Bryan A FranzNASA Goddard Space Flight Center, Greenbelt, MD, United States · Ocean Ecology Laboratory
Bryan A Franz
About
218
Publications
79,681
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,228
Citations
Introduction
Additional affiliations
January 1996 - present
Position
- Assistant Chief for Science Research
January 1996 - present
Position
- Ocean Remote Sensing: Ocean Color
January 1990 - January 1996
Position
- COBE Project: Cosmic Background
Publications
Publications (218)
NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, recently launched in February 2024, carries two multiangle polarimeters (MAPs): the UMBC Hyper-Angular Rainbow Polarimeter (HARP2) and SRON Spectropolarimeter for Planetary Exploration One (SPEXone). Measurements from these MAPs will greatly advance ocean ecosystem and aerosol studies...
We report on observed trend anomalies in climate-relevant global ocean biogeochemical properties, as derived from satellite ocean color measurements, that show a substantial decline in phytoplankton carbon concentrations following eruptions of the submarine volcano Hunga Tonga-Hunga Ha’apai in January 2022. The anomalies are seen in remotely-sensed...
Spectral remote sensing reflectance, R rs(λ) (sr⁻¹), is the fundamental quantity used to derive a host of bio-optical and biogeochemical properties of the water column from satellite ocean color measurements. Estimation of uncertainty in those derived geophysical products is therefore dependent on knowledge of the uncertainty in satellite-retrieved...
The University of Maryland, Baltimore County (UMBC) Hyper-Angular Rainbow Polarimeter (HARP2) will be on board NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in January 2024. In this study we systematically evaluate the retrievability and uncertainty of aerosol and ocean parameters from HARP2 multi-angle polar...
We report on observed trend anomalies in climate-relevant global ocean biogeochemical properties, as derived from satellite ocean color measurements, that show a substantial decline in phytoplankton carbon concentrations following eruptions of the submarine volcano Hunga Tonga-Hunga Ha'apai in January 2022. The anomalies are seen in remotely-sensed...
Accurate long-term sensor calibration and periodic reprocessing to ensure consistency and continuity of atmospheric , land and ocean geophysical retrievals from space within the mission period and across different missions is a major requirement of climate data records. In this work, we applied the Multi-Angle Implementation of Atmospheric Correcti...
The UMBC Hyper-Angular Rainbow Polarimeter (HARP2) will be onboard NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in January 2024. In this study we systematically evaluate the retrievability and uncertainty of aerosol and ocean parameters from HARP2 multi-angle polarimeter (MAP) measurements. To reduce the com...
We investigated the optimal number of independent parameters required to accurately represent spectral remote sensing reflectances ( ${R_{\textit{rs}}}$ R rs ) by performing principal component analysis on quality controlled in situ and synthetic ${R_{\textit{rs}}}$ R rs data. We found that retrieval algorithms should be able to retrieve no more th...
Multi-angle polarimetric (MAP) measurements contain rich information for characterization of aerosol microphysical and optical properties that can be used to improve atmospheric correction in ocean color remote sensing. Advanced retrieval algorithms have been developed to obtain multiple geophysical parameters in the atmosphere–ocean system, althou...
Multi-angle polarimetric (MAP) measurements contain rich information for characterization of aerosol microphysical and optical properties that can be used to improve atmospheric correction in ocean color remote sensing. Advanced retrieval algorithms have been developed to obtain multiple geophysical parameters in the atmosphere-ocean system, althou...
Instantaneous photosynthetically available radiation (IPAR) at the ocean surface and its vertical profile below the surface play a critical role in models to calculate net primary productivity of marine phytoplankton. In this work, we report two IPAR prediction models based on the neural network (NN) approach, one for open ocean and the other for c...
Multi-angle polarimetric (MAP) measurements can enable detailed characterization of aerosol microphysical and optical properties and improve atmospheric correction in ocean color remote sensing. Advanced retrieval algorithms have been developed to obtain multiple geophysical parameters in the atmosphere–ocean system. Theoretical pixel-wise retrieva...
The spectral distribution of marine remote sensing reflectance, Rrs, is the fundamental measurement of ocean color science, from which a host of bio-optical and biogeochemical properties of the water column can be derived. Estimation of uncertainty in these derived properties is thus dependent on knowledge of the uncertainty in satellite-retrieved...
Patterns of variability in ocean properties are often closely related to large-scale climate pattern
indices, and 2021 is no exception. The year 2021 started and ended with La Niña conditions,
charmingly dubbed a “double-dip” La Niña. Hence, stronger-than-normal easterly trade winds
in the tropical south Pacific drove westward surface current anoma...
Ocean color (OC) remote sensing requires compensation for atmospheric scattering and absorption (aerosol, Rayleigh, and trace gases), referred to as atmospheric correction (AC). AC allows inference of parameters such as spectrally resolved remote sensing reflectance ( ${R_{\rm{rs}}}(\lambda);\;{\rm{s}}{{\rm{r}}^{- 1}}$ R r s ( λ ) ; s r − 1 ) at th...
