Article

In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Patients affected by L-2-hydroxyglutaric aciduria (L-2-HGA) are biochemically characterized by elevated L-2-hydroxyglutaric acid (L-2-HG) concentrations in cerebrospinal fluid, plasma and urine due to a blockage in the conversion of L-2-HG to α-ketoglutaric acid. Neurological symptoms associated with basal ganglia and cerebelar abnormalities whose pathophysiology is still unknown are typical of this neurometabolic disorder. In the present study we evaluated the early effects (30min after injection) of an acute in vivo intrastriatal and intracerebellar L-2-HG administration on redox homeostasis in rat striatum and cerebellum, respectively. Histological analysis of these brain structures were also carried out 7 days after L-2-HG treatment (long-term effects). L-2-HG significant decreased the concentrations of reduced (GSH) and total glutathione (tGS), as well as of glutathione peroxidase (GPx) and reductase (GR) activities, but did not change the activities of superoxide dismutase and catalase in striatum. Furthermore, the concentrations of oxidized glutathione (GSSG) and malondialdehyde (MDA), as well as 2',7'-dichlorofluorescein (DCFH) oxidation and hydrogen peroxide (H2O2) production were increased, whereas carbonyl formation and nitrate plus nitrite concentrations were not altered by L-2-HG injection. It was also found that the melatonin, ascorbic acid plus α-tocopherol and creatine totally prevented most of these effects, whereas N-acetylcysteine, the non competitive glutamate NMDA antagonist MK-801 and the nitric oxide synthase inhibitor L-NAME were not able to normalize the redox alterations elicited by L-2-HG in striatum. L-2-HG intracerebellar injection similarly provoked a decrease of antioxidant defenses (GSH, tGS, GPx and GR) and an increase of the concentrations of GSSG, MDA and H2O2 in cerebellum. These results strongly indicate that the major accumulating metabolite in L-2-HGA induce oxidative stress by decreasing the antioxidant defenses and enhancing reactive oxygen species in striatum and cerebellum of adolescent rats. Regarding to the histopathological findings, L-2-HG caused intense vacuolation, lymphocyte and macrophage infiltrates, eosinofilic granullar bodies and necrosis in striatum. Immunohistochemistry revealed that L-2-HG treatment provoked an increase of GFAP and a decrease of NeuN immunostaining, indicating reactive astroglyosis and reduction of neuronal population, respectively, in striatum. Similar macrophage infiltrates, associated with less intense vacuolation and lymphocytic infiltration were observed in cerebellum. However, we did not observe necrosis, eosinofilic granullar bodies and alteration of GFAP and NeuN content in L-2-HG-teated cerebellum. Taken together the biochemical and histological findings, it is presumed that L-2-HG provokes striatal and cerebellar damage in vivo possibly through oxidative stress induction. Therefore, we postulate that antioxidants may serve as adjuvant therapy allied to the current treatment based on a protein restricted diet and riboflavin and L-carnitine supplementation in patients affected by L-2-HGA. Copyright © 2015. Published by Elsevier Inc.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... In this context, it was verified that L-2-HG inhibits creatine kinase activity in rat cerebellum homogenates (da Silva et al. 2003), induces oxidative stress (Latini et al. 2003), and increases glutamate uptake in synaptosomes and synaptic vesicles (Junqueira et al. 2003). Furthermore, it was demonstrated that intracerebral administration of L-2-HG to rats induces oxidative stress by decreasing the antioxidant defenses and raising reactive oxygen species in the striatum and cerebellum of rats, besides causing marked brain histopathological alterations (da Rosa et al. 2015). ...
... After injection, animals were allowed to recover during 15-30 min and returned to their mother. In some experiments, the antioxidant melatonin (MEL; 20 mg/ kg body weight) (Olivier et al. 2009) or the classical NMDA receptor antagonist MK-801 (0.25 mg/kg body weight) (da Rosa et al. 2015) was administered intraperitoneally 60 min before L-2-HG administration. ...
... In this context, the structural resemblance of L-2-HG to L-glutamate and α-ketoglutarate, two major metabolites of the glutamatergic system, makes it likely that the pathophysiology of the disease may involve alterations of this system or pathways of α-ketoglutarate metabolism. Furthermore, previous in vitro and in vivo studies have shown disruption of redox homeostasis provoked by L-2-HG, as well as alterations of the glutamatergic system in developing rats and affected patients with L-2-HGA (da Rosa et al. 2015;Junqueira et al. 2003;Latini et al. 2003;Rodrigues et al. 2017). ...
Article
Full-text available
Tissue accumulation of L-2-hydroxyglutaric acid (L-2-HG) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-2-HGA), a rare neurometabolic inherited disease characterized by neurological symptoms and brain white matter abnormalities whose pathogenesis is not yet well established. L-2-HG was intracerebrally administered to rat pups at postnatal day 1 (P1) to induce a rise of L-2-HG levels in the central nervous system (CNS). Thereafter, we investigated whether L-2-HG in vivo administration could disturb redox homeostasis and induce brain histopathological alterations in the cerebral cortex and striatum of neonatal rats. L-2-HG markedly induced the generation of reactive oxygen species (increase of 2′,7′-dichloroflurescein-DCFH-oxidation), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione-GSH) and sulfhydryl content in the cerebral cortex. Alterations of the activities of various antioxidant enzymes were also observed in the cerebral cortex and striatum following L-2-HG administration. Furthermore, L-2-HG-induced lipid peroxidation and GSH decrease in the cerebral cortex were prevented by the antioxidant melatonin and by the classical antagonist of NMDA glutamate receptor MK-801, suggesting the involvement of reactive species and of overstimulation of NMDA receptor in these effects. Finally, L-2-HG provoked significant vacuolation and edema particularly in the cerebral cortex with less intense alterations in the striatum that were possibly associated with the unbalanced redox homeostasis caused by this metabolite. Taken together, it is presumed that these pathomechanisms may underlie the neurological symptoms and brain abnormalities observed in the affected patients.
... It is also feasible that a disturbed glutamatergic neurotransmission may contribute to the pathogenesis of L-2-HGA, since L-2-HG increases glutamate uptake into synaptosomes and synaptic vesicles (Junqueira et al. 2003). Finally, a growing number of studies performed in the cerebral cortex and striatum of developing rats indicate a relevant role of oxidative stress in the brain injury of L-2-HGA patients (Latini et al. 2003;da Rosa et al. 2015;Ribeiro et al. 2018). ...
... The observations of an L-2-HG cerebrospinal fluid/plasma ratio higher than one support this hypothesis, indicating the production and accumulation of this compound within the brain (Kranendijk et al. 2012). In this respect, L-2-HG induces oxidative stress in vitro and in vivo in the cerebral cortex and striatum of young adult rodents (Latini et al. 2003;da Rosa et al. 2015), a finding that was also found in plasma and urine of patients with L-2-HGA (Jellouli et al. 2014;Rodrigues et al. 2017). Furthermore, a study from our group revealed that early icv administration of L-2-HG impairs redox homeostasis in the cerebral cortex and striatum of neonatal rats (Ribeiro et al. 2018). ...
Article
Full-text available
L-2-Hydroxyglutaric aciduria (L-2-HGA) is an inherited neurometabolic disorder caused by deficient activity of l-2-hydroxyglutarate dehydrogenase. l-2-Hydroxyglutaric acid (L-2-HG) accumulation in the brain and biological fluids is the biochemical hallmark of this disease. Patients present exclusively neurological symptoms and brain abnormalities, particularly in the cerebral cortex, basal ganglia, and cerebellum. Since the pathogenesis of this disorder is still poorly established, we investigated the short-lived effects of an intracerebroventricular injection of L-2-HG to neonatal rats on redox homeostasis in the cerebellum, which is mostly affected in this disorder. We also determined immunohistochemical landmarks of neuronal viability (NeuN), astrogliosis (S100B and GFAP), microglia activation (Iba1), and myelination (MBP and CNPase) in the cerebral cortex and striatum following L-2-HG administration. Finally, the neuromotor development and cognitive abilities were examined. L-2-HG elicited oxidative stress in the cerebellum 6 h after its injection, which was verified by increased reactive oxygen species production, lipid oxidative damage, and altered antioxidant defenses (decreased concentrations of reduced glutathione and increased glutathione peroxidase and superoxide dismutase activities). L-2-HG also decreased the content of NeuN, MBP, and CNPase, and increased S100B, GFAP, and Iba1 in the cerebral cortex and striatum at postnatal days 15 and 75, implying long-standing neuronal loss, demyelination, astrocyte reactivity, and increased inflammatory response, respectively. Finally, L-2-HG administration caused a delay in neuromotor development and a deficit of cognition in adult animals. Importantly, the antioxidant melatonin prevented L-2-HG-induced deleterious neurochemical, immunohistochemical, and behavioral effects, indicating that oxidative stress may be central to the pathogenesis of brain damage in L-2-HGA. Graphical Abstract
... No cerebelo foram encontradas vacuolização e infiltração linfocítica e macrofágica. Esses achados, em que o L-2-HG provoca dano in vivo cerebelar e estriatal, podem estar relacionados à indução de estresse oxidativo 40 . ...
... Além disso, houve aumento de ERO, que foi determinado por oxidação de DCFH e produção de H 2 O 2 , além do aumento de MDA, que reflete dano lipídico. Cabe salientar que essas alterações na homeostase redox causadas pelo L-2-HGA foram seletivas, tendo em vista que foi utilizado um análogo estruturalmente similar (ácido L-2-hidroxi-3metil-valérico), o qual não alterou nenhum desses parâmetros 40 . Além disso, esses resultados em modelo animal estão de acordo com um estudo realizado em pacientes portadores de L-2-HGA, no qual foram medidos alguns parâmetros em plasma. ...
