Howard Gordon

Howard Gordon
University of Miami | UM · Department of Physics

About

241
Publications
23,260
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
24,375
Citations

Publications

Publications (241)
Article
Full-text available
Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaW...
Article
Full-text available
The upwelling spectral radiance distribution is polarized, and this polarization varies with the optical properties of the water body. Knowledge of the polarized, upwelling, bidirectional radiance distribution function (BRDF) is important for generating consistent, long-term data records for ocean color because the satellite sensors from which the...
Article
Full-text available
We demonstrate a method for estimating absorption and backscattering coefficients by inverting glider-measured profiles of the downwelling irradiance and upwelling radiance. The inversion method was validated against approximately 1,300 profiles of data from 22 glider missions within the Gulf of Maine over a 10 year period. The backscattering coeff...
Article
Full-text available
We challenge a recent paper in this journal suggesting that the well-established formula governing the transmittance of radiance across a refracting interface needs revision [Optics Express, 25(22) 27086 (2017)]. We provide a simple example of radiative transfer across an interface showing that the accepted formula is correct.
Article
Full-text available
We analyze the effects of the sensor signal-to-noise ratio (SNR) requirements for atmospheric correction of satellite ocean color remote sensing using the near-infrared (NIR) and shortwave infrared (SWIR) bands. Using the Gaussian noise model for the sensor noise distribution in the NIR and SWIR bands, some extensive simulations have been carried o...
Article
The upwelling radiance attenuation coefficient KLu in the upper 10 m of the water column can be significantly influenced by inelastic scattering processes and thus will vary even with homogeneous water properties. The Marine Optical Buoy (MOBY), the primary vicarious calibration site for many ocean color sensors, makes measurements of the upwelling...
Article
Full-text available
A simple, surprisingly accurate, method for estimating the influence of Raman scattering on the upwelling light field in natural waters is developed. The method is based on the single (or quasi-single) scattering solution of the radiative transfer equation with the Raman source function. Given the light field at the excitation wavelength, accurate...
Article
Full-text available
Simulated bidirectional reflectance distribution functions (BRDF) were compared with measurements made just beneath the water’s surface. In Case I water, the set of simulations that varied the particle scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models. In Case II water, however, the...
Article
Full-text available
Neutral points are specific directions in the light field where the three Stokes parameters Q, U, V, and thus the degree of polarization simultaneously go to zero. We have made the first measurement of non-principal-plane neutral points in the upwelling light field in natural waters. These neutral points are located at approximately 40°- 80° nadir...
Article
Typically, explanation/interpretation of observed light scattering and absorption properties of marine particles is based on assuming a spherical shape and homogeneous composition. We examine the influence of shape and homogeneity by comparing the optics of randomly-oriented cylindrically-shaped particles with those of equal-volume spheres, in part...
Article
In the first 15 or so years of my 35-year involvement in ocean color remote sensing, I was fortunate to have witnessed and participated in much of the early development of this enterprise. In this chapter I relate those that had a significant impact on the subject and on my own work, and try to describe the historical setting in which they took pla...
Article
A spectral matching algorithm (SMA) that allows atmospheric correction in the presence of dust aerosols is applied to SeaWiFS imagery in the northwest Mediterranean Sea. The goal is to find criteria that could be used to identify SMA target pixels and to gain insights into the method's accuracy relative to the standard SeaWiFS processing scheme (ST...
Article
Full-text available
We used in situ radiance/irradiance profiles to retrieve profiles of the spectral backscattering coefficient for all particles in an E. huxleyi coccolithophore bloom off the coast of Plymouth, UK. At high detached coccolith concentrations the spectra of backscattering all showed a minimum near approximately 550 to 600 nm. Using flow cytometry estim...
Article
Full-text available
Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (b(b)) of the water and its constituents. The absorption coefficient at the mesot...
Article
A method, based on the reciprocity principle of radiative transfer, for using routinely collected field measurements of apparent optical properties in a water body to estimate the total return (time integrated) to an airborne or space borne lidar is presented. It will allow prediction of lidar returns using the databases of apparent optical propert...
Article
Coastal waters (Case 2) are generally more optically complex than oceanic waters and contain much higher quantities of colored detrital matter (CDM, a combination of dissolved organic matter and detrital particulates) as well as suspended sediment. Exclusion of CDM in the retrieval can lead to an overestimation of chlorophyll a concentration (C). W...