We recount, based on our involvements in NASA ocean color flight projects, the chronology of technical challenges, lessons learned, and key developments over the past 40 + years of NASA satellite ocean color, beginning with the Nimbus-7/Coastal Zone Color Scanner, that have led to the upcoming Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) missio...
Multi-angle polarimetric (MAP) measurements can enable detailed characterization of aerosol microphysical and optical properties and improve atmospheric correction in ocean color remote sensing. Advanced retrieval algorithms have been developed to obtain multiple geophysical parameters in the atmosphere-ocean system. Theoretical pixel-wise retrieva...
Uncertainties in the retrieval of the remote sensing reflectance, Rrs, from Ocean Color (OC) satellite sensors have a strong impact on the performance of algorithms for the estimation of chlorophyll-a, mineral concentrations, and inherent optical properties (IOPs). The uncertainties are highest in the blue bands. The total radiance measured at the...
A radiative transfer simulator was developed to compute the synthetic data of all three instruments onboard NASA’s Plankton Aerosol, Cloud, ocean Ecosystem (PACE) observatory, and at the top of the atmosphere (TOA). The instrument suite includes the ocean color instrument (OCI), the Hyper-Angular Rainbow Polarimeter 2 (HARP2), and the Spectro-Polar...
Numerous assumptions and approximations are employed when translating satellite-derived radiance to surface remote sensing reflectance (
$R_{\mathrm {RS}}$
) for ocean color applications. Among these is the vicarious calibration coefficient (
$g$
) of the “long” near infrared band (NIR
$_{\mathrm {L}}$
) used for atmospheric correction. For this...
Remote sensing measurements from multi-angle polarimeters (MAPs) contain rich aerosol microphysical property information, and these sensors have been used to perform retrievals in optically complex atmosphere and ocean systems. Previous studies have concluded that, generally, five moderately separated viewing angles in each spectral band provide su...
This chapter details 2020 global patterns in select observed oceanic physical, chemical, and biological variables relative to long-term climatologies, their differences between 2020 and 2019, and puts 2020 observations in the context of the historical record.
Generation of consistent multi-sensor datasets is critical to the assessment of long-term global changes using satellite-borne instruments. Recent research suggests, however, that a fundamental assumption in satellite ocean color data processing concerning the calibration of the long near infrared band (i.e., 865 nm for MODIS) may introduce sensor-...
NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in the timeframe of 2023, will carry a hyperspectral scanning radiometer named the Ocean Color Instrument (OCI) and two multi-angle polarimeters (MAPs): the UMBC Hyper-Angular Rainbow Polarimeter (HARP2) and the SRON Spectro-Polarimeter for Planetary EXploration o...
Since early 2000, NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument has been performing remote sensing retrievals of aerosol optical properties from the polar-orbiting Terra spacecraft. A noteworthy aspect of MISR observations over the ocean is that, for much of the Earth, some of the multi-angle views have contributions from solar ref...
NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in the timeframe of 2023, will carry a hyperspectral Ocean Color Instrument (OCI) and two Multi-Angle Polarimeters (MAP): the UMBC Hyper-Angular Rainbow Polarimeter (HARP2) and the SRON Spectro-Polarimeter for Planetary EXploration one (SPEXone). The MAP measureme...
We developed a fast and accurate polynomial based atmospheric correction (POLYAC) algorithm for hyperspectral radiometric measurements, which parameterizes the atmospheric path radiances using aerosol properties retrieved from co-located multi-wavelength multi-angle polarimeter (MAP) measurements. This algorithm has been applied to co-located spect...
Since early 2000, NASA's Multi-angle Imaging SpectroRadiometer (MISR) instrument has been performing remote sensing retrievals of aerosol optical properties from the polar orbiting Terra spacecraft. A noteworthy aspect of MISR observations over the ocean is that, for much of the Earth, some of the multi-angle views have contributions from solar ref...
NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in the time frame of late 2022 to early 2023, will carry the Ocean Color Instrument (OCI), a hyperspectral scanning radiometer, and two multiangle polarimeters (MAPs), the UMBC Hyper-Angular Rainbow Polarimeter 2 (HARP2) and the SRON Spectro-Polarimeter for Planet...
Satellite ocean color missions require accurate system vicarious calibrations (SVC) to retrieve the relatively small remote-sensing reflectance (R
<sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">rs</sub>
, sr
<sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"...
Remote sensing of global ocean color is a valuable tool for understanding the ecology and biogeochemistry of the worlds oceans, and provides critical input to our knowledge of the global carbon cycle and the impacts of climate change. Ocean polarized reflectance contains information about the constituents of the upper ocean euphotic zone, such as c...