Article
Full-text available
As acidúrias D-2-hidroxiglutárica (D-2-HGA) e L-2-hidroxiglutárica (L-2-HGA) são raras doenças neurometabólicas que constituem um grupo de erros inatos do metabolismo. Essas doenças são causadas pela deficiência das atividades enzimáticas da D-2-hidroxiglutarato desidrogenase na D-2-HGA do tipo I ou isocitrato desidrogenase na D-2-HGA do tipo II, e da L-2-hidroxiglutarato desidrogenase na L-2-HGA. Os principais achados clínicos nos pacientes caracterizam-se por sintomas neurológicos, como convulsões, coma e atrofia cerebral. Também ocorrem lesões cerebrais nos gânglios da base (D-2-HGA, L-2-HGA) e cerebelo (L-2-HGA). Bioquimicamente, essas acidúrias caracterizam-se por acúmulo em tecidos e elevada excreção urinária dos ácidos D-2-hidroxiglutárico (na D-2-HGA) e L-2-hidroxiglutárico (na L-2-HGA). Ainda, uma terceira variante bioquímica da acidúria, a D,L-2-hidroxiglutárica (D,L-2-HGA), é caracterizada por excreção aumentada de ambos enantiômeros do ácido 2-hidroxiglutárico. Em modelo animal, estudos de toxicidade dos ácidos D e L-2-hidroxiglutárico mostraram injúria cerebral, mas não foi elucidado o mecanismo exato causador do dano. Além disso, altos níveis dos ácidos D e L-2-hidroxiglutárico foram encontrados em tumores cerebrais. No entanto, a relação entre a acidúria e o câncer ainda precisa ser esclarecida. Tendo em vista a gravidade da doença, este trabalho teve como objetivo fazer uma revisão bibliográfica acerca do tema, enfatizando as consequências do metabolismo, principalmente para o tecido cerebral, bem como apontar possíveis abordagens terapêuticas. Palavras-chave: Ácido D-2-hidroxiglutárico; acidúria D-2-hidroxiglutárica; dano cerebral; ácido L-2-hidroxiglutárico; acidúria L-2-hidroxiglutárica; tumor
... 58 In the current study, L-2HG was required for α-KG-induced pyroptosis, because it increased ROS levels, reminiscent of its role in redox homeostasis. 33,59,60 Although it is still not clear how the L-2HG-mediated increase in ROS levels specifically induces the oxidation of DR6, the function of L-2HG sheds light on its therapeutic potential for tumors through pyroptosis induction. ...
Article
Full-text available
Pyroptosis is a form of regulated cell death mediated by gasdermin family members, among which the function of GSDMC has not been clearly described. Herein, we demonstrate that the metabolite α-ketoglutarate (α-KG) induces pyroptosis through caspase-8-mediated cleavage of GSDMC. Treatment with DM-αKG, a cell-permeable derivative of α-KG, elevates ROS levels, which leads to oxidation of the plasma membrane-localized death receptor DR6. Oxidation of DR6 triggers its endocytosis, and then recruits both pro-caspase-8 and GSDMC to a DR6 receptosome through protein-protein interactions. The DR6 receptosome herein provides a platform for the cleavage of GSDMC by active caspase-8, thereby leading to pyroptosis. Moreover, this α-KG-induced pyroptosis could inhibit tumor growth and metastasis in mouse models. Interestingly, the efficiency of α-KG in inducing pyroptosis relies on an acidic environment in which α-KG is reduced by MDH1 and converted to L-2HG that further boosts ROS levels. Treatment with lactic acid, the end product of glycolysis, builds an improved acidic environment to facilitate more production of L-2HG, which makes the originally pyroptosis-resistant cancer cells more susceptible to α-KG-induced pyroptosis. This study not only illustrates a pyroptotic pathway linked with metabolites but also identifies an unreported principal axis extending from ROS-initiated DR6 endocytosis to caspase-8-mediated cleavage of GSDMC for potential clinical application in tumor therapy.
... (S)-2-HG is also produced from α-KG, as a result of the "off-target" activity of malate dehydrogenase (MDH) [38] or loss of L-2-hydroxyglutarate dehydrogenase (L2HGDH) expression [39,40]. (S)-2-HG is regarded as an oncometabolite as patients with elevated (S)-2-HG have a propensity to develop tumors [39,41]. We found that (R)-2-HG inhibited the proliferation of U87MG cells while (S)-2-HG had minimal effect ( Figure 7A). ...
Article
Full-text available
The family of isocitrate dehydrogenase (IDH) enzymes is vital for cellular metabolism, as IDH1 and IDH2 are required for the decarboxylation of isocitrate to α-ketoglutarate. Heterozygous somatic mutations in IDH1 or IDH2 genes have been detected in many cancers. They share the neomorphic production of the oncometabolite (R)-2-hydroxyglutarate [(R)-2-HG]. With respect to IDH2, it is unclear whether all IDH2 mutations display the same or differ in tumorigenic properties and degrees of chemosensitivity. Here, we evaluated the three most frequent IDH2 mutations occurring in cancer. The predicted changes to the enzyme structure introduced by these individual mutations are supported by the observed production of (R)-2-HG. However, their tumorigenic properties, response to chemotherapeutic agents, and baseline activation of STAT3 differed. Paradoxically, the varying levels of endogenous (R)-2-HG produced by each IDH2 mutant inversely correlated with their respective growth rates. Interestingly, while we found that (R)-2-HG stimulated the growth of non-transformed cells, (R)-2-HG also displayed antitumor activity by suppressing the growth of tumors harboring wild type IDH2. The mitogenic effect of (R)-2-HG in immortalized cells could be switched to antiproliferative by transformation with oncogenic RAS. Thus, our findings show that despite their shared (R)-2-HG production, IDH2 mutations are not alike and differ in shaping tumor cell behavior and response to chemotherapeutic agents. Our study also reveals that under certain conditions, (R)-2-HG has antitumor properties.
... However, the ability of this therapy to reduce the burden of free radical attack and prevent disease progression requires further investigation. In vitro and in vivo studies in rodent models of classical and cerebral OADs also indicate that accumulation of major organic acids in the brain disrupts critical pathways of bioenergetics 127,146,147 and cellular redox status 126,[148][149][150][151][152][153][154][155][156][157][158] . The brain is highly vulnerable to bioenergetics dysfunction because of its high metabolic demand and is also susceptible to oxidative stress owing to its high iron and polyunsaturated fatty acid content and low antioxidant defences and capacity for regeneration. ...
Article
Full-text available
Organic acidurias (OADs) are inherited neurometabolic diseases largely caused by deficiencies in enzymes involved in amino acid degradation, which result in accumulation of organic acids in the brain and other tissues. Disease presentation usually occurs in infancy, although late-onset variants can emerge during childhood or adulthood. Patients predominantly manifest with acute encephalopathy with life-threatening systemic manifestations (classical OADs) or progressive neurological symptoms (cerebral OADs), leading to permanent cerebral abnormalities. Some OADs are treatable, and early diagnosis and treatment implementation have substantially decreased the mortality and overall morbidity from OADs. However, long-term irreversible cerebral and systemic complications are frequent because the therapeutic options are currently limited. The pathophysiology of brain dysfunction is still unclear in most OADs, and further investigation is needed to enable the development of novel therapeutic strategies. This Review focuses on current knowledge of the OADs, including epidemiology, short-term and long-term neurological and systemic features, diagnosis and prognosis, and recent advances in therapy and pathophysiology. The goal of the article is to alert neurologists and related health professionals to the existence and importance of these neurometabolic diseases and to stimulate research into the damaging factors that contribute to their neurodegenerative sequelae.
... In some experiments, 27-day-old rats were pretreated intraperitoneally with melatonin (MEL; 20 mg/kg) or Nacetylcysteine (NAC; 150 mg/kg) once a day for 3 days. At 30 days of age, the animals received a further administration of the antioxidants 60 min before the intracerebral injection of AdoMet [17]. ...
Article
Full-text available
S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency. This disorder is clinically characterized by severe neurological symptoms, whose pathophysiology is not yet established. Therefore, we investigated the effects of intracerebroventricular administration of AdoMet on redox homeostasis, microglia activation, synaptophysin levels, and TAU phosphorylation in cerebral cortex and striatum of young rats. AdoMet provoked significant lipid and protein oxidation, decreased glutathione concentrations, and altered the activity of important antioxidant enzymes in cerebral cortex and striatum. AdoMet also increased reactive oxygen (2′,7′-dichlorofluorescein oxidation increase) and nitrogen (nitrate and nitrite levels increase) species generation in cerebral cortex. Furthermore, the antioxidants N-acetylcysteine and melatonin prevented most of AdoMet-induced pro-oxidant effects in both cerebral structures. Finally, we verified that AdoMet produced microglia activation by increasing Iba1 staining and TAU phosphorylation, as well as reduced synaptophysin levels in cerebral cortex. Taken together, it is presumed that impairment of redox homeostasis possibly associated with microglia activation and neuronal dysfunction caused by AdoMet may represent deleterious pathomechanisms involved in the pathophysiology of brain damage in S-adenosylhomocysteine hydrolase deficiency.
... Oxidative stress is a well-recognized pathogenic factor in brain injury and neurodegenerative diseases [48,49], for which antioxidant compounds and potentiation of antioxidant defenses have been proposed as potential therapeutic strategies [50]. Remarkably, whereas the increased expression of GFAP in response to injury, including oxidative damage is well characterized [51], morphological studies demonstrating changes in network organization are scarcer. Previous redox proteomics studies have identified GFAP as a target for oxidation in certain pathophysiological situations. ...
Article
Full-text available
The type III intermediate filament protein glial fibrillary acidic protein (GFAP) contributes to the homeostasis of astrocytes, where it co-polymerizes with vimentin. Conversely, alterations in GFAP assembly or degradation cause intracellular aggregates linked to astrocyte dysfunction and neurological disease. Moreover, injury and inflammation elicit extensive GFAP organization and expression changes, which underline reactive gliosis. Here we have studied GFAP as a target for modification by electrophilic inflammatory mediators. We show that the GFAP cysteine, C294, is targeted by lipoxidation by cyclopentenone prostaglandins (cyPG) in vitro and in cells. Electrophilic modification of GFAP in cells leads to a striking filament rearrangement, with retraction from the cell periphery and juxtanuclear condensation in thick bundles. Importantly, the C294S mutant is resistant to cyPG addition and filament disruption, thus highlighting the critical role of this residue as a sensor of oxidative damage. However, GFAP C294S shows defective or delayed network formation in GFAP-deficient cells, including SW13/cl.2 cells and GFAP- and vimentin-deficient primary astrocytes. Moreover, GFAP C294S does not effectively integrate with and even disrupts vimentin filaments in the short-term. Interestingly, short-spacer bifunctional cysteine crosslinking produces GFAP-vimentin heterodimers, suggesting that a certain proportion of cysteine residues from both proteins are spatially close. Collectively, these results support that the conserved cysteine residue in type III intermediate filament proteins serves as an electrophilic stress sensor and structural element. Therefore, oxidative modifications of this cysteine could contribute to GFAP disruption or aggregation in pathological situations associated with oxidative or electrophilic stress.
... The slices were counterstained with hematoxylin for 10 s. All procedures were performed with negative and positive controls (da Rosa et al. 2015). Incubation times with primary antibodies were employed according to manufacturer's instructions. ...
Article
Full-text available
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH) activity. Patients usually present progressive cortical leukodystrophy and commonly develop acute bilateral striatal degeneration mainly during infections that markedly worse their prognosis. A role for quinolinic acid (QA), a key metabolite of the kynurenine pathway, which is activated during inflammatory processes, on the pathogenesis of the acute striatum degeneration occurring in GA I was proposed but so far has not yet been evaluated. Therefore, we investigated whether an acute intrastriatal administration of quinolinic acid (QA) could induce histopathological alterations in the striatum of 30-day-old wild-type (WT) and GCDH knockout (Gcdh−/−) mice. Striatum morphology was evaluated by hematoxylin and eosin, T lymphocyte presence (CD3), and glial activation (GFAP and S100β) by immunohistochemistry and 3-nitrotyrosine (YNO2) by immunofluorescence. QA provoked extensive vacuolation, edema, and especially lymphocyte infiltration in the striatum of Gcdh−/−. QA also enhanced CD3 staining and the number of YNO2 positive cells in Gcdh−/− mice, relatively to WT, indicating T lymphocyte infiltration and nitrosative stress, respectively. QA-treated WT mice also showed an increase of GFAP and S100β staining, which is indicative of reactive astrogliosis, whereas the levels of these astrocytic proteins were not changed in Gcdh−/− QA-injected mice. The present data indicate that QA significantly contributes to the histopathological changes observed in the striatum of Gcdh−/− mice.