Article
We describe in detail the implementation of the spectral optimization algorithm (SOA) for Case 2 waters for processing of ocean color data. This algorithm uses aerosol models and a bio-optical reflectance model to provide the top-of atmosphere (TOA) reflectance. The parameters of both models are then determined by fitting the modeled TOA reflectanc...
Article
The portion of the radiance exiting the ocean and transmitted to the top of the atmosphere (TOA) in a particular direction depends on the angular distribution of the exiting radiance, not just the radiance exiting in the direction of interest. The diffuse transmittance t relates the water component of the TOA radiance to that exiting the water in t...
Article
Recent computations of the backscattering cross section (sigmab) of randomly-oriented disk-like particles (refractive index, 1.20) with small-scale periodic angular internal structure, have been repeated for similarly sized particles, but with the periodic structure replaced by an aperiodic structure. The latter is formed by randomly perturbing a p...
Article
Recent computations of the backscattering cross section of randomly-oriented disk-like particles (refractive index, 1.20) with small-scale internal structure, using the discrete-dipole approximation (DDA), have been repeated using the Rayleigh-Gans approximation (RGA). As long as the thickness of the disks is approximately 20% of the wavelength (or...
Article
The backscattering of light from disklike objects possessing periodic structures (e.g., resembling a wheel with spokes, hereafter called a pinwheel) or an object with a wavelength-sized deviation from a flat disk (e.g., a spherical cap) has been computed by using the discrete dipole approximation. The disks ranged in diameter from 1.5 to 2.7 microm...
Article
Full-text available
We describe a two-band algorithm for the remote quantification of the ocean's suspended calcium carbonate (also known as particulate inorganic carbon (PIC)), based on normalized water-leaving radiance at 440 and 550 nm. We tested this algorithm using ship-derived and satellite-derived results from a variety of marine environments. From this validat...
Article
Full-text available
1] A comprehensive revision of the Coastal Zone Color Scanner (CZCS) data-processing algorithms has been undertaken to generate a revised level 2 data set from the near-8-year archive (1979–1986) collected during this ''proof-of-concept'' mission. The final goal of this work is to establish a baseline for a global, multiyear, multisensor ocean colo...
Article
Many spaceborne sensors have been deployed to image the ocean in the visible portion of the spectrum. Information regarding the concentration of water constituents is contained in the water-leaving radiance-the radiance that is backscattered out of the water and subsequently propagates to the top of the atmosphere. Recognizing that it depends on th...
Article
A spectral optimization algorithm (SOA) has been developed for processing satellite data in marine waters. The algorithm couples an atmospheric aerosol model with a detailed water-reflectance model to simultaneously retrieve both atmospheric and ocean color parameters. A key feature separating SOA from standard algorithms is the retrieval of the ab...
Article
During the southwest monsoon (SWM) in the northern Arabian Sea, the phytoplankton bloom associated with upwelling has remained incompletely characterized by satellite ocean-color observations. This is due to the prevalence of dust storms in the region from May to September that prevents good satellite-derived chlorophyll retrievals. To ameliorate t...
Article
The single-scattering albedo and phase function of African mineral dust are retrieved at 14 wavelengths across the visible spectrum from ground-based measurements of the aerosol optical thickness and the sky radiance taken in the solar principal plane. The retrieval algorithm employs the radiative transfer equation to solve by iteration for these p...
Article
The Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) experience suggests that in most situations the aerosol models presently in use for atmospheric correction of ocean color imagery are sufficient for this task. It has been shown [Appl. Opt. 41, 412 (2002)] that the top-of-atmosphere reflectances computed for more realistic aerosol models differ fr...
Article
We report application and validation of a spectral optimization algorithm for processing SeaWiFS data in Case 1 waters. The algorithm couples a simplified aerosol model with a sophisticated water-reflectance model to simultaneously retrieve both atmospheric and ocean parameters. Two of the retrieved ocean properties—the absorption coefficient of co...
Article
We simulate vicarious calibration (VC) of a Sea-viewing Wide Field-of-view Sensor (SeaWiFS)-like ocean color sensor relative to its longer near infrared (NIR) spectral band (865 nm) to understand the influence of calibration error at 865 nm, which is difficult to assess in orbit. We show that as long as the calibration error at 865 nm less than ∼10...
