Xavier Saelens

Xavier Saelens
Vlaams Instituut voor Biotechnologie | VIB · Department of Medical Protein Research, UGent

About

263
Publications
42,960
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,590
Citations
Additional affiliations
January 2015 - present
Vlaams Instituut voor Biotechnologie
Position
  • Group Leader
Description
  • Basic and applied research related to influenza, human respiratory syncytial virus and Junin virus.
October 1987 - December 1990
Ghent University
Position
  • PhD Student

Publications

Publications (263)
Preprint
The nature of the interplay between immunity and viral variation is infinitely adaptive. Infection frequently induces immune responses against variation-prone epitopes, rather than against spatially hidden conserved epitopes. It thus remains a substantial challenge to elicit the immune responses to the conserved epitopes providing broad-spectrum im...
Preprint
Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody res...
Article
Full-text available
The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lackin...
Preprint
Monoclonal antibodies are the leading drug of the biopharmaceutical market because of their high specificity and tolerability, but the current CHO-based manufacturing platform remains expensive and time-consuming leading to limited accessibility, especially in the case of diseases with high incidence and pandemics. Therefore, there is an urgent nee...
Preprint
Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody res...
Article
Full-text available
Background SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. Methods Undertaking...
Article
Full-text available
Human metapneumovirus (hMPV) is a leading cause of viral lower respiratory tract disease in children and adults. The hMPV fusion protein F is a trimeric class I fusion protein that is initially synthesized as a precursor (F 0 ) and requires proteolytic activation by a host cell protease to generate the metastable, fusion-competent prefusion conform...
Preprint
Full-text available
Current Influenza virus vaccines primarily induce antibody responses against variable epitopes in hemagglutinin (HA), necessitating frequent updates. However, antibodies against neuraminidase (NA) can also confer protection against influenza, making NA an attractive target for the development of novel vaccines. In this study, we aimed to enhance th...
Article
Full-text available
IL-1R integrates signals from IL-1α and IL-1β, and it is widely expressed across tissues and immune cell types. While the expression pattern and function of IL-1R within the innate immune system is well studied, its role in adaptive immunity, particularly within the CD8 T cell compartment, remains underexplored. Here, we show that CD8 T cells dynam...
Preprint
Full-text available
Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody res...
Preprint
Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody res...
Preprint
Full-text available
Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody res...
Article
Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 re...
Preprint
Human myxovirus resistance 2 (MX2) can potently restrict HIV-1 and herpesviruses at a post-entry step by a process that requires MX2 interaction with the capsids of these viruses. The involvement of other host cell factors in this process, however, remains poorly understood. Here, we mapped the proximity interactome of MX2 revealing strong enrichme...
Article
Full-text available
As small and stable high-affinity antigen binders, VHHs boast attractive characteristics both for therapeutic use in various disease indications, and as versatile reagents in research and diagnostics. To further increase the versatility of VHHs, we explored the VHH scaffold in a structure-guided approach to select regions where the introduction of...
Article
Full-text available
Addressing the elusive specificity of cysteine cathepsins, which in contrast to caspases and trypsin-like proteases lack strict specificity determining P1 pocket, calls for innovative approaches. Proteomic analysis of cell lysates with human cathepsins K, V, B, L, S, and F identified 30,000 cleavage sites, which we analyzed by software platform SAP...
Article
Full-text available
The monitoring of antiviral-resistant influenza virus strains is important for public health given the availability and use of neuraminidase inhibitors and other antivirals to treat infected patients. Naturally occurring oseltamivir-resistant seasonal H3N2 influenza virus strains often carry a glutamate-to-valine substitution at position 119 in the...
Preprint
Currently circulating SARS-CoV-2 variants have gained complete or significant resistance to all SARS-CoV-2-neutralizing antibodies that have been used in the clinic. Such antibodies can prevent severe disease in SARS-CoV-2 exposed patients for whom vaccines may not provide optimal protection. Here, we describe single-domain antibodies (VHHs), also...
Article
Full-text available
Influenza B viruses (IBV) are responsible for a considerable part of the burden caused by influenza virus infections. Since their emergence in the 1980s, the Yamagata and Victoria antigenic lineages of influenza B circulate in alternate patterns across the globe. Furthermore, their evolutionary divergence and the appearance of new IBV subclades com...
Preprint
Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. cFLIP is a crucial regulator of cell death and a substrate of Caspase-8. Yet, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we discovered an essenti...