... alcohol dehydrogenase, iron containing 1 (ADHFE1) overexpression or D-2-hydroxyglutarate dehydrogenase (D2HGDH) downregulation) [41]. Intracerebral 2HG injection in rats (both D-2HG and L-2HG) has resulted in increased oxidative damage on lipids, proteins, and DNA, paralleled by the suppression of antioxidative defense mechanisms [58,59]. As mentioned above, both D-2HG and L-2HG have been shown to inhibit αKG-dependent dioxygenases, including prolyl hydroxylase domain (PHD) enzymes (which usually help degrade HIF1α), histone demethylases, and the ten-eleven translocation (TET) enzyme family [60]. ...
Article
Full-text available
Altered metabolism in tumor cells has been a focus of cancer research for as long as a century but has remained controversial and vague due to an inhomogeneous overall picture. Accumulating genomic, metabolomic, and lastly panomic data as well as bioenergetics studies of the past few years enable a more comprehensive, systems-biologic approach promoting deeper insight into tumor biology and challenging hitherto existing models of cancer bioenergetics. Presenting a compendium on breast cancer-specific metabolome analyses performed thus far, we review and compile currently known aspects of breast cancer biology into a comprehensive network, elucidating previously dissonant issues of cancer metabolism. As such, some of the aspects critically discussed in this review include the dynamic interplay or metabolic coupling between cancer (stem) cells and cancer-associated fibroblasts, the intratumoral and intertumoral heterogeneity and plasticity of cancer cell metabolism, the existence of distinct metabolic tumor compartments in need of separate yet simultaneous therapeutic targeting, the reliance of cancer cells on oxidative metabolism and mitochondrial power, and the role of pro-inflammatory, pro-tumorigenic stromal conditioning. Comprising complex breast cancer signaling networks as well as combined metabolomic and genomic data, we address metabolic consequences of mutations in tumor suppressor genes and evaluate their contribution to breast cancer predisposition in a germline setting, reasoning for distinct personalized preventive and therapeutic measures. The review closes with a discussion on central root mechanisms of tumor cell metabolism and rate-limiting steps thereof, introducing essential strategies for therapeutic targeting.
Chapter
The different metabolic conditions detected through newborn screening has increased, as the screening has expanded to include more conditions, from the previous 6 up to the current 28 diseases. With early detection, treatment, and dietary modifications, complications, which are primarily neurologic in nature, causing mental retardation and death, are minimized if not completely prevented. All of these metabolic diseases are rooted in their genetic cause. However, no definite therapy has been established yet. Efforts in genetic research are still ongoing to find a definitive cure, but until then, the aim has been primarily to prevent complications and ultimately improve the quality of life of the patients. This chapter presents the different metabolic conditions currently known. To date, there is no definitive therapy available to completely treat these conditions.
Article
Neuroprotective therapy after ischemic stroke remains a significant need, but current measures are still insufficient. The Fu-Fang-Dan-Zhi tablet (FFDZT) is a proprietary Chinese medicine clinically employed to treat ischemic stroke in the recovery period. This work aims to systematically investigate the neuroprotective mechanism of FFDZT. A systems strategy that integrated metabolomics, transcriptomics, network pharmacology, and in vivo and in vitro experiments was used. First, middle cerebral artery occlusion (MCAO) model rats were treated with FFDZT. FFDZT treatment significantly reduced the infarct volume in the brains of middle cerebral artery occlusion (MCAO) model rats. Then, samples of serum and brain tissue were taken for metabolomics and transcriptomics studies, respectively; gene expression profiles of MCF7 cells treated with FFDZT and its 4 active compounds (senkyunolide I, formononetin, drilodefensin, and tanshinone IIA) were produced for CMAP analysis. Computational analysis of metabolomics and transcriptomics results suggested that FFDZT regulated glutamate and oxidative stress-related metabolites (2-hydroxybutanoic acid and 2-hydroxyglutaric acid), glutamate receptors (NMDAR, KA, and AMPA), glutamate involved pathways (glutamatergic synapse pathway; d-glutamine and d-glutamate metabolism; alanine, aspartate and glutamate metabolism), as well as the reactive oxygen species metabolic process. CMAP analysis indicated that two active ingredients of FFDZT (tanshinone ⅡA and senkyunolide I) could act as glutamate receptor antagonists. Next, putative therapeutic targets of FFDZT's active ingredients identified in the brain were collected from multiple resources and filtered by statistical criteria and tissue expression information. Network pharmacological analysis revealed extensive interactions between FFDZT's putative targets, anti-IS drug targets, and glutamate-related enzymes, while the resulting PPI network exhibited modular topology. The targets in two of the modules were significantly enriched in the glutamatergic synapse pathway. The interactions between FFDZT's ingredients and important targets were verified by molecular docking. Finally, in vitro experiments validated the effects of FFDZT and its ingredients in suppressing glutamate-induced PC12 cell injury and reducing the generation of reactive oxygen species. All of our findings indicated that FFDZT's efficacy for treating ischemic stroke could be due to its neuroprotection against glutamate-induced oxidative cell death.
Article
D-2-hydroxyglutaric acid (D-2-HG) accumulates and is the biochemical hallmark of D-2-hydroxyglutaric acidurias (D-2-HGA) types I and II, which comprehend two inherited neurometabolic diseases with severe cerebral abnormalities. Since the pathogenesis of these diseases is poorly established, we tested whether D-2-HG could be neurotoxic to neonatal rats. D-2-HG intracerebroventricular administration caused marked vacuolation in cerebral cortex and striatum. In addition, glial fibrillary acidic protein (GFAP), S-100 calcium binding protein B (S100B) and ionized calcium-binding adapter molecule 1 (Iba-1) staining was increased in both brain structures, suggesting glial reactivity and microglial activation. D-2-HG also provoked a reduction of NeuN-positive cells in cerebral cortex, signaling neuronal death. Considering that disturbances in redox homeostasis and energy metabolism may be involved in neuronal damage and glial reactivity, we assessed whether D-2-HG could induce oxidative stress and bioenergetics impairment. D-2-HG treatment significantly augmented reactive oxygen and nitrogen species generation, provoked lipid peroxidation and protein oxidative damage, diminished glutathione concentrations and augmented superoxide dismutase and catalase activities in cerebral cortex. Increased reactive oxygen species generation, lipoperoxidation and protein oxidation were also found in striatum. Furthermore, the antagonist of NMDA glutamate receptor MK-801 and the antioxidant melatonin were able to prevent most of D-2-HG-induced pro-oxidant effects, implying the participation of these receptors in D-2-HG-elicited oxidative damage. Our results also demonstrated that D-2-HG markedly reduced the respiratory chain complex IV and creatine kinase activities. It is presumed that these deleterious pathomechanisms caused by D-2-HGA may be involved in the brain abnormalities characteristic of early-infantile onset D-2-HGA.
Article
Dry eye formation often originates from oxidative damage to the ocular surface, which can be caused by external environment or internal pathologic factors. Esculetin (6, 7-dihydroxycoumarin) is a natural product found in many plants, and has been reported to have multiple pharmacological activities. The objective of our present study is to investigate if esculetin could protect the corneal epithelial cells from oxidative damages and its underlying antioxidant molecular mechanisms. Our experimental results demonstrated that pretreatment with esculetin markedly increased the cell viability while decreased the apoptosis in H2O2-treated human corneal epithelial (HCE) cells, by regulating Bcl-2, Bax and caspase-3 protein expressions and by altering the imbalance of activities of intracellular reactive oxygen species (ROS) and superoxide dismutase (SOD). Our data revealed that esculetin played an antioxidant role not only through its antioxidant activity, but also by highly inducing Nrf-2 translocation to the nucleus, which in turn, enhanced Nrf2 signaling regulated antioxidant genes (HO-1, NQO1, GCLM, SOD1 and SOD2) mRNA expression levels in H2O2-treated HCE cells. In the present study, the protective effects of esculetin on the corneal epithelium were also confirmed by a murine desiccating stress induced dry eye model in vivo. These data illustrated, for the first time, that esculetin may have the ability to protect human corneal epithelial cells from oxidative damages through its scavenging of free radical properties and through the activation of Nrf2 signaling.
Article
Organic acidurias (OADs) are inherited disorders of amino acid metabolism biochemically characterized by accumulation of short-chain carboxylic acids in tissues and biological fluids of the affected patients and clinically by predominant neurological manifestations. Some of these disorders are amenable to treatment, which significantly decreases mortality and morbidity, but it is still ineffective to prevent long-term neurologic and systemic complications. Although pathogenesis of OADs is still poorly established, recent human and animal data, such as lactic acidosis, mitochondrial morphological alterations, decreased activities of respiratory chain complexes and altered parameters of oxidative stress, found in tissues from patients and from genetic mice models with these diseases indicate that disruption of critical mitochondrial functions and oxidative stress play an important role in their pathophysiology. Furthermore, organic acids that accumulate in the most prevalent OADs were shown to compromise bioenergetics, by decreasing ATP synthesis, mitochondrial membrane potential, reducing equivalent content and calcium retention capacity, besides inducing mitochondrial swelling, reactive oxygen and nitrogen species generation and apoptosis. It is therefore presumed that secondary mitochondrial dysfunction and oxidative stress caused by major metabolites accumulating in OADs contribute to tissue damage in these pathologies.
Article
Glutaric acidemia type I (GA I) is a neurometabolic disorder of lysine (Lys) catabolism caused by glutaryl-CoA dehydrogenase (GCDH) deficiency. Patients are susceptible to develop acute striatum degeneration during catabolic stress situations whose underlying mechanisms are not fully established. Thus, in the present work we investigated the effects of a single intrastriatal Lys administration (1.5-4 μmol) to 30-day-old wild type (WT) and GCDH deficient (Gcdh-/-) mice on brain morphology, neuronal injury, astrocyte reactivity and myelin structure, as well as signaling pathways of redox homeostasis. We observed a marked vacuolation/edema in striatum and at higher doses also in cerebral cortex of Gcdh-/-, but not of WT mice. Lys also provoked a reduction of NeuN and synaptophysin, as well as an increase of astrocytic GFAP, in the striatum of Gcdh-/- mice, indicating neuronal loss and astrocyte reactivity. Furthermore, we verified an increase of Nrf2 and NF-κB expression in the nuclear fraction, and a decrease of heme oxygenase-1 (HO-1) content in the striatum of Lys-injected Gcdh-/- mice, implying disruption of redox homeostasis. Finally, it was found that Lys provoked alterations of myelin structure reflected by decreased myelin basic protein (MBP) in the cerebral cortex of Gcdh-/- mice. Taken together, the present data demonstrate neuronal loss, gliosis, altered redox homeostasis and demyelination caused by acute Lys overload in brain of Gcdh-/- mice, supporting the hypothesis that increased brain concentrations of glutaric and 3-hydroxyglutaric acids formed from Lys may be responsible for the acute brain degeneration observed in GA I patients during episodes of metabolic decompensation.
