
search 17: 240248. PMID: 17189378
DNA Barcodes of Primula Species
PLOS ONE | DOI:10.1371/journal.pone.0122903 April 13, 2015 15 / 15
... Proliferae Pax of Primula (Primulaceae). The most closely related species of P. wilsonii are P. miyabeana, P. poissonii, and P. anisodora, and these species are clustered in a well-supported clade based on phylogeny construction using rbcL + matK + ITS markers (Yan et al., 2015). P. wilsonii sporadically scatters in limited areas of Sichuan and Yunnan provinces, while the other widespread Primulas are common in the fields and gardens. ...
... Primula were sampled in our phylogenetic construction using chloroplast genome sequences based on ML and BI methods. Three major clades of Primula were detected with high internal support in this study, which was in accordance with previous studies (Liu, 2018;Xu et al., 2020;Yan et al., 2015). Several sections did not exhibit monophyletic taxa, such as Sects. ...
... Several sections did not exhibit monophyletic taxa, such as Sects. Monocarpicae, Crystallophlomis, Obconicolisteri, Denticulata, and Proliferae, which were partly or entirely confirmed by the previous viewpoints (Liu, 2018;Xu et al., 2020;Yan et al., 2015). A decision on the monophyly of Sect. ...
Article
Full-text available
Primula, well known for its heterostyly, is the largest genus in the family Primulaceae with more than 500 species. The considerable species number has introduced a huge challenge for taxonomy. The phylogenetic relationships among Primula still maintain unresolved due to frequent hybridization and introgression between closely related species. In this study, we sequenced and assembled the complete chloroplast genomes of Primula wilsonii Dunn, which is a PSESP (plant species with extremely small populations), using Illumina sequencing and compared its genomic sequences with those of four related Primula species. The chloroplast genomes of Primula species were similar in the basic structure, gene order, and GC content. The detected 38 SSRs (simple sequence repeats) loci and 17 hypervariable regions had many similarities in P. wilsonii, P. anisodora, P. miyabeana, and P. poissonii, but showed a significant difference compared with those in P. secundiflora. Slight variations were observed among Primula chloroplast genomes, in consideration of the relatively stable patterns of IR (inverted repeats) contraction and expansion. Phylogenetic analysis based on chloroplast genomes and protein-coding genes confirmed three major clades in Chinese Primula, but the infrageneric sections were not in accordance with morphological traits. The P. poissonii complex was confirmed here and P. anisodora was the most closely related species to P. wilsonii. Overall, the chloroplast genome sequences provided useful genetic and evolutionary information for phylogeny and population genetics on Chinese Primula species.
... Discovering the potential presence of species complexes and lineages is an important application of DNA barcoding and floral anatomy, and this remains within the domain of taxonomy (Metacalfe & Chalk, 1979;DeSalle et al., 2005). To understand better the overall discriminatory power of the plant barcoding loci, future work on systematics and taxonomy should focus on groups that experienced rapid evolutionary radiations, for example, the closely related species within a single genus (Yan et al., 2015). Most of all, research concerning to the role of symbiotic microbiome in conservation practices are greatly insufficient but of great significance to the protection of rare and endangered orchids. ...
... To test the efficacy of the plant barcodes, DNA barcoding work should focus on discriminating the uncertain taxa or complex groups within a single genus (Yan et al., 2015). One of the good examples for Orchidaceae is genus Dendrobium. ...
Article
Full-text available
Monitoring the impact of anthropogenic and naturogenic threats on orchid community through diversity, taxonomy and conservation studies is necessary. Reintroduction of these species to their natural habitat associates with their resilience, selection of suitable trees and sites for regeneration and restoration efforts, drives the conservation initiative. Upon obtaining an accurate estimate of the diversity for genetic resource conservation, integrative methods of classical morphological taxonomy, anatomy (micromorphology), and molecular genetics are crucial to solve the taxonomic uncertainty. Changes in microclimatic conditions and habitat structures are the key determinants of both epiphytic and terrestrial orchids assemblages following disturbance. Any assessments of biodiversity and ecosystem service must include variable forest types and management regimes to provide impartial views on the effect of forest and ecological disturbance on the orchid community. Accordingly, a plant-microbial ecology study should be included to study the extent of human-induced climatic variability towards the orchid diversification.
