Daniel Wrapp's research while affiliated with Duke University Medical Center and other places

Publications (72)

Article
Full-text available
Multivalent antigen display is a fast-growing area of interest toward broadly protective vaccines. Current nanoparticle-based vaccine candidates demonstrate the ability to confer antibody-mediated immunity against divergent strains of notably mutable viruses. In coronaviruses, this work is predominantly aimed at targeting conserved epitopes of the...
Article
Full-text available
Respiratory syncytial virus (RSV) causes tens of millions of acute lower respiratory tract infections and millions of hospital admissions globally each year. An antibody repertoire analysis of a human vaccine trial investigating a prefusion-stabilized RSV fusion (F) glycoprotein antigen (DS-Cav1) identified several neutralizing antibody public clon...
Preprint
Full-text available
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which can readily mutate to escape acquired immunity. Other regions in the spike S2 subunit, such as the fusion peptide and the stem helix, are highly conserved across sarbecoviruses and recognized by broadly reactive antibodies, providing hope that ta...
Article
Full-text available
Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral ent...
Article
Full-text available
The envelope glycoprotein (Env) is the main focus of human immunodeficiency virus type 1 (HIV-1) vaccine development due to its critical role in viral entry. Despite advances in protein engineering, many Env proteins remain recalcitrant to recombinant expression due to their inherent metastability, making biochemical and immunological experiments i...
Article
Full-text available
HIV-1 and its SIV precursors share a broadly neutralizing antibody (bNAb) epitope in variable loop 2 (V2) at the envelope glycoprotein (Env) trimer apex. Here, we tested the immunogenicity of germ line-targeting versions of a chimpanzee SIV (SIVcpz) Env in human V2-apex bNAb heavy-chain precursor-expressing knock-in mice and as chimeric simian-chim...
Article
Full-text available
Background Acetaminophen (APAP) overdose is a leading cause of acute liver injury in the US. The Chitinase 3-like-1 (Chi3l1) protein contributes to APAP-induced liver injury (AILI) by promoting hepatic platelet recruitment. Here, we report the development of a Chi3l1-targeting antibody as a potential therapy for AILI. Methods By immunizing a rabbi...
Preprint
Full-text available
The envelope glycoprotein (Env) is the main focus of HIV-1 vaccine development due to its critical role in viral entry. Despite advances in protein engineering, many Env proteins remain recalcitrant to recombinant expression due to their inherent metastability, making biochemical and immunological experiments impractical or impossible. Here we repo...
Preprint
Full-text available
Multivalent antigen display is a fast-growing area of interest towards broadly protective vaccines. Current nanoparticle-based vaccine candidates demonstrate the ability to confer antibody-mediated immunity against divergent strains of notably mutable viruses. In coronaviruses, this work is predominantly aimed at targeting conserved epitopes of the...
Preprint
Full-text available
HIV-1 and its SIV precursors share a broadly neutralizing antibody (bNAb) epitope in variable loop 2 (V2) at the envelope glycoprotein (Env) trimer apex. Here, we tested the immunogenicity of germline-targeting versions of a chimpanzee SIV (SIVcpz) Env in human V2-apex bNAb heavy-chain precursor-expressing knock-in mice and as chimeric simian-chimp...
Article
Full-text available
Although several monoclonal antibodies (mAbs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been approved for coronavirus disease 2019 (COVID-19) therapy, development was generally inefficient, with lead generation often requiring the production and testing of numerous antibody candidates. Here, we report that the inte...
Article
Full-text available
CRISPR-Cas systems are adaptive immune systems that protect prokaryotes from foreign nucleic acids, such as bacteriophages. Two of the most prevalent CRISPR-Cas systems include type I and type III. Interestingly, the type I-D interference proteins contain characteristic features of both type I and type III systems. Here, we present the structures o...
Article
Full-text available
Human cytomegalovirus (HCMV) encodes multiple surface glycoprotein complexes to infect a variety of cell types. The HCMV Pentamer, composed of gH, gL, UL128, UL130, and UL131A, enhances entry into epithelial, endothelial, and myeloid cells by interacting with the cell surface receptor neuropilin 2 (NRP2). Despite the critical nature of this interac...
Preprint
Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but vaccine candidates have faced challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2...
Article
Full-text available
The U.S. FDA has issued emergency use authorizations (EUAs) for multiple investigational monoclonal antibody (MAb) therapies for the treatment of mild to moderate COVID-19.
Article
The severe acute respiratory syndrome coronavirus 2 spike protein is a critical component of coronavirus disease 2019 vaccines and diagnostics and is also a therapeutic target. However, the spike protein is difficult to produce recombinantly because it is a large trimeric class I fusion membrane protein that is metastable and heavily glycosylated....
Article
Full-text available
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages that are more transmissible and resistant to currently approved antibody therapies poses a considerable challenge to the clinical treatment of coronavirus disease (COVID-19). Therefore, the need for ongoing discovery efforts to identify broadly reactive monoclona...