Abstract. NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in the timeframe of late 2022 to early 2023, will carry the Ocean Color Instrument (OCI), a hyperspectral scanning radiometer, and two multi-angle polarimeters (MAP), the UMBC Hyper-Angular Rainbow Polarimeter (HARP2) and the SRON Spectro-Polarimeter for...
Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high...
Remote-sensing ocean color products have stringent requirements on radiometric calibration stability. To address a calibration deficiency in Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua in recent years, the NASA Ocean Biology Processing Group (OBPG) developed a new calibration for reflective solar bands. Prior to the reprocessing of N...
Spectrally resolved water-leaving radiances (ocean colour) and inferred chlorophyll concentration are key to studying phytoplankton dynamics at seasonal and inter-annual scales, for a better understanding of the role of phytoplankton in marine biogeochemistry; the global carbon cycle; and the response of marine ecosystems to climate variability, ch...
The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will carry into space the Ocean Color Instrument (OCI), a spectrometer measuring at 5 nm spectral resolution in the ultraviolet (UV) to near infrared (NIR) with additional spectral bands in the shortwave infrared (SWIR), and two multi-angle polarimeters that will overlap the OCI spectral...
The Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission presents new opportunities and new challenges in applying observations of two complementary multi-angle polarimeters for the space-based retrieval of global aerosol properties. Aerosol remote sensing from multi-angle radiometric-only observations enables aerosol characterization to a gre...
NASA’s Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) satellite mission is scheduled to launch in 2022, with the Ocean Color Instrument (OCI) on board. For the first time reflected sunlight from the Earth across a broad spectrum from the ultraviolet (UV: 350 nm) to the short wave infrared (SWIR: 2260 nm) will be measured from a single instrument...
Ocean color remote sensing is a challenging task over coastal waters due to the complex optical properties of aerosols and hydrosols. In order to conduct accurate atmospheric correction, we previously implemented a joint retrieval algorithm, hereafter referred to as the Multi-Angular Polarimetric Ocean coLor (MAPOL) algorithm, to obtain the aerosol...
National Aeronautics and Space Administration's (NASA's) current atmospheric correction (AC) algorithm for ocean color utilizes two bands and their ratio in the near infrared (NIR) to estimate aerosol reflectance and aerosol type. The algorithm then extrapolates the spectral dependence of aerosol reflectance to the visible wavelengths based on mode...
Passive ocean color images have provided a sustained synoptic view of the distribution of ocean optical properties and color and biogeochemical parameters for the past 20-plus years. These images have revolutionized our view of the ocean. Remote sensing of ocean color has relied on measurements of the radiance emerging at the top of the atmosphere,...
Passive ocean color images have provided a sustained synoptic view of the distribution of ocean optical properties and color and biogeochemical parameters for the past 20-plus years. These images have revolutionized our view of the ocean. Remote sensing of ocean color has relied on measurements of the radiance emerging at the top of the atmosphere,...
The Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) mission represents the National Aeronautics and Space Administration’s (NASA) next investment in satellite ocean color and the study of Earth’s ocean–atmosphere system, enabling new insights into oceanographic and atmospheric responses to Earth’s changing climate. PACE objectives include extendin...
Ocean color remote sensing is a challenging task over coastal waters due to the complex optical properties of aerosols and hydrosols. In order to conduct accurate atmospheric correction, we previously implemented a joint retrieval algorithm to obtain the aerosol and water leaving signal simultaneously. The algorithm has been validated with syntheti...
A recently developed algorithm to estimate surface ocean chlorophyll a concentrations (Chl in mg m⁻³), namely, the ocean color index (OCI) algorithm, has been adopted by the U.S. National Aeronautics and Space Administration to apply to all satellite ocean color sensors to produce global Chl maps. The algorithm is a hybrid between a band‐difference...
Short-term (sub-diurnal) biological and biogeochemical processes cannot be fully captured by the current suite of polar-orbiting satellite ocean color sensors, as their temporal resolution is limited to potentially one clear image per day. Geostationary sensors, such as the Geostationary Ocean Color Imager (GOCI) from the Republic of Korea, allow t...
A key on-orbit calibration step for satellite remote sensing of ocean color is the vicarious calibration. This establishes the final gains for each spectral band on the sensor that minimize bias in the retrieved ocean color signal. The vicarious calibration is specific to the instrument and the atmospheric correction algorithm. The vicarious calibr...
The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE; https://pace.gsfc.nasa.gov) mission represents
NASA’s next great investment in satellite ocean color and the combined study of Earth’s oceanatmosphere system.
Short-term (hours) biological and biogeochemical processes cannot be fully captured by the current suite of polar-orbiting satellite ocean color sensors, as their temporal resolution is limited to potentially one clear image per day. Geostationary sensors, such as the Geostationary Ocean Color Imager (GOCI) from the Republic of Korea, allow the stu...