... There are numerous successful cases of using traditional standard DNA barcodes (including the multilocus combination of plastid rbcL + matK + trnH-and nrITS) or other specific barcodes (Bruni et al., 2010;Hu et al., 2022;Liu et al., 2011Liu et al., , 2018Xu et al., 2018). However, other research has shown that traditional standard DNA barcodes have tremendous limitations in species discrimination, primarily attributed to a lack of variation in many taxa, especially in evolutionarily young and rapidly radiated taxa (Spooner, 2009;van Velzen et al., 2012;Yan et al., 2015). In response to these limitations, subsequent investigators proposed that whole plastid genomes (plastomes) be used as plant DNA superbarcodes (Kane et al., 2012;Kane & Cronk, 2008;Li et al., 2015). ...
... The current study constitutes a worst case where traditional standard barcodes failed (0% discrimination rate) to discriminate any of the 11 Schima species with multiple individuals (Figures 3; S1 and S2). Despite their short sequence length, traditional standard barcodes have performed fairly well in some plant groups, such as Pedicularis (78%, Orobanchaceae) (Yu et al., 2015), Primula (68.75%, Primulaceae) (Yan et al., 2015), Rhododendron (41.98%, Ericaceae) (Yan et al., 2014) and Lauraceae (50.8%) (Liu et al., 2017). ...
Article
Full-text available
Plastid genome and nrDNA arrays, proposed recently as “super barcodes”, might provide additional discriminatory power and overcome the limitations of traditional barcoding loci, yet super barcodes need to be tested for their effectiveness in more plant groups. Morphological homoplasy among Schima species makes the genus a model for testing the efficacy of super barcodes. In this study, we generated multiple datasets comprising standard DNA barcodes (matK, rbcL, trnH‐psbA, nrITS) and super‐barcodes (plastid genome, nrDNA arrays) across 58 individuals from 12 out of 13 species of Schima from China. No samples were correctly assigned to species using standard DNA barcodes and nrDNA arrays, while only 27.27% of species with multiple accessions were distinguished using the plastid genome and its partitioned datasets—the lowest estimated rate of super barcode success in the literature so far. For Schima and other taxa with similarly recently divergence and low levels of genetic variation, incomplete lineage sorting, hybridization, or taxonomic oversplitting are all possible causes of the failure. Taken together, our study suggests that by no means are super barcodes immune to the challenges imposed by evolutionary complexity. We therefore call for developing multi‐locus nuclear markers for species discrimination in plant groups.
... Evolutionary history of the dispersal-restricted plant genus Primula L. has been well studied (Hu, 1994;Mast et al., 2001;Schmidt-Lebuhn et al., 2012;Yan et al., 2015;Rose et al., 2018;Larson et al., 2023). For some European Primula species, the Ponto-Caspian region, more precisely the Caucasus Mountains, was shown to be the ancestral territory (Stubbs et al., 2023). ...
Article
Full-text available
Introduction Quaternary glaciations, in particular the last glacial maximum (LGM), have shaped the contemporary distribution of many species. In Europe, survival of temperate species during range contractions was mainly associated with refugia in Mediterranean peninsulas, allowing south to north recolonization. Additionally, the Ponto-Caspian refugium provided an east to west migration route. Methods Here, we investigated genetic diversity and structure of the dispersal-restricted Primula vulgaris Huds., a temperate herb of supposed Caucasian origin, using 12 highly polymorphic nuclear microsatellite loci to trace the colonization of this species in three European regions. We studied 38 populations, namely an eastern mountainous region (Caucasus), a central region (Carpathian Mountains and Dinaric Alps) and a western lowland region (North European Plain). The role of an eastern refugium of the species was tested by performing Approximate Bayesian computation analyses to elucidate its demographic and phylogeographic history, detecting bottleneck and expansion events, and estimating effective (ancestral and current) population sizes and time of divergence. Results and discussion We found the eastern and central regions featuring the highest allelic richness and genetic differentiation being strong between and within regions. Stepwise-like mutation processes (R ST > F ST), together with isolation-by-distance patterns, contributed to genetic differentiation. Demographic event models showed that P. vulgaris experienced bottlenecks as well as expansions across its range during the Quaternary glacial cycles, with the last expansion about 6,000, 4,000, and 2,000 generations ago for eastern, central, and western populations, respectively. The best supported origin model pointed to the Caucasus population being closest to an ancestral situation, and from where central and western populations diverged subsequently. Divergence time of the Caucasus populations from an ancestral lineage referred to the Upper Pleistocene (Middle Weichselian). Divergence of Carpathian populations, including a Lower Danube valley corridor, was estimated during and across the LGM (Late Weichselian), confirming central populations as potential secondary cryptic refugium. Western populations recently diverged during the Holocene, most probably in the Atlanticum phase (7,000–3,900 years ago). Within regions, genetic structure was also shaped by latitude, longitude, or altitudinal migration, and for western lowlands, by recent bottleneck and genetic drift processes.