Preprint
Full-text available
Most known SARS-CoV-2 neutralizing antibodies (nAbs), including those approved by the FDA for emergency use, inhibit viral infection by targeting the receptor-binding domain (RBD) of the spike (S) protein. Variants of concern (VOC) carrying mutations in the RBD or other regions of S reduce the effectiveness of many nAbs and vaccines by evading neut...
Preprint
Full-text available
SARS-CoV-2 therapeutic antibody discovery efforts have met with notable success but have been associated with a generally inefficient process, requiring the production and characterization of exceptionally large numbers of candidates for the identification of a small set of leads. Here, we show that incorporating antibody-ligand blocking as part of...
Preprint
The emergence of novel SARS-CoV-2 lineages that are more transmissible and resistant to currently approved antibody therapies poses a considerable challenge to the clinical treatment of COVID-19. Therefore, the need for ongoing discovery efforts to identify broadly reactive monoclonal antibodies to SARS-CoV-2 is of utmost importance. Here, we repor...
Article
Full-text available
The continual emergence of novel coronavirus (CoV) strains, like SARS-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highl...
Article
Full-text available
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics which may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Herein, we...
Article
An effective vaccine for respiratory syncytial virus (RSV) is an unrealized public health goal. A single dose of the prefusion-stabilized fusion (F) glycoprotein subunit vaccine (DS-Cav1) substantially increases serum-neutralizing activity in healthy adults. We sought to determine whether DS-Cav1 vaccination induces a repertoire mirroring the pre-e...
Preprint
Full-text available
Human cytomegalovirus (HCMV) encodes for multiple surface glycoproteins and glycoprotein complexes. One of these complexes, the HCMV Pentamer (gH, gL, UL128, UL130 and UL131), mediates tropism to both epithelial and endothelial cells by interacting with the cell surface receptor neuropilin 2 (NRP2). Despite the critical nature of this interaction,...
Article
Full-text available
A comprehensive understanding of the kinetics and evolution of the human B cell response to SARS-CoV-2 infection will facilitate the development of next-generation vaccines and therapies. Here, we longitudinally profiled this response in mild and severe COVID-19 patients over a period of five months. Serum neutralizing antibody (nAb) responses wane...
Article
Full-text available
Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B -factors and electron density occupancies and are typically B -factor sharpened to improve their contrast and interpretability at high-resolutions. However, ‘over-sharpening’ due to the application of a single global B -factor can distort processed maps causing co...
Article
Full-text available
Targeting sarbecoviruses As we continue to battle the COVID-19 pandemic, we must confront the possibility of new pathogenic coronaviruses emerging in humans in the future. With this in mind, Rappazzo et al. isolated antibodies from a survivor of the 2003 severe acute respiratory syndrome coronavirus (SARS-CoV), used yeast display libraries to intro...
Article
Full-text available
Antibody cocktails represent a promising approach to prevent SARS-CoV-2 escape. The determinants for selecting antibody combinations and the mechanism that antibody cocktails prevent viral escape remain unclear. We compared the critical residues in the receptor-binding domain (RBD) used by multiple neutralizing antibodies and cocktails and identifi...
Conference Paper
Cryo-electron microscopy (cryo-EM) has become a powerful technique for protein structure determination. However, there are still important issues to be addressed, such as, robust sharpening or local B-factors estimations. To address these issues, we present here new local methods to improve the analysis and interpretability of cryo-EM maps.
Preprint
The continual emergence of novel coronavirus (CoV) strains, like SARS-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. Coronavirus spike (S) proteins share common structural motifs that could be vulnerable to cross-reactive antibody responses. To study this phenomenon in human corona...
Article
Full-text available
Bacteria and archaea employ CRISPR (clustered, regularly, interspaced, short palindromic repeats)-Cas (CRISPR-associated) systems as a type of adaptive immunity to target and degrade foreign nucleic acids. While a myriad of CRISPR-Cas systems have been identified to date, type I-C is one of the most commonly found subtypes in nature. Interestingly,...
Preprint
Full-text available
The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. Here, we employed a directed evolution approach to engineer three SARS-CoV-2 antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding acti...
Article
Full-text available
A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the global coronavirus infectious disease (COVID-19) public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved the expression and immunogenicity of betacoronavirus spike proteins1. Using this...
Article
SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characteri...
Article
Full-text available
Using a new consensus-based image-processing approach together with principal component analysis, the flexibility and conformational dynamics of the SARS-CoV-2 spike in the prefusion state have been analysed. These studies revealed concerted motions involving the receptor-binding domain (RBD), N-terminal domain, and subdomains 1 and 2 around the pr...
Article
Full-text available
Human cytomegalovirus (HCMV) is one of the main causative agents of congenital viral infection in neonates. HCMV infection also causes serious morbidity and mortality among organ transplant patients. Glycoprotein B (gB) is a major target for HCMV neutralizing antibodies, yet the underlying neutralization mechanisms remain largely unknown. Here we r...
Article
Full-text available
Stabilizing the prefusion SARS-CoV-2 spike The development of therapeutic antibodies and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is focused on the spike (S) protein that decorates the viral surface. A version of the spike ectodomain that includes two proline substitutions (S-2P) and stabilizes the prefusion con...