Article
Full-text available
L-2-hydroxyglutaric aciduria (L2HGA) is an autosomal recessive disorder that is caused by deficiency of 2-hydroxyglutarate dehydrogenase. Pathophysiology of brain damage is poorly understood. In recent years, it was proposed that oxidative stress was elevated and led to brain injury. Aim of this study is to evaluate thiol/disulphide homeostasis as an indicator of oxidative stress in L2HGA patients who have been receiving antioxidant treatment. Sixteen L2HGA patients and 16 healthy individuals were included in the study. All the L2HGA patients were regularly followed up and presented neurological dysfunction at different grades. Fourteen patients had been receiving antioxidant treatment. Serum native thiol (-SH), total thiol (-SH + -S-S-) and disulphide (-S-S) levels were measured. Disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were calculated from these values. No significant difference was observed in -SH, -SH + -S-S-, -S-S levels between two groups. In addition to that, no increase of disulphide/native thiol and disulphide/total thiol ratios was detected. Thiol/disulphide homeostasis parameters were also compared between patients who had been receiving and not receiving antioxidant therapy; and between different types of antioxidant therapy and the results did not point to any significant difference. This is the first study that evaluates dynamic thiol/disulphide homeostasis as an indicator of oxidative stress in L2HGA and it has one of the largest sample sizes among previous studies. In our study we suggest that antioxidant therapy should be effective in preventing oxidative stress in L2HGA patients, which has been reported in previous studies and should be a part of standard therapy.
Article
Full-text available
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common defect of mitochondrial long-chain fatty acid β-oxidation (FAO). Patients present with heterogeneous clinical phenotypes affecting heart, liver, and skeletal muscle predominantly. The full pathophysiology of the disease is unclear and patient response to current therapeutic regimens is incomplete. To identify additional cellular alterations and explore more effective therapies, mitochondrial bioenergetics and redox homeostasis were assessed in VLCAD deficient fibroblasts, and several protective compounds were evaluated. The results revealed cellular and tissue changes, including decreased respiratory chain function, increased reactive oxygen species (ROS) production, and altered mitochondrial function and signaling pathways in a variety of VLCAD deficient fibroblasts. The mitochondrially enriched electron and free radical scavengers JP4-039 and XJB-5-131 improved respiratory chain function and decreased ROS production significantly, suggesting that they are viable candidate compounds to further develop to treat VLCAD deficient patients.
Article
d-2-hydroxyglutaric (D-2-HGA) and l-2-hydroxyglutaric (L-2-HGA) acidurias are rare neurometabolic disorders biochemically characterized by increased levels of d-2-hydroxyglutaric acid (D-2-HG) and l-2-hydroxyglutaric acid (L-2-HG) respectively, in biological fluids and tissues. These diseases are caused by mutations in the specific enzymes involved in the metabolic pathways of these organic acids. In the present work, we first investigated whether D-2-HG and L-2-HGA could provoke DNA oxidative damage in blood leukocytes and whether l-carnitine (LC) could prevent the in vitro DNA damage induced by these organic acids. It was verified that 50 μM of D-2-HG and 30 μM of L-2-HG significantly induced DNA damage that was prevented by 30 and 150 μM of LC. We also evaluated oxidative stress parameters in urine of L-2-HGA patients and observed a significant increase of oxidized guanine species and di-tyrosine, biomarkers of oxidative DNA and protein damage, respectively. In contrast, no significant changes of urinary isoprostanes and reactive nitrogen species levels were observed in these patients. Taken together, our data indicate the involvement of oxidative damage, especially on DNA, in patients affected by these diseases and the protective effect of LC.
Article
To describe the development of clinical signs (CS) and outcome of L-2-hydroxyglutaric aciduria (L-2-HGA), owners of 119 Staffordshire bull terriers positive for the known L-2-hydroxyglutarate dehydrogenase autosomal-recessive mutations were requested to complete a questionnaire regarding their pet's CS. Questionnaires were returned for 27 dogs, all with neurological abnormalities—not all questions were answered in all cases. The mean age of CS onset was 12 months (range 2.5–60). Gait dysfunction was reported in 26/26 dogs, with stiffness of all four limbs the most common (24/26) and earliest recognised abnormality. Kyphosis (19/26), body and/or head tremors (19/26) and hypermetria (15/26) were frequent. Behavioural changes were present in 24/27 dogs; most commonly staring into space (21/24), signs of dementia (17/24) and loss of training (15/24). Eighteen dogs demonstrated paroxysmal seizure-like/dyskinetic episodes. Nineteen (70 per cent) dogs were alive at a mean survival time of 76.6 months (12–170) after onset of CS. L-2-HGA was the cause of euthanasia in six dogs. Euthanasia occurred at a mean survival time of 44 months (8.5–93) after onset of CS, with 2/8 dogs euthanased within 12 months. L-2-HGA is considered a progressive neurological disease; however, CS can be successfully managed with affected dogs potentially living a normal lifespan.
Article
In this manuscript, a photosensitive anti-cancer drug, hypocrellin A (HA), and TiO2 nanoparticles were co-loaded on the surface of graphene oxide (GO) as a photosensitive drug delivery system. In vitro studies have demonstrated the active uptake of the system into the mitochondrial of tumor cells. Such system has mutual sensitization mechanism to greatly improve the reactive oxygen species (ROSs) generation ability of the complex by visible light irradiation and, thereby, the strong photodynamic therapy (PDT) efficacy. Furthermore, during such PDT process, GO can be destroyed by the ROSs, which would helpful for the metabolism of this drug delivery system.
Article
Full-text available
Phytanic acid (Phyt) accumulates in various peroxisomal diseases including Refsum disease (RD) and Zellweger syndrome (ZS). Since the pathogenesis of the neurological symptoms and especially the cerebellar abnormalities in these disorders are poorly known, we investigated the effects of in vivo intracerebral administration of Phyt on a large spectrum of redox homeostasis parameters in cerebellum of young rats. Malondialdehyde (MDA) levels, sulfhydryl oxidation, carbonyl content, nitrite and nitrate concentrations, 2',7'-dichlorofluorescein (DCFH) oxidation, total (tGS) and reduced glutathione (GSH) levels and the activities of important antioxidant enzymes were determined at different periods after Phyt administration. Immunohistochemical analysis was also carried out in cerebellum. Phyt significantly increased MDA and nitric oxide (NO) production and decreased GSH levels, without altering tGS, DCFH oxidation, sulfhydryl oxidation, carbonyl content and the activities of GPx, SOD, CAT, GR and G6PD. Furthermore, immunohistochemical analysis revealed that Phyt caused astrogliosis and protein nitrosative damage in cerebellum. It was also observed that the nitric oxide synthase inhibitor L-NAME prevented the increase of MDA and NO production as well as the decrease of GSH and the immunohistochemical alterations caused by Phyt, strongly suggesting that reactive nitrogen species (RNS) were involved in these effects. The present data provide in vivo solid evidence that Phyt disrupts redox homeostasis and causes astrogliosis in rat cerebellum probably mediated by RNS production. It is therefore presumed that disequilibrium of redox status may contribute at least in part to the cerebellum alterations characteristic of patients affected by RD and other disorders with Phyt accumulation. Copyright © 2015. Published by Elsevier Ltd.
Article
3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is an inherited disorder of organic acid metabolism biochemically characterized by tissue accumulation and high urinary excretion of 3-hydroxy-3-methylgutarate, 3-methylglutarate, 3-methylglutaconate and 3-hydroxyisovalerate. Affected patients predominantly present neurological symptoms that are accompanied by mild hepatopathy during episodes of catabolic crisis. The pathophysiology of this disease is poorly known, although recent animal and human in vitro and in vivo studies have suggested that oxidative stress caused by the major accumulating organic acids may represent a pathomechanism of brain and liver damage in HL deficiency. In this review we focus on the deleterious effects of these carboxylic acids on redox homeostasis in rat and human tissues that may offer new perspectives for potential novel adjuvant therapeutic strategies in this disorder.
Article
Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an inborn error of metabolism caused by a defect in the transport of ornithine (Orn) into mitochondrial matrix leading to accumulation of Orn, homocitrulline (Hcit), and ammonia. Affected patients present a variable clinical symptomatology, frequently associated with cerebellar symptoms whose pathogenesis is poorly known. Although in vitro studies reported induction of oxidative stress by the metabolites accumulating in HHH syndrome, so far no report evaluated the in vivo effects of these compounds on redox homeostasis in cerebellum. Therefore, the present work was carried out to investigate the in vivo effects of intracerebellar administration of Orn and Hcit on antioxidant defenses (reduced glutathione concentrations and the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase), lipid oxidation (malondialdehyde concentrations), as well as on the activity of synaptic Na(+), K(+)-ATPase, an enzyme highly vulnerable to free radical attack, in the cerebellum of adolescent rats. Orn significantly increased malondialdehyde levels and the activities of all antioxidant enzymes, and reduced Na(+), K(+)-ATPase activity. In contrast, glutathione concentrations were not changed by Orn treatment. Furthermore, intracerebellar administration of Hcit was not able to alter any of these parameters. The present data show for the first time that Orn provokes in vivo lipid oxidative damage, activation of the enzymatic antioxidant defense system, and reduction of the activity of a crucial enzyme involved in neurotransmission. It is presumed that these pathomechanisms may contribute at least partly to explain the neuropathology of cerebellum abnormalities and the ataxia observed in patients with HHH syndrome.
Chapter
Full-text available
Publisher Summary Glutathione reductase is a flavoprotein catalyzing the NADPH-dependent reduction of glutathione disulfide (GSSG) to glutathione (GSH). The reaction is essential for the maintenance of glutathione levels. Glutathione has a major role as a reductant in oxidation–reduction processes, and serves in detoxication and several other cellular functions of great importance. A purification method of this enzyme from calf liver and rat liver is described in this chapter. Similar methods are used for the purification of the enzyme from yeast, porcine, and human erythrocytes. All the steps are carried out at about 5 ° . The purification method from calf liver consists of various steps including preparation of cytosol fraction, chromatography on DEAE-sephadex, precipitation with ammonium sulfate, and chromatography on hydroxyapatite. The purification of glutathione reductase from rat liver is usually combined with the preparation of glutathione transferases, thioltransferase, and glyoxalase I.