... Obconicolisteri. These results were inconsistent with our study, due to insufficient samples and not being combined with other sections in previous phylogenetic analyses [10,16,69]. Our results demonstrated that Sect. ...
Article
... The combination of specific barcode markers identified seven-fold more variant sites than conventional single specific barcode markers. Given that markers have different rates of nucleotide variation at different loci, when assessing closely related species, the application of combination markers may be more advantageous for species identification [78]. The conventional barcoding markers, rbcL, psbA-trnH-GUG, and trnL-UAA-trnF-GAA, showed a low 75% species identification rate using BLAST and phylogenetic tree-based methods (Table 3). ...
Article
Full-text available
Ranunculus sceleratus (family: Ranunculaceae) is a medicinally and economically important plant; however, gaps in taxonomic and species identification limit its practical applicability. This study aimed to sequence the chloroplast genome of R. sceleratus from Republic of Korea. Chloroplast sequences were compared and analyzed among Ranunculus species. The chloroplast genome was assembled from Illumina HiSeq 2500 sequencing raw data. The genome was 156,329 bp and had a typical quadripartite structure comprising a small single-copy region, a large single-copy region, and two inverted repeats. Fifty-three simple sequence repeats were identified in the four quadrant structural regions. The region between the ndhC and trnV-UAC genes could be useful as a genetic marker to distinguish between R. sceleratus populations from Republic of Korea and China. The Ranunculus species formed a single lineage. To differentiate between Ranunculus species, we identified 16 hotspot regions and confirmed their potential using specific barcodes based on phylogenetic tree and BLAST-based analyses. The ndhE, ndhF, rpl23, atpF, rps4, and rpoA genes had a high posterior probability of codon sites in positive selection, while the amino acid site varied between Ranunculus species and other genera. Comparison of the Ranunculus genomes provides useful information regarding species identification and evolution that could guide future phylogenetic analyses.
... The efficacy of various multilocus barcode markers has been demonstrated to resolve taxonomic ambiguities and achieve adequate species-level identification. However, in some cases, DNA barcodes do not provide enough resolution to identify plant species accurately, as the barcode region often overlaps among the sister taxa [1][2][3][4]. In such cases, where the barcode sequences do not show adequate resolution, the supplementary barcode regions could be required for species identification [5]. ...