Article
The pandemic readiness toolbox needs to be extended, targeting different biomolecules, using orthogonal experimental set-ups. Here, we build on our Cov-MS effort using LC-MS, adding SISCAPA technology to enrich proteotypic peptides of the SARS-CoV-2 nucleocapsid (N) protein from trypsin-digested patient samples. The Cov2MS assay is compatible with...
Article
Full-text available
The neuraminidase (NA) is an abundant antigen at the surface of influenza virions. Recent studies have highlighted the immune-protective potential of NA against influenza and defined anti-NA antibodies as an independent correlate of protection. Even though NA head domain changes at a slightly slower pace than hemagglutinin (HA), NA is still subject...
Article
Full-text available
Innate immune responses, including the production of type I and III interferons, play a crucial role in the first line of defense against RSV infection. However, only a poor induction of type I IFNs is observed during RSV infection, suggesting that RSV has evolved mechanisms to prevent type I IFN expression by the infected host cell.
Article
Full-text available
Influenza viruses exhibit considerable diversity between hosts. Additionally, different quasispecies can be found within the same host. High-throughput sequencing technologies can be used to sequence a patient-derived virus population at sufficient depths to identify low-frequency variants (LFV) present in a quasispecies, but many challenges remain...
Article
Full-text available
Migratory dendritic cells expressing CD103 are the targets for mucosal vaccines. These belong to either of two lineage-restricted subsets, cDC1 or cDC2 cells, which have been linked to priming of functionally distinct CD4 T cells. However, recent studies have identified plasticity in cDC2 cells with overlapping functions with cDC1 cells, while the...
Article
Full-text available
Each year, seasonal influenza results in high mortality and morbidity. The current classification of circulating influenza viruses is mainly focused on the hemagglutinin gene. Whole-genome sequencing (WGS) enables tracking mutations across all influenza segments allowing a better understanding of the epidemiological effects of intra- and inter-seas...
Article
Full-text available
The fate of tissue-resident memory CD4 T cells (Trm) has been incompletely investigated. Here we show that intranasal, but not parenteral, immunization with CTA1-3M2e-DD stimulated M2e-specific Th17 Trm cells, which conferred strong protection against influenza virus infection in the lung. These cells rapidly expanded upon infection and effectively...
Article
Full-text available
RIPK3 partially protects against disease caused by influenza A virus (IAV) infection in the mouse model. Here, we compared the immune protection of active vaccination with a universal influenza A vaccine candidate based on the matrix protein 2 ectodomain (M2e) and of passive immunization with anti-M2e IgG antibodies in wild type and Ripk3−/− mice....
Article
Full-text available
Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (...
Article
Full-text available
Influenza neuraminidase (NA) is implicated in various aspects of the virus replication cycle and therefore is an attractive target for vaccination and antiviral strategies. Here we investigated the potential for NA-specific antibodies to interfere with A(H1N1)pdm09 replication in primary human airway epithelial (HAE) cells. Mouse polyclonal anti-NA...
Article
Full-text available
Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recog...
Article
Full-text available
Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) ex...
Article
Full-text available
ISG15 is an interferon-stimulated, ubiquitin-like protein that can conjugate to substrate proteins (ISGylation) to counteract microbial infection, but the underlying mechanisms remain elusive. Here, we use a virus-like particle trapping technology to identify ISG15-binding proteins and discover Ring Finger Protein 213 (RNF213) as an ISG15 interacto...
Article
Full-text available
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, constitutes a tremendous global health issue. Continuous monitoring of the virus has become a cornerstone to make rational decisions on implementing societal and sanitary measures to curtail the virus spread. Additionally, emerging SARS-CoV-2 variants have increased the need for genomic surveilla...
Article
Full-text available
Seasonal influenza epidemics are associated with high mortality and morbidity in the human population. Influenza surveillance is critical for providing information to national influenza programmes and for making vaccine composition predictions. Vaccination prevents viral infections, but rapid influenza evolution results in emerging mutants that dif...
Article
Full-text available
In current seasonal influenza vaccines, neutralizing antibody titers directed against the hemagglutinin surface protein are the primary correlate of protection. These vaccines are, therefore, quantitated in terms of their hemagglutinin content. Adding other influenza surface proteins, such as neuraminidase and M2e, to current quadrivalent influenza...
Article
Full-text available
Broadly protective influenza vaccine candidates may have a higher barrier to immune evasion compared to conventional influenza vaccines. We used Illumina MiSeq deep sequence analysis to study the mutational patterns in A/Puerto Rico/8/34 viruses that evolve in chronically infected SCID mice that were treated with different M2e-specific MAbs.
