ArticleLiterature Review

Delivery of RNAi mediators

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Delivering polynucleotides into animals has been a major challenge facing their success as therapeutic agents. Given the matured understanding of antibody‐mediated delivery techniques, it is possible to rationally design delivery vehicles that circulate in the blood stream and are specifically delivered into target organs. If the targeting moiety is designed to contain the cargo of an RNAi mediator without impacting its paratope, directed delivery can be achieved. In this article, we review the state of art in delivery technology for RNA mediators and address how this technique could soon be used to enhance the efficacy of the numerous small RNA therapeutic programs currently under evaluation. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The concept of RNAi (RNA interference) has emerged with the revelation that doublestranded ribonucleic acid (dsRNA) can induce mRNA degradation. As a natural mechanism, RNAi mediators can regulate target gene silencing in the majority of eukaryotic cells [1]. Small interfering RNA (siRNA), which is a short stretch of dsRNA consisting of 20-25 nucleotides, is the most noticeable candidate among the several varieties of nucleic acids involved in RNAi. ...
Article
Full-text available
The development of siRNA technology has provided new opportunities for gene-specific inhibition and knockdown, as well as new ideas for the treatment of disease. Four siRNA drugs have already been approved for marketing. However, the instability of siRNA in vivo makes systemic delivery ineffective. Inhaled siRNA formulations can deliver drugs directly to the lung, showing great potential for treating respiratory diseases. The clinical applications of inhaled siRNA formulations still face challenges because effective delivery of siRNA to the lung requires overcoming the pulmonary and cellular barriers. This paper reviews the research progress for siRNA inhalation formulations for the treatment of various respiratory diseases and summarizes the chemical structural modifications and the various delivery systems for siRNA. Finally, we conclude the latest clinical application research for inhaled siRNA formulations and discuss the potential difficulty in efficient clinical application.
... Novel targets emerging from human genome and epigenome research An increasing spectrum of endogenous ncRNAs is employed for the development of novel therapeutic ncRNA tools optimized for specific therapeutic requirements. 88,[243][244][245][246][247][248] ncRNAs are not only employed as tools, but the exploration of the non-coding human genome has also greatly expanded the spectrum of possible therapeutic targets. Figure 7 puts the number of protein-coding genes into relation with the largely unexplored universe of non-coding (regulatory, architectural) transcripts including microRNAs (miRs), lncRNAS, circRNAs, and others. ...
Article
Nucleic acid-based therapeutics are currently developed at large scale for prevention and management of cardiovascular diseases (CVDs), since: (i) genetic studies have highlighted novel therapeutic targets suggested to be causal for CVD; (ii) there is a substantial recent progress in delivery, efficacy, and safety of nucleic acid-based therapies; (iii) they enable effective modulation of therapeutic targets that cannot be sufficiently or optimally addressed using traditional small molecule drugs or antibodies. Nucleic acid-based therapeutics include (i) RNA-targeted therapeutics for gene silencing; (ii) microRNA-modulating and epigenetic therapies; (iii) gene therapies; and (iv) genome-editing approaches (e.g. CRISPR-Cas-based): (i) RNA-targeted therapeutics: several large-scale clinical development programmes, using antisense oligonucleotides (ASO) or short interfering RNA (siRNA) therapeutics for prevention and management of CVD have been initiated. These include ASO and/or siRNA molecules to lower apolipoprotein (a) [apo(a)], proprotein convertase subtilisin/kexin type 9 (PCSK9), apoCIII, ANGPTL3, or transthyretin (TTR) for prevention and treatment of patients with atherosclerotic CVD or TTR amyloidosis. (ii) MicroRNA-modulating and epigenetic therapies: novel potential therapeutic targets are continually arising from human non-coding genome and epigenetic research. First microRNA-based therapeutics or therapies targeting epigenetic regulatory pathways are in clinical studies. (iii) Gene therapies: EMA/FDA have approved gene therapies for non-cardiac monogenic diseases and LDL receptor gene therapy is currently being examined in patients with homozygous hypercholesterolaemia. In experimental studies, gene therapy has significantly improved cardiac function in heart failure animal models. (iv) Genome editing approaches: these technologies, such as using CRISPR-Cas, have proven powerful in stem cells, however, important challenges are remaining, e.g. low rates of homology-directed repair in somatic cells such as cardiomyocytes. In summary, RNA-targeted therapies (e.g. apo(a)-ASO and PCSK9-siRNA) are now in large-scale clinical outcome trials and will most likely become a novel effective and safe therapeutic option for CVD in the near future. MicroRNA-modulating, epigenetic, and gene therapies are tested in early clinical studies for CVD. CRISPR-Cas-mediated genome editing is highly effective in stem cells, but major challenges are remaining in somatic cells, however, this field is rapidly advancing.
... Polynucleotides require a delivery vehicle to protect them from degradation in the circulatory system and allow them to enter the tissue or cells of interest [7]. Thus, the development of efficient and safe delivery vehicles for polynucleotides remains a challenge facing their success as therapeutic agents. ...