Article
Full-text available
The Salicornia L. has been considered one of the most taxonomically challenging genera due to high morphological plasticity, intergradation between related species, and lack of diagnostic features in preserved herbarium specimens. In the United Arab Emirates (UAE), only one species of this genus, Salicornia europaea, has been reported, though investigating its identity at the molecular level has not yet been undertaken. Moreover, based on growth form and morphology variation between the Ras-Al-Khaimah (RAK) population and the Umm-Al-Quwain (UAQ) population, we suspect the presence of different species or morphotypes. The present study aimed to initially perform species identification using multilocus DNA barcode markers from chloroplast DNA (cpDNA) and nuclear ribosomal DNA (nrDNA), followed by the genetic divergence between two populations (RAK and UAQ) belonging to two different coastal localities in the UAE. The analysis resulted in high-quality multilocus barcode sequences subjected to species discrimination through the unsupervised OTU picking and supervised learning methods. The ETS sequence data from our study sites had high identity with the previously reported sequences of Salicornia persica using NCBI blast and was further confirmed using OTU picking methods viz., TaxonDNAs Species identifier and Assemble Species by Automatic Partitioning (ASAP). Moreover, matK sequence data showed a non-monophyletic relationship, and significant discrimination between the two populations through alignment-based unsupervised OTU picking, alignment-free Co-Phylog, and alignment & alignment-free supervised learning approaches. Other markers viz., rbcL, trnH-psbA, ITS2, and ETS could not distinguish the two populations individually, though their combination with matK (cpDNA & cpDNA+nrDNA) showed enough population discrimination. However, the ITS2+ETS (nrDNA) exhibited much higher genetic divergence, further splitting both the populations into four haplotypes. Based on the observed morphology, genetic divergence, and the number of haplotypes predicted using the matK marker, it can be suggested that two distinct populations (RAK and UAQ) do exist. Further extensive morpho-taxonomic studies are required to determine the inter-population variability of Salicornia in the UAE. Altogether, our results suggest that S. persica is the species that grow in the present study area in UAE, and do not support previous treatments as S. europaea.
Article
Full-text available
The application of DNA barcoding has been significantly limited by the scarcity of reliable specimens and inadequate coverage and replication across all species. The deficiency of DNA barcode reference coverage is particularly striking for highly biodiverse subtropical and tropical regions. In this study, we present a comprehensive barcode library for woody plants in tropical and subtropical China. Our dataset includes a standard barcode library comprising the four most widely used barcodes (rbcL, matK, ITS, and ITS2) for 2,520 species from 4,654 samples across 49 orders, 144 families, and 693 genera, along with 79 samples identified at the genus level. This dataset also provides a super-barcode library consisting of 1,239 samples from 1,139 species, 411 genera, 113 families, and 40 orders. This newly developed library will serve as a valuable resource for DNA barcoding research in tropical and subtropical China and bordering countries, enable more accurate species identification, and contribute to the conservation and management of tropical and subtropical forests.
Article
Obtaining reliable species identification of the legume genus Caragana has been challenging. Until now, species identification was mostly carried out utilizing diagnostic morphological characteristics, in addition to some successful applications of secondary chemical compounds. This study was designed to establish a DNA barcoding protocol enabling unambiguous identification of 238 accessions belonging to 67 species of Caragana . The performance of four DNA barcoding regions nrITS, trnH‐psbA , matK , and rbcL was explored using three analytical approaches, Pairwise Genetic Distance, Sequence Similarity and Phylogenetic Tree method. The chloroplast regions rbcL and matK showed lower discriminatory power compared with the nuclear region internal transcribed spacer (ITS) and the chloroplast region trnH‐psbA . The nrITS outperformed the other regions in the resolution rate. The present study brings forth an efficient barcode locus for Caragana . A barcode based either on a single‐locus nrITS or the combination of nrITS and trnH‐psbA was found to be most suitable for species discrimination with distinctive barcoding gaps. An attempt has also been made to resolve taxonomic issues in the Caragana opulens complex. DNA barcoding tools when complemented with alpha taxonomic evidence can aid in solving complex systematic problems, especially when taxa are characterized by overlapping traits, such as species belonging to the Fabaceae family.
Article
Full-text available
The aim of DNA barcoding is to enable fast and accurate species identification. However, universal plant DNA barcodes often do not provide species-level discrimination, especially in taxonomically complex groups. Here we use Lauraceae for the design and evaluation of DNA barcoding strategies, considering: (1) the efficacy of taxon-specific DNA barcode regions compared with universal barcodes for species discrimination; and (2) how the extent of intra- and interspecific sampling affects species discrimination rates. To address these areas, we targeted the highly polymorphic, taxon-specific barcode regions ycf1 + ndhH–rps15 + trnL–ycf2 for Lauraceae and compared them against the suite of standard plastid loci used for DNA barcoding (rbcL + matK + trnH–psbA) and the standard nuclear barcode ITS. The highest discrimination success came from nrDNA ITS, whereas the plastid regions (rbcL + matK + trnH–psbA) and the taxon-specific regions (ycf1 + ndhH–rps15 + trnL–ycf2) showed limited and inconsistent resolution. These results highlight that taxon-specific plastid barcodes may provide limited gains in discriminatory power in complex, closely related groups like Lauraceae. Moreover, our study showed that species discrimination greatly depends on the taxon sampling scheme, with relatively lower species discrimination observed where there is more comprehensive intra- and interspecific sampling. The outstanding challenge for plant DNA barcoding is the development of assays that allow routine low-cost access to large numbers of nuclear markers to facilitate the sequencing of large numbers of individuals.