Article
Full-text available
Zinc or L-NAME administration has been shown to be protector agents, decreasing oxidative stress and cell death. However, the treatment with zinc and L-NAME by intraperitoneal injection has not been studied. The aim of our work was to study the effect of zinc and L-NAME administration on nitrosative stress and cell death. Male Wistar rats were treated with ZnCl2 (2.5 mg/kg each 24 h, for 4 days) and N- ω -nitro-L-arginine-methyl ester (L-NAME, 10 mg/kg) on the day 5 (1 hour before a common carotid-artery occlusion (CCAO)). The temporoparietal cortex and hippocampus were dissected, and zinc, nitrites, and lipoperoxidation were assayed at different times. Cell death was assayed by histopathology using hematoxylin-eosin staining and caspase-3 active by immunostaining. The subacute administration of zinc before CCAO decreases the levels of zinc, nitrites, lipoperoxidation, and cell death in the late phase of the ischemia. L-NAME administration in the rats treated with zinc showed an increase of zinc levels in the early phase and increase of zinc, nitrites, and lipoperoxidation levels, cell death by necrosis, and the apoptosis in the late phase. These results suggest that the use of these two therapeutic strategies increased the injury caused by the CCAO, unlike the alone administration of zinc.
Article
Full-text available
The organic acidurias D: -2-hydroxyglutaric aciduria (D-2-HGA), L-2-hydroxyglutaric aciduria (L-2-HGA), and combined D,L-2-hydroxyglutaric aciduria (D,L-2-HGA) cause neurological impairment at young age. Accumulation of D-2-hydroxyglutarate (D-2-HG) and/or L-2-hydroxyglutarate (L-2-HG) in body fluids are the biochemical hallmarks of these disorders. The current review describes the knowledge gathered on 2-hydroxyglutaric acidurias (2-HGA), since the description of the first patients in 1980. We report on the clinical, genetic, enzymatic and metabolic characterization of D-2-HGA type I, D-2-HGA type II, L-2-HGA and D,L-2-HGA, whereas for D-2-HGA type I and type II novel clinical information is presented which was derived from questionnaires.
Article
Full-text available
To describe the pattern of magnetic resonance (MR) imaging abnormalities in l-2-hydroxyglutaric aciduria (L2HGA) and to evaluate the correlation between imaging abnormalities and disease duration. MR images in 56 patients (30 male, 26 female; mean age +/- standard deviation, 11.9 years +/- 8.5) with genetically confirmed L2HGA were retrospectively reviewed, with institutional review board approval and waiver of informed consent. At least one complete series of transverse T2-weighted images was available for all patients. The images were evaluated by using a previously established scoring list. The correlation between MR imaging abnormalities and disease duration was assessed (Mann-Whitney or Kruskal-Wallis test). The cerebral white matter (WM) abnormalities preferentially affected the frontal and subcortical regions. The abnormal subcortical WM often had a mildly swollen appearance (37 patients). Initially, the WM abnormalities were at least partially multifocal (32 patients). In patients with longer disease duration, the WM abnormalities became more confluent and spread centripetally, but the periventricular rim remained relatively spared (41 patients). The mean disease duration in patients with WM atrophy (14.8 years) was significantly longer (P = .001) than that in patients without atrophy (6.7 years). Bilateral involvement of the globus pallidus (55 patients), caudate nucleus (56 patients), and putamen (56 patients) was seen at all stages. The cerebellar WM was never affected. The dentate nucleus was involved bilaterally in 55 of 56 patients. L2HGA has a distinct highly characteristic pattern of MR imaging abnormalities: a combination of predominantly subcortical cerebral WM abnormalities and abnormalities of the dentate nucleus, globus pallidus, putamen, and caudate nucleus. With increasing disease duration, WM abnormalities and basal ganglia signal intensity abnormalities become more diffuse and cerebral WM atrophy ensues.
Article
Full-text available
Methamphetamine (MA) produces selective degeneration of dopamine (DA) neuron terminals without cell body loss. While excitatory amino acids (EAAs) contribute to MA toxicity, terminal loss is not characteristic of excitotoxic lesions nor is excitotoxicity selective for DA fibers; rather, EAAs may modulate MA-induced DA turnover, suggesting that DA-dependent events play a key role in MA neurotoxicity. To examine this possibility, we used postnatal ventral midbrain DA neuron cultures maintained under continuous EAA blockade. As in vivo, MA caused neurite degeneration but minimal cell death. We found that MA is a vacuologenic weak base that induces swelling of endocytic compartments; MA also induces blebbing of the plasma membrane. However, these morphological changes occurred in MA-treated cultures lacking DA neurons. Therefore, while collapse of endosomal and lysosomal pH gradients and vacuolation may contribute to MA neurotoxicity, this does not explain selective DA terminal degeneration. Alternatively, MA could exert its neurotoxic effects by collapsing synaptic vesicle proton gradients and redistributing DA from synaptic vesicles to the cytoplasm. This could cause the formation of DA-derived free radicals and reactive metabolites. To test whether MA induces oxidative stress within living DA neurons, we used 2,7-dichlorofluorescin diacetate (DCF), an indicator of intracellular hydroperoxide production. MA dramatically increased the number of DCF-labeled cells in ventral midbrain cultures, which contain about 30% DA neurons, but not in nucleus accumbens cultures, which do not contain DA neurons. In the DA neuron cultures, intracellular DDF labeling was localized to axonal varicosities, blebs, and endocytic organelles. These results suggest that MA redistributes DA from the reducing environment within synaptic vesicles to extravesicular oxidizing environments, thus generating oxygen radicals and reactive metabolites within DA neurons that may trigger selective DA terminal loss.
Article
Full-text available
An enzymatic recycling method has been applied to the measurement of total and oxidized glutathione with a centrifugal analyzer. When the reduced form of glutathione (GSH) was masked with 2-vinylpyridine to measure the oxidized glutathione (GSSG), the time to ensure full derivatization was three times longer than has been reported. The method is quick, simple, accurate, and precise (1.27% for GSH, 3.3% for GSSG intraassay CV; 2.15% for GSH, 5% for GSSG interassay CV), and the automation allows large numbers of samples to be conveniently assayed.
Article
Full-text available
We present clinical, biochemical and cranial magnetic resonance imaging data of six pediatric patients with L-2-hydroxyglutaric aciduria. All the children have the same ethic origin and lived in the northern area of Portugal. Our findings reinforce the described phenotype of this rare metabolic disease with mental deficiency, severe cerebellar dysfunction, mild extrapyramidal and pyramidal symptoms, progressive macrocephaly and seizures. Magnetic resonance imaging revealed subcortical leukoencephalopathy, cerebellar atrophy and signal changes in the putamina and dentate nuclei. These were similar to those of the previous reports in all patients. The urinary excretion of L-2-hydroxyglutaric acid was variably increased in all patients. The other persistent biochemical abnormality was hyperlysinemia. We have found a strong correlation between the severity of the clinical manifestations and the extension of the lesions in the neuroimaging studies. There was no correlation between the clinical findings and the amount of urinary excretion of L-2-hydroxyglutaric acid. We report the second case in the literature of a cerebral thalamic tumor in L-2-hydroxyglutaric aciduria; neuropathological examination of the surgical biopsy demonstrated a diffuse fibrillary astrocytoma.
Article
Full textFull text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (479K), or click on a page image below to browse page by page. 1575 1576
Article
L-2-hydroxyglutaric aciduria (L2HGA) is an autosomal recessive neurometabolic disorder characterized essentially by the presence of elevated levels of L-2-hydroxyglutaric acid (LGA) in plasma, cerebrospinal fluid and urine. L2HGA is caused by a deficiency in the L2-Hydroxyglutaric dehydrogenase (L2HGDH) enzyme involved in the oxidation of LGA to the alpha 2-ketoglutarate. LGA has been proposed as an endo- and exogenous cytotoxic organic acid that induces free radical formation and generation of reactive oxygen species (ROS). In this report, we analyzed 14 L2HGA patients belonging to six unrelated consanguineous families the south of Tunisia. The patients were diagnosed with L2HGA disease confirmed on the presence of high level of LGA in urine. We analyzed the L2HGDH gene in all probands and identified the same c.241A>G homozygous mutation, which was previously reported in Tunisia. We also used intragenic single nucleotide length polymorphisms (SNPs) and two extragenic microsatellites flanking the L2HGDH gene to confirm the founder effect of c.241A>G mutation in the 14 studied cases. In addition, we carried out the measurement of the oxidative stress parameters in the plasma of L2HGA patients which revealed a significant increase in the malondialdehyde levels (MDA), a biomarker of lipid peroxydation, and the reduced glutathione (GSH). A diminution of the antioxidant enzyme activities including superoxide dismutase (SOD), glutathione peroxidase (GPx), was also observed.
Article
Accumulating evidence shows that T cells penetrate the central nervous system (CNS) parenchyma in several autoimmune, infectious, and degenerative neurological diseases. The structural and functional consequences for CNS neurons of their encounter with activated T cells have been investigated in several experimental systems, including ex vivo co-cultures, electrophysiology, and in vivo imaging. Here, we review the modalities of neuron/T cell interactions. We substantiate the contention that T cells are directly responsible for neuronal damage in a large number of neurological diseases and discuss mechanisms of neuronal damage mediated by distinct T cell subsets, the impact of which differs depending on the disease. Finally, we describe how a better understanding of the mechanisms at play offers new possibilities for therapeutic intervention.