Article
Full-text available
Chronic pancreatitis leads to irreversible damage in pancreatic endocrine and exocrine functions. However, there is no clinically available antifibrotic drug. Pancreatic stellate cells (PSCs) can be activated by Toll-like receptor 4 (TLR4) responses to its ligands and they contribute to the formation of pancreatic fibrosis. Silencing the expression of TLR4 in PSCs by RNAi may be a novel therapeutic strategy for the treatment of pancreatic fibrosis. In addition, PSCs have a remarkable capacity for vitamin A uptake most likely through cellular retinol binding protein (CRBP). In our study, to ensure the efficient delivery of RNAi therapeutic agents to PSCs, VitA-coupled liposomes (VA-lips) were used as drug carriers to deliver plasmids expressing TLR4-specific short hairpin RNA (shRNA) to treat pancreatic fibrosis. Our study demonstrated that silencing the expression of TLR4 could induce mitochondrial apoptosis in aPSCs and might be an effective therapeutic strategy for the treatment of pancreatic fibrosis. Key messages: VA-lip-shRNA-TLR4 recovers pancreatic tissue damage. VA-lip-shRNA-TLR4 resolution of pancreatic fibrosis. VA-lip-shRNA-TLR4 accelerates ECM degradation and inhibits ECM synthesis. Silencing TLR4 induces aPSCs mitochondrial apoptosis. Silencing TLR4 inhibits the activation of NF-κB.
... [40][41][42][43][44][45] An increasing spectrum of endogenous ncRNAs is employed for the development of novel therapeutic ncRNA tools optimized for specific therapeutic requirements. [46][47][48][49][50][51] These investigations are only the beginning of therapeutic exploration, since 10 000 small ncRNAs arise from the human genome forming diverse RNA structures ranging from miRs to circular RNAs (circRNAs). 52,53 These small ncRNAs are only part of a broader spectrum of ncRNAs including 16 000 lncRNAs up to many thousand basepairs in size. ...
Article
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
... Data from preclinical programs suggest that siRNA therapeutics have the potency for treating diseases. And many clinical trials of siRNA-based therapeutics have been carried out [17]. Due to its strong transcriptional activity, the p65 subunit of NF-κB is responsible for most of NF-κB's transcriptional activity. ...
Article
Full-text available
Inflammation critically contributes to the development of various metabolic diseases. However, the effects of inhibiting inflammatory signaling on hepatic steatosis and insulin resistance, as well as the underlying mechanisms remain obscure. In the current study, male C57BL/6J mice were fed a chow diet or high-fat diet (HFD) for 8 weeks. HFD-fed mice were respectively treated with p65 siRNA, non-silence control siRNA or vehicle every 4th day for the last 4 weeks. Vehicle-treated (HF) and non-silence siRNA-treated (HFNS) mice displayed overt inflammation, hepatic steatosis and insulin resistance compared with chow-diet-fed (NC) mice. Upon treatment with NF-κB p65 siRNA, HFD-fed (HFPS) mice were protected from hepatic steatosis and insulin resistance. Furthermore, Atg7 and Beclin1 expressions and p-AMPK were increased while p-mTOR was decreased in livers of HFPS mice in relative to HF and HFNS mice. These results suggest a crosslink between NF-κB signaling pathway and liver AMPK/mTOR/autophagy axis in the context of hepatic steatosis and insulin resistance.
... It is a natural process through which double stranded (ds) RNA regulates specific gene activity and occurs in most eukaryotic cells. RNAi mediators encompass microRNAs (miRNAs) and small interference RNAs (siRNAs) (Ford and Toloue, 2010). Intensive investigation of RNAi has confirmed that it is an efficient experimental technique for use in the knockdown of specific genes. ...
Article
FKBP38 (also known as FKBP8) is a unique member of the FK506-binding protein (FKBP) family, and its role is controversial because it acts as an upstream regulator of the mTOR signaling pathway, which controls cell growth, proliferation, and differentiation. This study aimed to explore the role of FKBP38 in the activation of mTOR signaling in Cashmere goat (Capra hircus) fetal fibroblasts. To construct a Cashmere goat FKBP38 siRNA eukaryotic expression vector that targets FKBP38 mRNA, we designed shRNA based on the gene sequence deposited in GenBank (accession No. JF714970) and synthesized a DNA fragment encoding the shRNA. The DNA fragment was inserted into the pRNAT-U6.1/Neo vector to construct an expression vector of shRNA, which was labeled pRNAT-FKBP38-shRNA. The recombinant plasmid was used to transfect Cashmere goat fetal fibroblasts (GFb) using lipofectamineTM2000. We found that cells were successfully transfected with pRNAT-U6.1/Neo-FKBP38-shRNA. Green fluorescence could be observed in cells following 48-h transfection. Proteins were then isolated from GFbs transfected with pRNAT-FKBP38-shRNA and from control cells, and protein expression was analyzed by western blot. Expression of FKBP38 decreased and mTOR signaling was activated, which induced the phosphorylation of mTOR, S6, and 4EBP1. Thus, FKBP38 gene-silencing activates mTOR signaling in goat cells.