Article
Full-text available
Natural hybridization occurs commonly in plants and blurs their interspecific delimitation. It is unclear whether spontaneous hybridization occurs in natural populations of Primula in China. In this study we examined natural hybridization between P. secundiflora and P. poissonii based on morphological and molecular analyses of individuals with intermediate morphology. Most morphological characters of these individuals were found to be intermediate between the putative parental species, but plant height and corolla tube length were significantly transgressive. Molecular analyses based on nuclear internal transcribed spacer (ITS) additivity and two types of cloned sequences (each corresponding respectively to one of two parental species) clearly suggested that these individuals result from hybridization between P. secundiflora and P. poissonii. We further used a maternally inherited chloroplast DNA fragment (rpl 16 intron) to trace the maternal composition of the hybrids. Among 26 hybrids, ten (two thrums, eight pins) had the P. secundiflora haplotype, while 16 (ten thrums, six pins) possessed the P. poissonii haplotype. These results suggest that both parents served as the mother donors of the hybrids. Reciprocal hybridization between the two species seems to be symmetrical rather than unidirectional.
Article
Full-text available
Although much biological research depends upon species diagnoses, taxonomic expertise is collapsing. We are convinced that the sole prospect for a sustainable identification capability lies in the construction of systems that employ DNA sequences as taxon 'barcodes'. We establish that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals. First, we demonstrate that COI profiles, derived from the low-density sampling of higher taxonomic categories, ordinarily assign newly analysed taxa to the appropriate phylum or order. Second, we demonstrate that species-level assignments can be obtained by creating comprehensive COI profiles. A model COI profile, based upon the analysis of a single individual from each of 200 closely allied species of lepidopterans, was 100% successful in correctly identifying subsequent specimens. When fully developed, a COI identification system will provide a reliable, cost-effective and accessible solution to the current problem of species identification. Its assembly will also generate important new insights into the diversification of life and the rules of molecular evolution.
Article
Full-text available
The genetic structure of tetraploid (4x = 44) North American species of Primula subgenus Auriculastrum: P. suffrutescens, P. parryi, P. rusbyi, and P. angustifolia was analyzed at seven enzyme loci and compared with that of the related diploid P. cuneifolia and P. nipponica. The studied tetraploid species showed fixed or almost fixed heterozygosity at various loci, indicating a hybrid origin. About half of their alleles were shared with Cuneifolia taxa sampled, suggesting that they arose from crosses involving a maternal Cuneifolia-like ancestor. A preliminary survey of their possible paternal species, as inferred from their genotypes, was carried out among different Primula groups. Several paternal alleles expected were observed in subgenus Aleuritia, particularly among taxa of sect. Crystallophlomis (e.g., P. chionantha, P. minor, and P. nivalis xanthobasis). However, none of these taxa proved to be a suitable paternal species. Hybridization events that originated P. suffrutescens, P. parryi, P. rusbyi, and P. angustifolia presumably occurred during Pleistocene secondary contacts in Beringia and involved a maternal Cuneifolia-like ancestor and at least two paternal species, for sect. Suffrutescens and Parryi, respectively. Further studies, involving a genetic survey of Aleuritia taxa from Siberia will be needed to detect such paternal species, if not extinct.
Article
Full-text available
Medusagyne oppositifolia Baker is the sole member of Medusagynaceae Engl. & Gilg and its phylogenetic position has been unclear. Analysis of rbcL sequence data indicates a close and strongly supported relationship to Ochnaceae and Quiinaceae, but does not resolve the relationships between these taxa. Together the three families form a monophyletic group with a somewhat more distant relationship to other linalean groups including Malpighiaceae, Linaceae and phyllanthoid Euphorbiaceae.