Article
Mitochondrial degradation is implicated in the irreversible cell damage that can occur during cerebral ischemia and reperfusion. In this study, the effects of 10 min of ventricular fibrillation and 100 min of spontaneous circulation on brain mitochondrial function was studied in dogs in the absence and presence of pretreatment with the Ca2+ antagonist lidoflazine. Twenty-three beagles were separated into four experimental groups: (i) nonischemic controls (ii) those undergoing 10-min ventricular fibrillation, (iii) those undergoing 10-min ventricular fibrillation pretreated with 1 mg/kg lidoflazine i.v., and (iv) those undergoing 10-min ventricular fibrillation followed by spontaneous circulation for 100 min. Brain mitochondria were isolated and tested for their ability to respire and accumulate calcium in a physiological test medium. There was a 35% decrease in the rate of phosphorylating respiration (ATP production) following 10 min of complete cerebral ischemia. Those animals pretreated with lidoflazine showed significantly less decline in phosphorylating respiration (16%) when compared with nontreated dogs. Resting and uncoupled respiration also declined following 10 min of fibrillatory arrest. One hundred minutes of spontaneous circulation following 10 min of ventricular fibrillation and 3 min of open-chest cardiac massage provided complete recovery of normal mitochondrial respiration. Energy-dependent Ca2+ accumulation by isolated brain mitochondria was unimpaired by 10 min of complete cerebral ischemia. However, by 100 min after resuscitation, there was a small, but significant rise in the capacity for mitochondrial Ca2+ sequestration when compared to either control or fibrillated groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
This study describes a simple, reliable, highly sensitive and quantitative fluorescence microplate-assay of H2O2 from activated leukocytes using a novel horse radish peroxidase (HRP) substrate N-acetyl-3,7-dihydroxyphenoxazine (A6550). Unlike the widely used fluorescent HRP substrate scopoletin, A6550 is non-fluorescent and becomes highly fluorescent upon HRP-catalyzed H2O2 oxidation. Using 50 μM A6550, the change in fluorescence due to H2O2 generated from phorbol 12-myristate 13-acetate-activated human eosinophils and neutrophils is found to have a linear cell dose response up to 1.5×104 and 5×104 cells, respectively. The increase in fluorescence from A6550 is specifically due to H2O2 generation since it is inhibitable by catalase. Oxidized A6550 is found to be highly stable and the H2O2 dose response is linear as long as the ratio of A6550:H2O2 in the reaction mixture is higher than five. Unlike scopoletin, A6550 has a very low background, which changes little with time. In addition, the high fluorescent yield of oxidized A6550 results in an increased sensitivity for the detection of H2O2. When the concentrations of A6550 and HRP were 10 μM and 0.2 U/ml, respectively, as low as 2 pmol of H2O2 could be reliably measured. The sensitivity of A6550/H2O2 assay is found to be at least 10-fold higher than with scopoletin as the HRP substrate. The protocol described in this study using A6550 to measure H2O2 release from activated granulocytes can be easily adapted to other cell types which generate H2O2.
Article
NO and its derivatives can have multiple effects, which impact on neuronal death in different ways. High levels of NO induces energy depletion-induced necrosis, due to: (i) rapid inhibition of mitochondrial respiration, (ii) slow inhibition of glycolysis, (iii) induction of mitochondrial permeability transition, and/or (iv) activation of poly-ADP-ribose polymerase. Alternatively, if energy levels are maintained, NO can induce apoptosis, via oxidant activation of: p53, p38 MAPK pathway or endoplasmic reticulum stress. Low levels of NO can block cell death via cGMP-mediated: vasodilation, Akt activation or block of mitochondrial permeability transition. High NO may protect by killing pathogens, activating NF-kappaB or S-nitro(sy)lation of caspases and the NMDA receptor. GAPDH, Drp1, mitochondrial complex I, matrix metalloprotease-9, Parkin, XIAP and protein-disulphide isomerase can also be S-nitro(sy)lated, but the contribution of these reactions to neurodegeneration remains unclear. Neurons are sensitive to NO-induced excitotoxicity because NO rapidly induces both depolarization and glutamate release, which together activate the NMDA receptor. nNOS activation (as a result of NMDA receptor activation) may contribute to excitotoxicity, probably via peroxynitrite activation of poly-ADP-ribose polymerase and/or mitochondrial permeability transition. iNOS is induced in glia by inflammation, and may protect; however, if there is also hypoxia or the NADPH oxidase is active, it can induce neuronal death. Microglial phagocytosis may contribute actively to neuronal loss.
Article
The present work investigated the effects of intrastriatal administration of d-serine on relevant parameters of oxidative stress in striatum of young rats. d-Serine significantly induced lipid peroxidation, reflected by the significant increase of thiobarbituric acid-reactive substances, and significantly diminished the striatum antioxidant defenses, as verified by a decrease of the levels of reduced glutathione and total antioxidant status. Finally, d-serine inhibited superoxide dismutase activity, without altering the activities of glutathione peroxidase and catalase. In contrast, this d-amino acid did not alter sulfhydryl oxidation, a measure of protein oxidative damage. The present data indicate that d-serine in vivo administration induces lipid oxidative damage and decreases the antioxidant defenses in the striatum of young rats. Therefore, it is presumed that this oxidative stress may be a pathomechanism involved at least in part in the neurological damage found in patients affected by disorders in which d-serine metabolism is compromised, leading to altered concentrations of this d-amino acid.
Article
Intracerebral accumulation of neurotoxic dicarboxylic acids (DCAs) plays an important pathophysiological role in glutaric aciduria type I and methylmalonic aciduria. Therefore, we investigated the transport characteristics of accumulating DCAs - glutaric (GA), 3-hydroxyglutaric (3-OH-GA) and methylmalonic acid (MMA) - across porcine brain capillary endothelial cells (pBCEC) and human choroid plexus epithelial cells (hCPEC) representing in vitro models of the blood-brain barrier (BBB) and the choroid plexus respectively. We identified expression of organic acid transporters 1 (OAT1) and 3 (OAT3) in pBCEC on mRNA and protein level. For DCAs tested, transport from the basolateral to the apical site (i.e. efflux) was higher than influx. Efflux transport of GA, 3-OH-GA, and MMA across pBCEC was Na(+)-dependent, ATP-independent, and was inhibited by the OAT substrates para-aminohippuric acid (PAH), estrone sulfate, and taurocholate, and the OAT inhibitor probenecid. Members of the ATP-binding cassette transporter family or the organic anion transporting polypeptide family, namely MRP2, P-gp, BCRP, and OATP1B3, did not mediate transport of GA, 3-OH-GA or MMA confirming the specificity of efflux transport via OATs. In hCPEC, cellular import of GA was dependent on Na(+)-gradient, inhibited by NaCN, and unaffected by probenecid suggesting a Na(+)-dependent DCA transporter. Specific transport of GA across hCPEC, however, was not found. In conclusion, our results indicate a low but specific efflux transport for GA, 3-OH-GA, and MMA across pBCEC, an in vitro model of the BBB, via OAT1 and OAT3 but not across hCPEC, an in vitro model of the choroid plexus.
Article
L-2-Hydroxyglutaric aciduria (L2HGA) is a rare, neurometabolic disorder with an autosomal recessive mode of inheritance. Affected individuals only have neurological manifestations, including psychomotor retardation, cerebellar ataxia, and more variably macrocephaly, or epilepsy. The diagnosis of L2HGA can be made based on magnetic resonance imaging (MRI), biochemical analysis, and mutational analysis of L2HGDH. About 200 patients with elevated concentrations of 2-hydroxyglutarate (2HG) in the urine were referred for chiral determination of 2HG and L2HGDH mutational analysis. All patients with increased L2HG (n=106; 83 families) were included. Clinical information on 61 patients was obtained via questionnaires. In 82 families the mutations were detected by direct sequence analysis and/or multiplex ligation dependent probe amplification (MLPA), including one case where MLPA was essential to detect the second allele. In another case RT-PCR followed by deep intronic sequencing was needed to detect the mutation. Thirty-five novel mutations as well as 35 reported mutations and 14 nondisease-related variants are reviewed and included in a novel Leiden Open source Variation Database (LOVD) for L2HGDH variants (http://www.LOVD.nl/L2HGDH). Every user can access the database and submit variants/patients. Furthermore, we report on the phenotype, including neurological manifestations and urinary levels of L2HG, and we evaluate the phenotype-genotype relationship.
Article
In the present study the effect of melatonin on intracerebroventricularly administered streptozotocin (STZ)-induced neurodegeneration was investigated in rats. STZ (3mg/kg), administered twice with an interval of 48 h between the two doses, showed impairment in spatial memory tested by water maze test after 14 days of 1st dose. Administration of melatonin (2.5, 5.0 and 10mg/kg, i.p.) was started 1h prior to 1st dose of STZ and continued up to 14 days. Glutathione and malondialdehyde were used as biochemical markers of oxidative stress in different brain regions. Histopathological changes were examined by using hematoxylin and eosin stain. STZ administration caused significant decrease in glutathione and increase in malondialdehyde as compared to control and artificial Cerebrospinal Fluid treated rats indicating oxidative stress. Brain sections of STZ-treated rats showed increased vacuoles in the periventricular cortical area, damaged periventricular cells and damaged cells in the hippocampal CA4 region as compared to control and artificial Cerebrospinal Fluid treated groups. Melatonin treatment significantly attenuated the effect of STZ-induced oxidative stress and histopathological changes. The results indicate that melatonin is effective in providing protection against memory deficit, oxidative stress and neuronal damage induced by STZ.
Article
The neurometabolic disorder L: -2-hydroxyglutaric aciduria is caused by mutations in a gene present on chromosome 14q22.1 and encoding L: -2-hydroxyglutarate dehydrogenase. This FAD-linked mitochondrial enzyme catalyses the irreversible conversion of L: -2-hydroxyglutarate to alpha-ketoglutarate. The formation of L: -2-hydroxyglutarate results from a side-activity of mitochondrial L: -malate dehydrogenase, the enzyme that interconverts oxaloacetate and L: -malate, but which also catalyses, very slowly, the NADH-dependent conversion of alpha-ketoglutarate to L: -2-hydroxyglutarate. L: -2-Hydroxyglutarate has no known physiological function in eukaryotes and most prokaryotes. Its accumulation is toxic to the mammalian brain, causing a leukoencephalopathy and increasing the susceptibility to develop tumours. L: -2-Hydroxyglutaric aciduria appears to be the first disease of 'metabolite repair'.
Article
The gas chromatography/mass spectrometry (GC/MS) method for organic acid analysis was established in developed countries since 1980s, but due to the small number of experienced clinical biochemists in this field and also the short availability of mass spectrometers scarce reports exist on the prevalence of organic acidemias (OAs) in developing countries like Brazil. During January 1994 to July 2008, we analyzed organic acids by GC/MS in urine specimens obtained from Brazilian children with clinical suspicion of metabolic diseases. Two hundred and thirty four cases of disorders of organic acid metabolism, including 218 OAs (3.17%), were diagnosed among 6866 patients investigated. The most frequent disorders were primary lactic acidemia (57), methylmalonic acidemia (34), glutaric acidemia type I (33), propionic acidemia (18), 3-hydroxy-3-methylglutaric aciduria (17), L-2-hydroxyglutaric aciduria (9) and multiple carboxylase deficiency (9). Fourteen cases of mitochondrial fatty acid oxidation disorders, as well as 12 aminoacidopathies and 4 cases of vitamin B12 deficiency were also detected. Prompt treatment following diagnosis led to a better outcome in a considerable number of patients. Detection of OAs in loco in developing countries is important despite the implied extra costs, since it allows rapid therapy in many cases with a significant reduction of morbidity and mortality and makes the physicians more aware of these pathologies.