Preprint
Full-text available
ISG15 is an interferon-stimulated, ubiquitin-like protein that can conjugate to substrate proteins (ISGylation) to counteract microbial infection, but the underlying mechanisms remain elusive. Here, we used a viral-like particle trapping technology to identify ISG15-binding proteins and discovered Ring Finger Protein 213 (RNF213) as an ISG15 intera...
Article
Full-text available
Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract disease, especially in young children and the elderly. The fusion protein (F) exists in a pre- and postfusion conformation and is the main target of RSV-neutralizing antibodies. Highly potent RSV-neutralizing antibodies typically bind sites that are unique to the pr...
Article
Full-text available
RIPK3 was reported to play an important role in the protection against influenza A virus (IAV) in vivo. Here we show that the requirement of RIPK3 for protection against IAV infection in vivo is only apparent within a limited dose range of IAV challenge. We found that this protective outcome is independent from RIPK3 kinase activity and from MLKL....
Preprint
Full-text available
We have identified camelid single-domain antibodies (VHHs) that cross-neutralize SARS-CoV-1 and -2, such as VHH72, which binds to a unique highly conserved epitope in the viral receptor-binding domain (RBD) that is difficult to access for human antibodies. Here, we establish a protein engineering path for how a stable, long-acting drug candidate ca...
Article
A double hit with one antibody construct may avoid viral escape
Article
Full-text available
Sera of camelid species contain a special kind of antibody that consists only of heavy chains. The variable antigen binding domain of these heavy chain antibodies can be expressed as a separate entity, called a single domain antibody that is characterized by its small size, high solubility and oftentimes exceptional stability. Because of this, most...
Article
Full-text available
mRNA-lipoplex vaccines are currently being explored in phase II clinical trials for the treatment of patients with advanced solid tumors. Mechanistically, these mRNA-lipoplex vaccines are characterized by the induction of type I interferon (IFN) centered innate responses. Earlier studies have identified type I IFNs as major regulators of the T cell...
Article
Full-text available
Efcient and safe cell engineering by transfection of nucleic acids remains one of the long-standing hurdles for fundamental biomedical research and many new therapeutic applications, such as CAR T cell-based therapies. mRNA has recently gained increasing attention as a more safe and versatile alternative tool over viral- or DNA transposon-based app...
Article
Full-text available
Annual administration and reformulation of influenza vaccines is required for protection against seasonal infections. However, the induction of strong and long-lasting T cells is critical to reach broad and potentially lifelong antiviral immunity. The NLRP3 inflammasome and its product interleukin-1β (IL-1β) are pivotal mediators of cellular immune...
Article
Full-text available
The small hydrophobic (SH) glycoprotein of human respiratory syncytial virus (RSV) is a transmembrane protein that is poorly accessible by antibodies on the virion but has an ectodomain (SHe) that is accessible and expressed on infected cells. The SHe from RSV strain A has been formulated in DPX, a unique delivery platform containing an adjuvant, a...
Article
Full-text available
Human amyloids have been shown to interact with viruses and interfere with viral replication. Based on this observation, we employed a synthetic biology approach in which we engineered virus-specific amyloids against influenza A and Zika proteins. Each amyloid shares a homologous aggregation-prone fragment with a specific viral target protein. For...
Article
(Cell 181, 1004–1015.e1–e15; May 28, 2020) We recently discovered that two early batches of purified monovalent SARS VHH protein samples were switched during the expression in Pichia pastoris. Although this error had no effect on the biophysical or structural work, nor on the SARS-CoV-1 and −2 cross-reactivity and cross-neutralization demonstrated...
Article
Full-text available
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for man...
Article
Full-text available
To date, mRNA-based biologics have mainly been developed for prophylactic and therapeutic vaccination to combat infectious diseases or cancer. In the past years, optimization of the characteristics of in vitro transcribed mRNA has led to significant reduction of the inflammatory responses. Thanks to this, mRNA therapeutics have entered the field of...
Article
Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with p...
Preprint
Full-text available
Introductory paragraph Since the emergence of SARS-CoV-2 causing COVID-19, the world is being shaken to its core with numerous hospitalizations and hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that productive SARS-CoV-2 infe...
Preprint
Full-text available
The pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV-1) and COVID-19 coronavirus (SARS-CoV-2) have all emerged into the human population with devastating consequences. These viruses make use of a large envelope protein called spike (S) to engage host cell receptors and catal...