Article
Full-text available
Primula calyptrata X. Gong & R. C. Fang (Primulaceae) is described and illustrated. Analysis of its habitat, distribution, and capsule morphology indicates that this species is a member of Primula sect. Carolinella (Helmsley) Pax, which is endemic to humid subtropical regions of Yunnan, China, northern Vietnam, and Thailand, and char-acterized by an unusual calyptrate capsule. During an investigation of plants in southeastern Yunnan, China, in April 2001, some specimens of Primula were collected and recognized as a new species. After further studies, the species was be-lieved to belong to section Carolinella. Living plants were introduced into Kunming Botanical Garden for cultivation and observation. Specimens were also collected by Shui Yu-min et al. from Zhongzai in Malipo County, Yunnan Province, in 2002. Members of section Carolinella are unique in Primula for having a calyptrate capsule with a cir-cumscissile lid, a feature also shared by the genera Pomatosace Maximowicz, Anagallis L., Soldanella L., and Bryocarpum Hooker f. & Thomson in Pri-mulaceae (Pax & Knuth, 1905). The evolutionary trend of the fruits in Primulaceae is believed to be from indehiscent capsule to valvate capsule to ca-lyptrate capsule with a circumscissile lid (Hu Q-M., 1994; Chen F-H. & Hu, 1990). This feature in section Carolinella is a link between Primula and the other genera; however, other morphological characters and distribution clearly separate them. The phylogenetic relationships among other sec-tions in Primula and other genera of Primulaceae are still unclear because studies are lacking in chromosome number, pollen type, and seed mor-phology. The phenomenon that the calyptrate cap-sule occurs in the genera Pomatosace, Anagallis, Soldanella, and Bryocarpum in Primulaceae may be a result of convergent evolution (Kong & Liu, 1999). Section Carolinella is believed to be a primitive group in Primula (Hu Q-M., 1994); this new taxon is considered to be primitive for having alternate and long-petioled leaves, 2–2.5 cm long stems, and homostylic flowers. In addition, Primula sect. Car-olinella is a typical endemic of East Asia and is limited to southwestern and southern China and ad-jacent North Vietnam and Thailand. Eleven species were recognized in this section: almost all are sten-ochoric and have very small populations, some of which are in imminent danger. All of the species in this section occur in the warm-moist southern subtropical evergreen broadleaf forest of low alti-tudes within the limestone region.
Article
Article
A new species assigned to Primula section Aleuritia Duby is described and illustrated under the name P. mianyangensis G.Hao & C.M.Hu. The new species resembles P. socialis Chen & C.M.Hu in lacking a scape and having farinose leaves, but differs by its much taller stature, long-petioled leaves and larger flowers.
Article
A new species of Primulaceae, Primula lihengiana C.M. Hu & R. Li, from W Yunnan, China is described and illustrated. It resembles P. ovalifolia and P. klaveriana; it differs from the former by the leaves tapering gradually at base, the calyx being longer and lobed below middle into lanceolate 3–5-nerved lobes, and by the exannulate corolla; from the latter it can be easily distinguished by its scapes, pedicels and abaxial surface of leaves densely covered with tawny multicellular hairs and especially by its heterostylous flowers.
Book
— We studied sequence variation in 16S rDNA in 204 individuals from 37 populations of the land snail Candidula unifasciata (Poiret 1801) across the core species range in France, Switzerland, and Germany. Phylogeographic, nested clade, and coalescence analyses were used to elucidate the species evolutionary history. The study revealed the presence of two major evolutionary lineages that evolved in separate refuges in southeast France as result of previous fragmentation during the Pleistocene. Applying a recent extension of the nested clade analysis (Templeton 2001), we inferred that range expansions along river valleys in independent corridors to the north led eventually to a secondary contact zone of the major clades around the Geneva Basin. There is evidence supporting the idea that the formation of the secondary contact zone and the colonization of Germany might be postglacial events. The phylogeographic history inferred for C. unifasciata differs from general biogeographic patterns of postglacial colonization previously identified for other taxa, and it might represent a common model for species with restricted dispersal.