Article
The use of dichlorofluorescin (DCFH) as a measure of reactive oxygen species was studied in aqueous media. Hydrogen peroxide oxidized DCFH to fluorescent dichlorofluorescein (DCF), and the oxidation was amplified by the addition of ferrous iron. Hydrogen peroxide-induced DCF formation in the presence of ferrous iron was completely inhibited by deferoxamine and partially inhibited by ethylenediaminetetraacetic acid, but was augmented by diethylenetriaminepentaacetic acid. Iron-peroxide-induced oxidation of DCFH was partially inhibited by catalase but not by horseradish peroxidase. Nonchelated iron-peroxide oxidation of DCFH was partially inhibited by several hydroxyl radical scavengers, but was independent of the scavenger concentration, and this suggests that free hydroxyl radical is not involved in the oxidation of DCFH in this system. Superoxide anion did not directly oxidize DCFH. Data suggest that H2O2-Fe(2+)-derived oxidant is mainly responsible for the nonenzymatic oxidation of DCFH. In addition, peroxidase alone and oxidants formed during the reduction of H2O2 by peroxidase oxidize DCFH. Since DCFH oxidation may be derived from several reactive intermediates, interpretation of specific reactive oxygen species involved in biological systems should be approached with caution. However, DCFH remains an attractive probe as an overall index of oxidative stress in toxicological phenomena.
Article
Routine screening for organic acids revealed increased and isolated urinary excretion of L-2-hydroxyglutaric acid in 8 mentally retarded patients from five unrelated families, including three pairs of siblings. L-2-Hydroxyglutaric acid concentration was also found to be increased in the cerebrospinal fluid (CSF) and to a lesser extent in plasma. The only other biochemical abnormality was an increased concentration of lysine, both in plasma and in CSF. No organic acid abnormality was found on screening of asymptomatic family members. Patients were of either sex, and became symptomatic during childhood, with moderate to severe mental deficiency in all and definite cerebellar dysfunction in 7. Magnetic resonance imaging revealed an identical abnormal pattern with subcortical leukoencephalopathy, cerebellar atrophy, and signal changes in the putamina and dentate nuclei, in all patients. No specific biochemical function or catabolic pathway involving L-2-hydroxyglutaric acid is known in mammals, including humans. Preliminary loading and dietary studies failed to reveal the origin of the compound. The elevated CSF/plasma ratio suggests that it is in part generated within the central nervous system. This report describes a novel inherited neurometabolic disease, probably autosomal recessive, with distinct clinical, biochemical, and neuroimaging features.
Article
The entry of T-lymphocytes into the parenchyma of the central nervous system is a critical early feature in the pathogenesis of many experimental and spontaneously occurring immune-mediated illnesses. The physiological mechanisms controlling this entry have not been elucidated. This study reports that T-cell entry into the rat CNS appears to be primarily dependent upon the activation state of the lymphocytes; T-lymphoblasts enter the CNS (and all other tissues examined) in an apparently random manner while T cells not in blast phase are excluded. Antigen specificity, MHC compatibility, T-cell phenotype, and T-cell receptor gene usage do not appear related to the ability of cells to enter. This study demonstrates that when T-lymphoblasts are introduced into the circulation they rapidly appear in the CNS tissue. Their concentration in the CNS reaches a peak between 9 and 12 hr, and lymphocytes which have entered, exit within 1 to 2 days. Cells capable of reacting with a CNS antigen remain in the tissue or cyclically reenter to initiate inflammation if they are able to recognize their antigen in the correct MHC context. This observation also appears to pertain to the entry of activated T cells into many other tissues, although their concentrations in these non-CNS sites was not quantitated.
Article
Publisher Summary Catalase exerts a dual function: (1) decomposition of H 2 O 2 to give H 2 O and O 2 (catalytic activity) and (2) oxidation of H donors, for example, methanol, ethanol, formic acid, phenols, with the consumption of 1 mol of peroxide (peroxide activity). The kinetics of catalase does not obey the normal pattern. Measurements of enzyme activity at substrate saturation or determination of the K s is therefore impossible. In contrast to reactions proceeding at substrate saturation, the enzymic decomposition of H 2 O 2 is a first-order reaction, the rate of which is always proportional to the peroxide concentration present. Consequently, to avoid a rapid decrease in the initial rate of the reaction, the assay must be carried out with relatively low concentrations of H 2 O 2 (about 0.01 M). This chapter discusses the catalytic activity of catalase. The method of choice for biological material, however, is ultraviolet (UV) spectrophotometry. Titrimetric methods are suitable for comparative studies. For large series of measurements, there are either simple screening tests, which give a quick indication of the approximative catalase activity, or automated methods.
Article
A 5-year-old boy, excreting large amounts of 2-hydroxyglutaric acid in the urine (3.3-7.6 mmol/l), is described. The patient presented with psychomotor retardation and dystrophy. His skeletal age was delayed. The EEG was not well differentiated; it resembled that observed in 2-year-old children. There was a severe anaemia, which reacted well to iron supplements. The 2-hydroxyglutaric acid was found to have the L-configuration, as analysed by capillary gas chromatography of the O-acetylated di-(-)-2-butyl ester derivative. The relation of L-2-hydroxyglutarate excretion to known metabolic pathways is discussed.
Article
Publisher Summary This chapter presents a procedure for the preparation of glutathione peroxidase, which is regarded as a major protective system against endogenously and exogenously induced lipid peroxidation. Two types of methods are used for determining the activity of glutathione peroxidase. One involves a direct measurement of unconsumed glutathione (GSH) at fixed time periods by polarographic GSH analysis' (Method 1), or by the dithionitrobenzoic acid method (Method 2). The second approach takes advantage of the capability of glutathione reductase, with nicotinamide adenine dinucleotide phosphate (NADPH), to regenerate GSH from oxidized GSH. The decrease in NADPH is continuously measured spectrophotometrically, while the GSH concentration in the enzymatic cycle remains essentially constant (Method 3). A convenient source for the preparation of glutathione peroxidase is bovine blood including the following steps: hemolysate; organic solvent precipitation; phosphate precipitation; absorption to phenyl-sepharose; and washing on diethylaminoethyl (DEAE)–sephadex, S-300 sephacryl, and hydroxylapatite column.
Article
L-2-Hydroxyglutaric aciduria is a rare organic aciduria associated with a neurological presentation. The first patient was described in 1980 by Duran et al. In 1988 Jaeken et al published a brief report on a second patient. Ten cases are known (Barth et al 1992); their clinical and neuroimaging similarities allow definition of a characteristic phenotype for a novel neurometabolic disease. The diagnosis depends upon the urinary organic acid profile. Routine gas chromatography-mass spectrometry (GC-MS) screening for organic acids reveals a large peak of 2-hydroxyglutaric acid (2-OH-glu). The absolute configuration of the acid should be determined as D-2-hydroxyglutaric aciduria and L-2-hydroxyglutaric aciduria are distinct diseases. D-2-Hydroxyglutaric aciduria was reported by Chalmers et al (1980) in a child with a protein-losing enteropathy without any neurological involvement. A second patient recently described by Gibson et al (1993) was a girl who presented with seizures, hypotonia, developmental delay and encephalopathy. In L-2-hydroxyglutaric aciduria the clinical presentation includes a progressive neurodegenerative disorder with magnetic resonance imaging suggestive of a spongiform encephalopathy. Concentrations of L-2-OH-glu in physiological fluids are: urines 200-4520 mmol/mol creatinine; plasma 7-60, mumol/L; CSF 40-500 mumol/L (control ranges are shown in Table 1). In both L- and D-2-hydroxyglutaric aciduria the primary defect is unknown. We report two new patients with L-2-hydroxyglutaric aciduria.
Article
Neurological manifestations are very common and can be the leading and/or presenting feature in organic acid disorders, sometimes in the absence of metabolic derangement. Review of the time course and presentation of neurological disease in organic acid disorders reveals characteristic clinical findings of ataxia, myoclonus, extrapyramidal symptoms, metabolic stroke and megalencephaly. A group of organic acid disorders presents exclusively with neurological symptoms. These include glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type I), succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria), mevalonic aciduria, N-acetylaspartic aciduria (Canavan disease) and L-2-hydroxyglutaric aciduria. As a group these "cerebral" organic acid disorders appear to remain often undiagnosed and their true incidence is much less well-known than that of the "classical" organic acid disorders. Unfortunately, stringent guidelines for a clinical preselection of neuropaediatric patients to be investigated for organic acid disorders cannot be provided. Today, screening for neurometabolic disorders should be as comprehensive as possible and include determinations of amino acids, purines and pyrimidines and markers of peroxisomal function in addition to organic acid analysis.
Article
Oxygen radicals are implicated as an important cause of oxidative modification of proteins which may lead to their rapid degradation. Among the various oxidative modifications of amino acids in proteins, carbonyl formation may be an early marker for protein oxidation. This type of alteration is characterized as metal-catalyzed oxidation of proteins. The molecular mechanisms of this type of protein oxidation are discussed in this chapter. Redox cycling cations, such as Fe2+ or Cu2+ can bind to cation binding locations on proteins and with the aid of further attack by H2O2 or O2 can transform side-chain amine groups on several amino acids into carbonyls. The most likely amino acid residues to form carbonyl derivatives are lysine, arginine, proline, and histidine. Metal-catalyzed oxidation of proteins is not necessarily the only mechanism by which carbonyls are introduced into proteins. The chapter discusses the physiological importance of protein oxidation. Increases in carbonyl levels are examined in several diseases, such as rheumatoid arthritis, ischemia-reperfusion injury to heart muscles, and muscle damage caused by exhaustive exercise.
Article
Quantitative reference values for the concentrations of organic acids in cerebrospinal fluid (CSF) and plasma, as well as ratios of individual organic acids between CSF and plasma, were determined in twenty-three pairs of samples from pediatric patients. Twenty-six organic acids were present and quantifiable in all or the majority of plasma and CSF specimens (limit of detection 1 mumol/l). There were substantial differences between subgroups of organic acids, best reflected by the ratios of individual acids between CSF and plasma. Metabolites related to fatty acid oxidation were present in CSF in substantially lower amounts than in plasma. Organic acids related to carbohydrate and energy metabolism and to amino acid degradation were present in CSF in equal or slightly lower amounts than in plasma. Finally, some organic acids were found in substantially higher amounts in CSF than in plasma, e.g. glycolate, glycerate, 2,4-dihydroxybutyrate, citrate and isocitrate. Quantitation of organic acids in CSF and plasma should aid diagnosis and monitoring of treatment of patients with organic acid disorders.
Article
L-2-Hydroxyglutaric acidaemia represents a newly defined inborn error of metabolism, with increased levels of L-2-hydroxyglutaric acid in urine, plasma and cerebrospinal fluid. The concentration in cerebrospinal fluid is higher than in plasma. The other consistent biochemical finding is an increase of lysine in blood and cerebrospinal fluid, but lysine loading does not increase L-2-hydroxyglutaric acid concentration in plasma. This autosomal recessively inherited disease is expressed as progressive ataxia, mental deficiency with subcortical leukoencephalopathy and cerebellar atrophy on magnetic resonance imaging. Since these features were described in 8 patients by Barth and co-workers in 1992, 4 more patients with similar findings have been diagnosed and added to the present series. L-2-Hydroxyglutaric acid is found in only trace amounts on routine gas chromatographic screening in normal persons, and its origin, its fate and even its relevance to normal metabolism are unknown. Therefore its catabolism was studied in normal liver. Incubation of rat liver with L-2-hydroxyglutaric acid did not produce H2O2, which excluded (peroxisomal) L-2-hydroxyacid oxidase as the main route of catabolism. However, L-2-hydroxyglutaric acid is rapidly dehydrogenated if NAD+ is added as a co-factor to the standard reaction medium. This could also be demonstrated in human liver. The preliminary evidence for this enzyme activity in rats and humans, L-2-hydroxyglutaric acid dehydrogenase, is given. Further investigations are required to clarify the possible relevance to the metabolic defect in L-2-hydroxyglutaric acidaemia.