Article
Our iterative inversion algorithm for retrieving absorption a(z) and backscattering b(b)(z) from profiles of upwelling and downwelling irradiance, on the basis of assuming a depth-independent phase function for the medium, was found to have unsatisfactory accuracy for b(b)(z) in clear waters. We modified the algorithm here by assuming a depth-indep...
Article
Methods for solving the hydrologic-optics inverse problem, i.e., estimating the inherent optical properties of a water body based solely on measurements of the apparent optical properties, are reviewed in detail. A new method is developed for the inverse problem in water bodies in which fluorescence is important. It is shown that in principle, give...
Article
The retrieval of ocean constituents from satellite ocean color measurements is very sensitive to the atmospheric correction. Existing operational algorithms generally fail when strongly absorbing aerosols (pollution, mineral dust ...) are present in the atmosphere. Improved atmospheric correction algorithms, which simultaneous estimate ocean and ae...
Article
The monitoring of chlorophyll concentrations in the north western tropical Atlantic from space is very difficult during spring and summer, because of the quasi-permanent export of massive amounts of mineral dust from Africa. These absorbing aerosols yield the failure of the present operational atmospheric correction algorithms, which are necessary...
Article
Full-text available
The Aerosols99 cruise (January 14 to February 8, 1999) went between Norfolk, Virginia, and Cape Town, South Africa. A Micropulse lidar system was used almost continually during this cruise to profile the aerosol vertical structure. Inversions of this data illustrated a varying vertical structure depending on the dominant air mass. In clean maritime...
Article
Computation of the light scattering properties of marine particles has typically been effected using Mie theory (i.e., modeling the particles as homogeneous or layered spheres). Because scattering by irregularly shaped particles is significantly different from that of spheres, particularly in backscattering directions, it is of interest to examine...
Article
We implemented the spectral optimization algorithm [SOA; Appl. Opt. 37, 5560 (1998)] in an image-processing environment and tested it with Sea-viewing Wide Field-of-View Sensor (SeaWiFS) imagery from the Middle Atlantic Bight and the Sargasso Sea. We compared the SOA and the standard SeaWiFS algorithm on two days that had significantly different at...
Article
Full-text available
We examined blooms of the coccolithophorid E. huxleyi, observed in SeaWiFS imagery, with a new algorithm for the retrieval of detached coccolith concentration. The algorithm uses only SeaWiFS bands in the red and near infrared (NIR) to minimize the influence of the absorption by chlorophyll and dissolved organic material. We used published experime...
Article
The Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra provides significant enhancement of satellite ocean color observations in the areas of data products, algorithm methodology, calibration, and characterization. MODIS demonstrates high sensitivity and resolution, and a suite of 38 data products. In addition to providing continuation...
Article
A method by which to calibrate a spectral radiometer using the sun as the illumination source is discussed. Solar-based calibrations eliminate several uncertainties associated with applying a lamp-based calibration to field measurements. The procedure requires only a calibrated reflectance panel, relatively low aerosol optical depth, and measuremen...
Article
The single-scattering albedo and phase function of African mineral dust are retrieved from ground-based measurements of sky radiance collected in the Florida Keys. The retrieval algorithm employs the radiative transfer equation to solve by iteration for these two properties which best reproduce the observed sky radiance using an assumed aerosol ver...
Article
Full-text available
Airborne plumes of desert dust from North Africa are observable all year on satellite images over the Tropical Atlantic. In addition to its radiative impact, it has been suggested that this mineral dust has a substantial influence on the marine productivity. This effect is however difficult to gauge because present atmospheric correction algorithms...
Article
We modify an algorithm for retrieving the absorption (a) and backscattering (b(b)) coefficient profiles in natural waters by inverting profiles of downwelling and upwelling irradiance so as to include the presence of Raman scattering. For a given wavelength of interest, lambda, the light field at the appropriate Raman excitation wavelength lambda(e...
Article
This document was prepared with Microsoft Word 97 (PC) 2 Abstract We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle c...
Article
A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution or aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izana observatory (IZO), a weather station located on a mountain ridge (28 deg 18'N, 16 deg 30'W, 2367 m asl) near the cent...
Article
We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelomete...