Article
Full-text available
Vaccinia viruses (VACV) are a novel class of immune-oncolytic therapeutics and their mechanism of action is based both on their capacity to replicate selectively in cancer cells and to elicit danger signals that can boost anti-tumor immunity. We recently reported that the intratumor expression of MLKL, a necroptosis inducing factor, generates a pro...
Article
Full-text available
Lower respiratory tract infections, such as infections caused by influenza A viruses, are a constant threat for public health. Antivirals are indispensable to control disease caused by epidemic as well as pandemic influenza A. We developed a novel anti-influenza A virus approach based on an engineered single-domain antibody (VHH) construct that can...
Article
Full-text available
There is a pressing need for next-generation influenza vaccine strategies that are better able to manage antigenic drift and the cocirculation of multiple drift variants and that consistently improve vaccine effectiveness. Influenza virus NA is a key target antigen as a component of a next-generation vaccine in the influenza field, with evidence fo...
Article
Full-text available
Human respiratory syncytial virus (RSV) is the most important cause of acute lower respiratory tract disease in infants worldwide. As a first line of defense against respiratory infections, innate immune responses, including the production of type I and III interferons (IFNs), play an important role. Upon infection with RSV, multiple pattern recogn...
Article
Introduction: Human respiratory syncytial virus (RSV) is a major health threat both for the very young and the elderly. With yearly 3.2 million hospital admissions and approximately 118,000 deaths due to RSV in children across the globe, the impact of this infectious disease is very high. Development of a safe RSV vaccine is of utmost importance bu...
Article
Full-text available
Modern molecular medicine demands techniques to efficiently deliver molecules directly into mammalian cells. As proteins are the final mediators of most cellular pathways, efficient intracellular protein delivery techniques are highly desired. In this respect, photoporation is a promising recent technique for the delivery of proteins directly into...
Article
Full-text available
Background: Current human influenza vaccines lack the adaptability to match the mutational rate of the virus and therefore require annual revisions. Because of extensive manufacturing times and the possibility that antigenic alterations occur during viral vaccine strain production, an inherent risk exists for antigenic mismatch between the new inf...
Article
Full-text available
Mx proteins are evolutionarily conserved in vertebrates and can restrict a wide range of viruses in a cell-autonomous way. The contribution to antiviral defense of Mx1 expression in hematopoietic cells remains largely unknown. We show that protection against influenza virus infection requires Mx1 expression in the nonhematopoietic cellular compartm...
Article
The antigenic diversity of human influenza viruses represents a challenge to the development of vaccines with durable immune protection. In addition, small molecule anti-influenza viral drugs can bring clinical relief to influenza patients but the emergence of drug resistant viruses can rapidly limit the effectiveness of such drugs. In the past dec...
Article
Full-text available
Influenza A virions are highly pleomorphic, exhibiting either spherical or filamentous morphology. The influenza A virus strain A/Udorn/72 (H3N2) produces copious amounts of long filaments on the surface of infected cells where matrix protein 1 (M1) and 2 (M2) play a key role in virus filament formation. Previously, it was shown that an anti-M2 ect...
Article
Full-text available
Microneedle arrays (MNAs) are a promising mean to administer vaccines. Without the need of highly trained personnel, MNAs can be applied to deliver vaccines into the dermis, which is well equipped to initiate potent immune responses. While vaccination using dissolving microneedle arrays has been extensively investigated, the use of solid nanoporous...
Article
With few exceptions, all currently marketed antibody therapeutics are IgG molecules. One of the reasons that other antibody isotypes are less developed are the difficulties associated with their purification. While commercial chromatography affinity resins, like staphylococcal superantigen-like 7 (SSL7) protein-containing resin, allow purification...
Article
Full-text available
The influenza A virus matrix protein 2 ectodomain (M2e) is a universal influenza A vaccine candidate. Numerous studies in laboratory mice, but very few in natural influenza A virus hosts, have demonstrated that M2e-based vaccines can provide protection against any influenza A virus challenge. M2e-based immunity is largely accomplished by IgG and ea...
Article
Full-text available
Since their discovery in the 1990s, single-domain antibodies (VHHs), also known as Nanobodies®, have changed the landscape of affinity reagents. The outstanding solubility, stability, and specificity of VHHs, as well as their small size, ease of production and formatting flexibility favor VHHs over conventional antibody formats for many application...