Preprint
Full-text available
With the help of novel processing workflows and algorithms, we have obtained a better understanding of the flexibility and conformational dynamics of the SARS-CoV-2 spike in the prefusion state. We have re-analyzed previous cryo-EM data combining 3D clustering approaches with ways to explore a continuous flexibility space based on 3D Principal Comp...
Article
Human cytomegalovirus (HCMV) is the most common congenital infection. A gB subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with var...
Article
Full-text available
Seeking broad protection As scientists develop therapeutic antibodies and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the risk of emergent coronaviruses makes it important to also identify broadly protective antibodies. Wec et al. isolated and characterized hundreds of antibodies against the viral spike protein of...
Preprint
Full-text available
A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid...
Article
(Cell 181, 1004–1015.e1–e15; May 28, 2020) We recently discovered that two early batches of purified monovalent SARS VHH protein samples were switched during the expression in Pichia pastoris. Although this error had no effect on the biophysical or structural work, nor on the SARS-CoV-1 and −2 cross-reactivity and cross-neutralization demonstrated...
Preprint
Full-text available
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has led to accelerated efforts to develop therapeutics, diagnostics, and vaccines to mitigate this public health emergency. A key target of these efforts is the spike (S) protein, a large trimeric class I fusion protein that is metastable and difficult to produce recombinantly in larg...
Article
Full-text available
The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen...
Preprint
Full-text available
Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B-factors and electron density occupancies and are typically B-factor sharpened to improve their contrast and interpretability at high-resolutions. However, 'over-sharpening' due to the application of a single global B-factor can distort processed maps causing conne...
Article
Full-text available
SARS-CoV-2 spike protein, elaborated Vaccine development for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is focused on the trimeric spike protein that initiates infection. Each protomer in the trimeric spike has 22 glycosylation sites. How these sites are glycosylated may affect which cells the virus can infect and could shield som...
Article
Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with p...
Preprint
Full-text available
The emergence of the betacoronavirus, SARS-CoV-2 that causes COVID-19, represents a significant threat to global human health. Vaccine development is focused on the principal target of the humoral immune response, the spike (S) glycoprotein, that mediates cell entry and membrane fusion. SARS-CoV-2 S gene encodes 22 N-linked glycan sequons per proto...
Preprint
Full-text available
The pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV-1) and COVID-19 coronavirus (SARS-CoV-2) have all emerged into the human population with devastating consequences. These viruses make use of a large envelope protein called spike (S) to engage host cell receptors and catal...
Preprint
Full-text available
The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the outbreak of viral pneumonia disease, COVID-19 which first emerged in mid-December 2019 in the city of Wuhan in central China. As of February 25, 2020 there are 80,994 people infected and 2,760 deaths, and documented human-to-human transmission across multiple...
Article
Full-text available
Structure of the nCoV trimeric spike The World Health Organization has declared the outbreak of a novel coronavirus (2019-nCoV) to be a public health emergency of international concern. The virus binds to host cells through its trimeric spike glycoprotein, making this protein a key target for potential therapies and diagnostics. Wrapp et al. determ...
Preprint
Full-text available
The outbreak of a novel betacoronavirus (2019-nCov) represents a pandemic threat that has been declared a public health emergency of international concern. The CoV spike (S) glycoprotein is a key target for urgently needed vaccines, therapeutic antibodies, and diagnostics. To facilitate medical countermeasure (MCM) development we determined a 3.5 Å...
Preprint
Full-text available
Human cytomegalovirus (HCMV) is the most common congenital infection, and the leading nongenetic cause of sensorineural hearing loss (SNHL) in newborns globally. A gB subunit vaccine administered with adjuvent MF59 (gB/MF59) is the most efficacious tested to-date, achieving 50% efficacy in preventing infection of HCMV-seronegative mothers. We recen...
Article
Full-text available
Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damag...
Article
Full-text available
Advances in X-ray crystallography have streamlined the process of determining high-resolution three-dimensional macromolecular structures. However, a rate-limiting step in this process continues to be the generation of crystals that are of sufficient size and quality for subsequent diffraction experiments. Here, iterative screen optimization (ISO),...
Article
Full-text available
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper
Article
Full-text available
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and ho...
Preprint
Full-text available
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and ho...
Article
Full-text available
Respiratory syncytial virus (RSV) is a leading cause of infant mortality, and there are currently no licensed vaccines to protect this vulnerable population. A comprehensive understanding of infant antibody responses to natural RSV infection would facilitate vaccine development. Here, we isolated more than 450 RSV fusion glycoprotein (F)-specific a...
Article
Full-text available
Significance Coronaviruses such as Middle East respiratory syndrome coronavirus (MERS-CoV) cause severe respiratory distress with high fatality rates. The spike (S) glycoprotein is a determinant of host range and is the target of neutralizing antibodies and subunit vaccine development. We describe an engineering strategy for stabilization of solubl...
Article
Prevention of respiratory syncytial virus (RSV) illness in all infants is a major public health priority. However, no vaccine is currently available to protect this vulnerable population. Palivizumab, the only approved agent for RSV prophylaxis, is limited to high-risk infants, and the cost associated with the requirement for dosing throughout the...
Article
Full-text available
Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is th...