Article
Full-text available
As part of the second Aerosol Characterization Experiment (ACE-2), European urban-marine and African mineral-dust aerosols were measured aboard the Pelican aircraft, the Research Vessel Vodyanitskiy from the ground and from satellites.
Article
Full-text available
A radiometric system, deployed from a ship, is used to measure directly the influence of the presence of breaking waves (whitecaps) on the upwelling radiance above the sea surface. Estimates of their remote sensing augmented spectral reflectance, i.e., the temporally averaged or spatially averaged increase in the ocean's reflectance over and above...
Article
Full-text available
We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements take...
Article
We have examined forty SeaWiFS images acquired during 1997 and 1998 off the west coast of Africa to develop theoretical models of Saharan dust radiative properties that could be used for atmospheric correction in this region, i.e., to predict the dust contribution to the measured reflectance in the visible from that measured in the near infrared (N...
Article
Full-text available
A micro-pulse lidar system (MPL) was used to measure the vertical and horizontal distribution of aerosols during the Aerosol Characterization Experiment 2 (ACE-2) in June and July of 1997. The MPL measurements were made at the Izañ a observatory (IZO), a weather station located on a mountain ridge (28°18∞ N, 16°30∞ W, 2367 m asl) near the center of...
Article
We have reexamined the contribution of Raman scattering to the water-leaving radiance in case 1 waters by carrying out radiative transfer simulations that combine the latest reported measurements of the absorption coefficient of pure water with direct measurements of the spectral variation of the Raman-scattering coefficient. The resulting contribu...
Article
Knowledge of the directional and hemispherical reflectance properties of natural surfaces such as soils and vegetation canopies is essential for classification studies and canopy model inversion. The Multi-angle Imaging SpectroRadiometer an instrument to be launched in 1998 onboard the platform, will make global observations of the Earth's surface...
Article
The Multi-angle Imaging SpectroRadiometer instrument is scheduled for launch aboard the first of the Earth Observing System spacecraft, EOS-AM1. MISR will provide global, calibrated, and co-registered imagery at nine discrete viewing angles and four spectral bands. Algorithms developed specifically to capitalize on this measurement strategy will be...
Article
Aerosols are small particles suspended in the atmosphere for periods ranging from hours to years in length, and may be derived from natural or anthropogenic sources. The aerosols perturb the radiation balance in the atmosphere by scattering and absorbing sunlight, and by serving as cloud condensation nuclei. Recent climate studies have shown that a...
Article
When strongly absorbing aerosols are present in the atmosphere, the usual two-step procedure of processing ocean color data-(1) atmospheric correction to provide the water-leaving reflectance (rho(w)), followed by (2) relating rho(w) to the water constituents-fails and simultaneous estimation of the ocean and aerosol optical properties is necessary...
Article
Full-text available
Aerosols are believed to play a direct role in the radiation budget of Earth, but their net radiative effect is not well established, particularly on regional scales. Whether aerosols heat or cool a given location depends on their composition and column amount and on the surface albedo, information that is not routinely available, especially over l...
Article
Full-text available
The Multi-angle Imaging SpectroRadiometer (MISR) instrument is scheduled for launch aboard the first of the Earth Observing System (EOS) spacecraft, EOS-AM1. MISR will provide global, radiometrically calibrated, georectified, and spatially coregistered imagery at nine discrete viewing angles and four visible/near-infrared spectral bands. Algorithms...
Article
Full-text available
Knowledge of the directional and hemispherical reflectance properties of natural surfaces, such as soils and vegetation canopies, is essential for classification studies and canopy model inversion. The Multi-angle Imaging SpectroRadiometer (MISR), an instrument to be launched in 1998 onboard the EOS-AM1 platform, will make global observations of th...
Article
Full-text available
The Moderate Resolution Imaging Spectroradiometer (MODIS) will add a significant new capability for investigating the 70% of the Earth's surface that is covered by oceans, in addition to contributing to the continuation of a decadal scale time series necessary for climate change assessment in the oceans. Sensor capabilities of particular importance...
Article
A full multiple-scattering algorithm for inverting profiles of the upwelling and downwelling irradiances to yield profiles of the absorption and backscattering coefficients in a vertically stratified water body is described and tested with simulated data. The algorithm does not require knowledge of the scattering phase function of the medium. The r...