Article
Full-text available
Influenza vaccines: Computational engineering of a broadly protective influenza vaccine The high variability of the influenza virus — arising from its high mutation rate and wide range of strains — limits the effectiveness of influenza vaccines unless they induce a broad immune response, a difficult task when relying on natural viral antigens. Here...
Article
Full-text available
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
Article
Full-text available
The type III interferon (IFN-λ) family includes 4 IFN-λ subtypes in man. In the mouse, only the genes coding for IFN-λ2 and -λ3 are present. Unlike mouse and human type I IFNs (IFN-α/β), which exhibit strong species specificity, type III IFNs were reported to act in a cross-specific manner. We reexamined the cross-specificity and observed that mous...
Article
Full-text available
In recent years, it has become increasingly clear that successful treatment of cancer is possible through the induction of anti-tumor immunity combined with killing of tumor cells. One approach to reach this is to apply cancer vaccines comprising tumor-specific antigens to elicit cellular immunity and chemotherapy to reduce the tumor mass. However,...
Data
FPM2e:NPL vaccine vectors are stable up to 12 months.(A) Characterization of the stability of FPM2e:NPL by native PAGE analysis after 3 months of storage at 4°C (left panel) or 40°C (middle panel) or after 12 months at 4°C (right panel). (B) Characterization of the stability of FPM2e:NPL by SDS-PAGE analysis after 3 months of storage at 4°C (left p...
Data
Size and charge of FPM2e:NPL is stable after 3 months storage. (A) Characterization of the size stability of FPM2e:NPLs after 3 months of storage at 4°C (left panel) or 40°C (right panel). (B) Characterization of the charge stability of FPM2e:NPL after 3 months of storage at 4°C (left panel) or 40°C (right panel). These are representative experimen...
Article
Influenza represents a global public health threat. Currently available influenza vaccines are effective against strain-matched influenza A and B viruses but do not protect against novel pandemic viruses. Vaccine candidates that target conserved B or T cell epitopes of influenza viruses could circumvent this shortcoming. The conserved extracellular...
Article
Full-text available
Cancer immunotherapy can induce durable antitumor responses. However, many patients poorly respond to such therapies. Here we describe a generic antitumor therapy that is based on the intratumor delivery of mRNA that codes for the necroptosis executioner mixed lineage kinase domain-like (MLKL) protein. This intervention stalls primary tumor growth...
Article
Full-text available
Prevention of severe lower respiratory tract infections in infants caused by the human respiratory syncytial virus (hRSV) remains a major public health priority. Currently, the major focus of vaccine development relies on the RSV fusion (F) protein since it is the main target protein for neutralizing antibodies induced by natural infection. The pro...
Article
Despite the many advantages of small interfering RNA (siRNA) inhalation therapy and a growing prevalence of respiratory pathologies, its clinical translation is severely hampered by inefficient intracellular delivery. To this end, we previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel core (nanogel) coated wit...
Article
Full-text available
The syndrome viral haemorrhagic fever (VHF) designates a broad range of diseases that are caused by different viruses including members of the family Arenaviridae. Prophylaxis for Argentine Haemorrhagic Fever (AHF), caused by the arenavirus Junín (JUNV), has been achieved by the use of a live attenuated vaccine, named Candid#1. The standard treatme...
Article
Vaccines that direct the immune response towards conserved B cell epitopes of influenza viruses can provide broad protection. In many instances, this requires the design of vaccine antigens that stimulate the immune system to levels that far exceed the natural responses towards such antigens. Here we focus on the matrix protein 2 ectodomain (M2e) a...
Article
Full-text available
Background: Respiratory Syncytial Virus infection can cause lower respiratory tract infection in older adults comparable to influenza, but no vaccines are available. Methods: This was a randomized, observer blinded first-in-humans study of a novel synthetic RSV antigen SHe, formulated with either the lipid and oil-based vaccine platform, DepoVax...
Article
Improving the immunogenicity of subunit vaccines, in particular skewing of the immune response towards Th1 type immunity, is crucial for the development of effective vaccines against intracellular infections and for the development of anti-cancer vaccines. Small molecule TLR7/8 agonist hold high potential for this purpose, but suffer from an undesi...
Article
Full-text available
There is increasing evidence to suggest that antibodies directed toward influenza A virus (IAV) neuraminidase (NA) are an important correlate of protection against influenza in humans. Moreover, the potential of NA-specific antibodies to provide broader protection than conventional hemagglutinin (HA) antibodies has been recognized. Here, we describ...

Network

Cited By