Article
L-2-Hydroxyglutaric aciduria is a rare organic aciduria associated with neurological and particularly cerebellar abnormalities. These abnormalities developed in childhood or later in all previously described patients. We report a more severe form of L-2-hydroxyglutaric aciduria in which an infant presented shortly after birth with hypotonia, apnoea, and seizures, leading to death in the perinatal period. Computerized tomography scans of the brain at 1 day and 2 weeks of age showed abnormal low density of the cerebellum. Examination of the brain showed brainstem and cerebellar atrophy with neuronal loss and gliosis in an olivopontocerebellar distribution. The diagnosis of L-2-hydroxyglutaric aciduria should be considered in any non-dysmorphic newborn with progressive neurological abnormalities and CNS imaging suggesting low density and size of the cerebellum. The diagnostic consideration is based initially on clinical findings. Conventional urine organic acid analysis reveals the presence of 2-hydroxyglutaric aciduria. Specific diagnosis requires methodologies which distinguish the L- from the D-isomer.
Article
Glutathione (GSH; L- -glutamyl-L-cysteinl-glycine) plays an important role in the prevention of radical mediated injury to the body. It does so as a radical scavenger and by supplying GSH to the antioxidant enzymes described in Chapter 29. In conjunction with superoxide dismutase (SOD), which converts superoxide anions into hydrogen peroxide (H202), glutathione peroxidase (GSHPx) converts H202, into water (1). As a result of the second conversion, GSH is oxidized to glutathione disulfide (GSSG). In this way, GSH acts as a cofactor in the removal of toxic radicals from the body. During oxidative stress, GSH levels decline and GSSG increases, which can influence signal transduction by stimulating NF-kB activation (2). GSH is also thought to be a donor of glutamyl groups in amino-acid transport (3).
Article
The level of lipid peroxides in serum or plasma has been found to be increased in various diseases (1), especially in vascular disorders such as angiopathy in diabetes (2), atherosclerosis (3), and apoplexy (4).
Article
Vacuolation in cellular organelles within the central nervous system is a common manifestation of oxidative injury. We found that the spongiform vacuolation observed in PVC-211 murine leukemia virus (PVC-MuLV) neurodegeneration was associated with oxidative damage as detected by immunoreactivity for 3-nitrotyrosine and protein carbonyl groups. This oxidative injury was present in brain before or concomitant with the appearance of activated microglia, vacuolation, and gliosis that characterize PVC-MuLV neuropathology. Treatment of infected F344 rat pups with the antioxidant vitamin E transiently protected and prolonged the latency of PVC-MuLV neurodegeneration. Taken together, these findings implicate oxidative damage and lipid peroxidation in the pathogenesis of PVC-MuLV neurodegeneration. This animal model may be useful for studies of mechanisms and potential therapies for progressive neurodegeneration following a well-defined insult.
Article
This study evaluates the possibility of obtaining total reactive antioxidant potential (TRAP) indexes in homogenates and their cytosolic fractions by a procedure based on the quenching of luminol luminescence induced by the thermolysis of 2,2'-azo-bis(2-amidinopropane). Measurements were performed in rat brain, liver, kidney, and heart homogenates. TRAP indexes can be easily determined both in homogenates and their cytosolic fractions. The results obtained indicate that heart homogenates are the least and liver homogenates the most protected of the systems considered. Glutathione is the measured antioxidant that contributes the most to TRAP values, while uric acid makes a significant contribution only in liver. A calculation of theoretical TRAP values from the measured concentrations of the main antioxidants (glutathione, uric acid, ascorbic acid, and alpha-tocopherol) for the different homogenates shows that, in most tissues (liver, brain, and kidney), nearly 50% of the experimentally determined TRAP values are not accounted for. This difference is mainly due to the contribution of proteins to the measured TRAP.
Article
Melatonin (N-acetyl-5-methoxytryptamine), an endogenously produced indole found throughout the animal kingdom, was recently reported, using a variety of techniques, to be a scavenger of a number of reactive oxygen and reactive nitrogen species both in vitro and in vivo. Initially, melatonin was discovered to directly scavenge the high toxic hydroxyl radical (*OH). The methods used to prove the interaction of melatonin with the *OH included the generation of the radical using Fenton reagents or the ultraviolet photolysis of hydrogen peroxide (H202) with the use of spin-trapping agents, followed by electron spin resonance (ESR) spectroscopy, pulse radiolysis followed by ESR, and several spectrofluorometric and chemical (salicylate trapping in vivo) methodologies. One product of the reaction of melatonin with the *OH was identified as cyclic 3-hydroxymelatonin (3-OHM) using high-performance liquid chromatography with electrochemical (HPLC-EC) detection, electron ionization mass spectrometry (EIMS), proton nuclear magnetic resonance (1H NMR) and COSY 1H NMR. Cyclic 3-OHM appears in the urine of humans and other mammals and in rat urine its concentration increases when melatonin is given exogenously or after an imposed oxidative stress (exposure to ionizing radiation). Urinary cyclic 3-OHM levels are believed to be a biomarker (footprint molecule) of in vivo *OH production and its scavenging by melatonin. Although the data are less complete, besides the *OH, melatonin in cell-free systems has been shown to directly scavenge H2O2, singlet oxygen (1O2) and nitric oxide (NO*), with little or no ability to scavenge the superoxide anion radical (O2*-) In vitro, melatonin also directly detoxifies the peroxynitrite anion (ONOO-) and/or peroxynitrous acid (ONOOH), or the activated form of this molecule, ONOOH*; the product of the latter interaction is proposed to be 6-OHM. How these in vitro findings relate to the in vivo antioxidant actions of melatonin remains to be established. The ability of melatonin to scavenge the lipid peroxyl radical (LOO*) is debated. The weight of the evidence is that melatonin is probably not a classic chain-breaking antioxidant, since its ability to scavenge the LOO* seems weak. Its ability to reduce lipid peroxidation may stem from its function as a preventive antioxidant (scavenging initiating radicals), or yet unidentified actions. In sum, in vitro melatonin acts as a direct free radical scavenger with the ability to detoxify both reactive oxygen and reactive nitrogen species; in vivo, it is an effective pharmacological agent in reducing oxidative damage under conditions in which excessive free radical generation is believed to be involved.
Article
L-2-Hydroxyglutaric acid (LGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as L-2-hydroxyglutaric aciduria (LHGA). Although this disorder is predominantly characterized by severe neurological findings and pronounced cerebellum atrophy, the neurotoxic mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of LGA, at 0.25-5mM concentrations, on total creatine kinase (tCK) activity from cerebellum, cerebral cortex, cardiac muscle and skeletal muscle homogenates of 30-day-old Wistar rats. CK activity was measured also in the cytosolic (Cy-CK) and mitochondrial (Mi-CK) fractions from cerebellum. We verified that tCK activity was significantly inhibited by LGA in the cerebellum, but not in cerebral cortex, cardiac muscle and skeletal muscle. Furthermore, CK activity from the mitochondrial fraction was inhibited by LGA, whereas that from the cytosolic fraction of cerebellum was not affected by the acid. Kinetic studies revealed that the inhibitory effect of LGA on Mi-CK was non-competitive in relation to phosphocreatine. Finally, we verified that the inhibitory effect of LGA on tCK was fully prevented by pre-incubation of the homogenates with reduced glutathione (GSH), suggesting that this inhibition is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of creatine kinase activity for energy homeostasis, our results suggest that the selective inhibition of this enzyme activity by increased levels of LGA could be possibly related to the cerebellar degeneration characteristically found in patients affected by L-2-hydroxyglutaric aciduria.
Article
L-2-hydroxyglutaric acid (LGA) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-OHGA), an inherited neurometabolic disorder characterized by progressive neurodegeneration with cerebellar and pyramidal signs, mental deterioration, epilepsy, and subcortical leukoencephalopathy. Because the underlying mechanisms of the neuropathology of this disorder are virtually unknown, in this study we tested the in vitro effect of LGA on various parameters of oxidative stress, namely, chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), protein carbonyl formation (PCF), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), and the activities of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase in cerebellum and cerebral cortex of 30-day-old rats. LGA significantly increased chemiluminescence, TBA-RS, and PCF measurements and markedly decreased TAR values in cerebellum, in contrast to TRAP and the activity of the antioxidant enzymes, which were not altered by the acid. Similar but less pronounced effects were provoked by LGA in cerebral cortex. Moreover, the LGA-induced increase of TBA-RS was significantly attenuated by melatonin (N-acetyl-5-methoxytryptamine) and by the combinations of ascorbic acid plus Trolox (soluble alpha-tocopherol) and of superoxide dismutase plus catalase but not by the inhibitor of nitric oxide synthase Nomega-nitro-L-arginine methyl ester (L-NAME), creatine, or superoxide dismutase or catalase alone in either cerebral structure. The data indicate that LGA provokes oxidation of lipids and proteins and reduces the brain capacity to modulate efficiently the damage associated with an enhanced production of free radicals, possibly by inducing generation of superoxide and hydroxyl radicals, which are trapped by the scavengers used. Thus, in case these findings can be extrapolated to human L-OHGA, it may be presumed that oxidative stress is involved in the pathophysiology of the brain damage observed in this disorder.
Article
L-2-Hydroxyglutaric acid (LGA) accumulates and is the biochemical hallmark of the neurometabolic disorder L-2-hydroxyglutaric aciduria (LHGA). Although this disease is predominantly characterized by severe neurological findings and pronounced cerebral atrophy, the pathomechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of LGA (0.1-1 mM) on various parameters of the glutamatergic system, namely the basal and potassium-induced release of L-[3H]glutamate by synaptosomal preparations, Na(+)-dependent L-[3H]glutamate uptake by synaptosomal preparations and Na(+)-independent L-[3H]glutamate uptake by synaptic vesicles, as well as of L-[3H]glutamate binding to synaptic plasma membranes from cerebral cortex of male adult Wistar rats. We observed that LGA significantly increased L-[3H]glutamate uptake into synaptosomes and synaptic vesicles, without altering synaptosomal glutamate release and glutamate binding to synaptic plasma membranes. Although more comprehensive studies are necessary to evaluate the exact role of LGA on neurotransmission, our findings do not support a direct excitotoxic action for LGA. Therefore, other abnormalities should be searched for to explain neurodegeneration of LHGA.