Article
Full-text available
A measurement system for determining the spectral reflectance of whitecaps in the open ocean is described. The upwelling radiance is obtained from a ship by observing a small region of the water surface over time using a six-channel radiometer (410, 440, 510, 550, 670, and 860 nm) extended from the bow of the ship. Downwelling irradiance is simulta...
Article
To recover the ocean water-leaving radiance and derive biophysical parameters from observations of space-borne ocean color sensors, the required uncertainty in the measured top-of-atmosphere radiance is at present impossible to achieve prior to launch. A methodology and strategy for achieving the required uncertainty in the post-launch era is prese...
Article
We present a retrieval scheme that can be used to derive the aerosol phase function and single-scattering albedo from the sky radiance over land. The retrieval algorithm iteratively corrects the aerosol volume scattering function, the product of the single-scattering albedo and the phase function, based on the difference between the measured sky ra...
Article
Current atmospheric correction and aerosol retrieval algorithms for ocean color sensors use measurements of the top-of-the-atmosphere reflectance in the near infrared, where the contribution from the ocean is known for case 1 waters, to assess the aerosol optical properties. Such measurements are incapable of distinguishing between weakly and stron...
Article
Full-text available
We investigate the roles of climate forcings and chaos (unforced variability) in climate change via ensembles of climate simulations in which we add forcings one by one. The experiments suggest that most interannual climate variability in the period 1979-1996 at middle and high latitudes is chaotic. But observed SST anomalies, which themselves are...
Article
Two factors influence the diffuse transmittance (t) of water-leaving radiance (L(w)) to the top of the atmosphere: the angular distribution of upwelling radiance beneath the sea surface (L(u)) and the concentration and optical properties of aerosols in the atmosphere. We examine these factors and (1) show that the error in L(w) that is induced by a...
Article
We have extended the Wang-Gordon [Appl. Opt. 32, 4598-4609 (1993)] and Gordon-Zhang [Appl. Opt.34, 5552-5555 (1995)] algorithms for retrieval of omega(0)P(?, where omega(0) is the aerosol single-scattering albedo and P(?) is the aerosol phase function for scattering through an angle ?, from measurement of the radiances exiting the top and the botto...
Article
We provide an analysis of the influence of instrument polarization sensitivity on the radiance measured by spaceborne ocean color sensors. Simulated examples demonstrate the influence of polarization sensitivity on the retrieval of the water-leaving reflectance rho(w). A simple method for partially correcting for polarization sensitivity--replacing...
Article
Full-text available
The launch of ADEOS in August 1996 with POLDER, TOMS, and OCTS instruments on board and the future launch of EOS-AM 1 in mid-1998 with MODIS and MISR instruments on board start a new era in remote sensing of aerosol as part of a new remote sensing of the whole Earth system (see a list of the acronyms in the Notation section of the paper). These pla...
Article
Full-text available
By validation of atmospheric correction, we mean quantification of the uncertainty expected to be associated with the retrieval of the water-leaving radiance from the measurement of the total radiance exiting the ocean-atmosphere system. This uncertainty includes that associated with the measurement or estimation of auxiliary data required for the...
Article
Sensors that can be used for the observation of ocean color in NASA's Earth Observing System era (SeaWiFS, MODIS, and MISR) have been designed with 2-4 times the radiometric sensitivity of the proof-of-concept ocean color instrument CZCS (coastal zone color scanner). To realize an improvement in the retrieval of biologically important ocean paramet...
Article
A full multiple-scattering algorithm for inverting upwelling radiance (L(u)) or irradiance (E(u)) and downwelling irradiance (E(d)) profiles in homogeneous natural waters to obtain the absorption (a) and backscattering (b(b)) coefficients is described and tested with simulated data. An attractive feature of the algorithm is that it does not require...
Article
We report a sensitivity analysis for the algorithm presented by Gordon and Zhang [Appl. Opt. 34, 5552 (1995)] for inverting the radiance exiting the top and bottom of the atmosphere to yield the aerosol-scattering phase function [P(?)] and single-scattering albedo (omega(0)). The study of the algorithm's sensitivity to radiometric calibration error...
Article
Significant accomplishments made during the present reporting period are as follows: (1) We developed a new method for identifying the presence of absorbing aerosols and, simultaneously, performing atmospheric correction. The algorithm consists of optimizing the match between the top-of-atmosphere radiance spectrum and the result of models of both...
Article
The reflectance of white caps in the open ocean is obtained with a 6-channel spectral radiometer, extended from the bow of a ship, at wavelengths; 410, 440, 510, 670 and 860 nm. In addition to reflectance data, air/water temperature, wind speed and direction are obtained as well as GPS information in order to characterize ocean surface conditions....
Article
We present sketches of the solution of several inverse problems in environmental optics. The solutions include all significant orders of multiple scattering and have the attribute that, when the retrieved optical properties are substituted into the radiative transfer equation, they accurately reproduce the given apparent optical properties.
Article
Using simulations, we determine the influence of stratospheric aerosol and thin cirrus clouds on the performance of the proposed atmospheric correction algorithm for the moderate resolution imaging spectroradiometer (MODIS) data over the oceans. Further, we investigate the possibility of using the radiance exiting the top of the atmosphere in the 1...
Conference Paper
Based on an algorithm presented by Wang and Gordon ¹ for estimating the aerosol scattering phase function P 11 (Θ) and single scattering albedo ω 0 from measurements of sky radiance and aerosol optical thickness over the oceans, we formulated and tested 2,3 an extension that utilizes the radiance reflected from the ocean atmosphere system (e.g., me...
Article
There is interest in the prediction of the top-of-the-atmosphere (TOA) reflectance of the ocean-atmosphere system for in-orbit calibration of ocean color sensors. With the use of simulations, we examine the accuracy one could expect in estimating the reflectance ρ(T) of the ocean-atmosphere system based on a measurement suite carried out at the sea...
Article
The governing equations are developed for the marine asymptotic daylight field in the scalar approximation, including the effects of inelastic processes-Raman scattering and chromophoric dissolved organic matter fluorescence. The governing equations are solved numerically and compared with Monte Carlo simulations. It is found that these solutions a...
Article
Sky-radiance measurements at the sea surface can be used to estimate radiative properties of aerosols over water. We demonstrate, through Monte Carlo simulations, that significant perturbations to sky radiance over the ocean can occur when measurements are carried out with radiometers located on islands. In particular, we present examples of the in...
Article
Full-text available
A methodology for delineating the influence of finite spectral bandwiths and significant out-of-band response of sensors is developed and applied to the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS). For engineering purposes, the approach allows one to assess easily the potential of a particular sensor design for meeting the system performance re...
Article
We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced...
Article
We report an algorithm that can be used to invert the radiance exiting the top and bottom of the atmosphere to yield the columnar optical properties of atmospheric aerosol under clear sky conditions over the oceans. The method is an augmentation of a similar algorithm presented by Wang and Gordon [Appl. Opt. 32, 4598 (1993)] that used only sky radi...
Article
The contribution of inelastic scattering processes (scattering with a change in wavelength) to the light field in the ocean can be measured directly by observing the apparent decrease in absorption (line filling) of the Fraunhofer absorption lines in the solar spectrum. An instrument possessing very high spectral resolution has been developed to di...
Article
Two satellite-borne ocean-color sensors scheduled for launch in the mid 1990's each have a spectral band (nominally 745-785 nm) that completely encompasses the O2 A band at 762 nm. These spectral bands are to be used in atmospheric correction of the color imagery by assessment of the aerosol contribution to the total radiance at the sensor. The eff...
Article
The authors present a simple modification to the standard coastal zone color scanner (CZCS) atmospheric correction algorithm for application to Sea-viewing-wide-field-of-view-sensor (SeaWiFS). The modification reduces the error in the water-leaving reflectance using the standard algorithm by a factor of 2--6 when the aerosol behaves as predicted by...
Article
The effects of oceanic whitecaps on ocean-color imagery are simulated and inserted into the proposed Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) atmospheric-correction algorithm to understand its tolerance to error in the estimated whitecap contribution. The results suggest that for wind speeds ≲ 10-12 m/s, present models that relate whitecap r...
Article
We describe a method by which the aerosol component of the radiance at the top of the atmosphere (TOA) can be synthesized from the radiances generated by individual components of the aerosol size-refractive-index distribution. The method is exact in the single-scattering approximation. For regimes in which the single-scattering approximation is not...

Network

Cited By