... Many chemists, material scientists, nanotechnologists, and virologists are actively working on solving the delivery challenge. We will not focus on the delivery challenge in this review, but refer instead to review articles on this subject (de Fougerolles et al., 2007;Kim et al., 2007;Lu et al., 2008;Ford et al., 2010). ...
Article
Full-text available
The manifestation of RNA interference (RNAi)-based therapeutics lies in safe and successful delivery of small interfering RNAs (siRNAs), the molecular entity that triggers and guides sequence-specific degradation of target mRNAs. Optimizing the chemistry and structure of siRNAs to achieve maximum efficacy is an important parameter in the development of siRNA therapeutics. The RNAi protein machinery can tolerate a variety of non-canonical modifications made to siRNAs, each of which imparts advantageous properties. Here, we review these modifications to siRNAs in pre-clinical and clinical studies.
... Due to their powerful and effective gene silencing properties, siRNA have been the most studied RNAi in cancer therapy [28,29] (Table 1). The development of these molecular therapeutics has undoubtedly orientated studies on HLA-G ( Fig. 1). ...
Article
Cancer cells are aided by immune-tolerant functions of HLA-G to escape the immune surveillance. In general, cancer cells can express membranous HLA-G, secrete soluble HLA-G, produce HLA-G positive exosomes, and can be subjected to proteolytic cleavage by matrix metalloproteinases releasing shedding HLA-G1 in stressful conditions. Thus, the downregulation of HLA-G either in transcripts or proteins may affect positively cancer therapy. The aim of this study was to examine the molecular nanoparticles targeting HLA-G. Special focus was accorded to RNA interference particles. Although numerous studies have reported the importance of HLA-G gene expression modulation by nanoparticles, no studies have investigated clinically their efficiency in this modulation.
Article
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Article
The present study investigated the potential subchronic toxicity of self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) in mice. The test reagent was administered once-daily by intravenous injection for 4 weeks at 0, 100, 200, or 300 mg/kg/day doses. Additional recovery groups (vehicle control and high dose groups) were observed for a 2-week recovery period. During the test period, mortality, clinical signs, body weight, food consumption, ophthalmology, urinalysis, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. An increase in the percentages of basophil and large unstained cells was observed in the 200 and 300 mg/kg/day groups of both sexes. In addition, the absolute and relative weights of the spleen were higher in males given 300 mg/kg/day relative to the concurrent controls. However, these findings were considered of no toxicological significance because the changes were minimal, were not accompanied by other relevant results (eg, correlating microscopic changes), and were not observed at the end of the 2-week recovery period indicating recovery of the findings. Based on the results, SAMiRNA-AREG did not cause treatment-related adverse effects at dose levels of up to 300 mg/kg/day in mice after 4-week repeated intravenous doses. Under these conditions, the no-observed-adverse-effect level of the SAMiRNA-AREG was ≥300 mg/kg/day in both sexes and no target organs were identified.
Article
Full-text available
The discovery and examination of the posttranscriptional gene regulatory mechanism known as RNA interference ( RNAi ) contributed to the identification of small interfering RNA ( siRNA ) and the comprehension of its enormous potential for clinical purposes. Theoretically, the ability of specific target gene downregulation makes the RNAi pathway an appealing solution for several diseases. Despite numerous hurdles resulting from the inherent properties of siRNA molecule and proper delivery to the target tissue, more than 50 RNA ‐based drugs are currently under clinical testing. In this work, we analyze the recent literature in the optimization of siRNA molecules. In detail, we focused on describing the most recent advances of siRNA field aimed at optimize siRNA pharmacokinetic properties. Special attention has been given in describing the impact of RNA modifications in the potential off‐target effects ( OTE s) such as saturation of the RNAi machinery, passenger strand‐mediated silencing, immunostimulation, and miRNA ‐like OTE s as well as to recent developments on the delivery issue. The novel delivery systems and modified siRNA provide significant steps toward the development of reliable siRNA molecules for therapeutic use. WIREs RNA 2016, 7:316–329. doi: 10.1002/wrna.1337 This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action RNA in Disease and Development > RNA in Disease
Chapter
The versatility of the RNAi mechanism has led to its exploitation for the treatment of various diseases. However, many physiological barriers stand in the way of the successful and efficient therapeutic use of RNAi. Current challenges include accessibility to biological tissues/organs, avoidance of intolerable side effects, controlled and sustained release, and bypassing immune surveillance.
Article
Objective To establish a human pancreatic cancer cell line stably transfected with siRNA expression vector targeting GLU gene and examine the interference efficiency. Methods The expression of GLI1 gene in five human pancreatic cancer cell lineswas detected by quantitative real-time PCR (qRT-PCR); the one with the highest expression level of GLI1 was selected as the target cell line and was transfected with three recombinant plasmids pGCti-U6-GLIlsiRNA-1,-2, and -3. The positive cloneswere screened by G418, and the transfection rate was observed by fluorescence microscope. The expression of GLI1 mRNA and protein was analyzed by qRT-PCR and Western blotting analysis, respectively. Results Panc-1 cell line was found to have the highest GLU expression and was selected as the target cell line for transfection. Plasmids pGCti-U6-GLIlsiRNA-1, -2, and-3 were successfully transfected into Panc-1 cells separately. After 4 weeks of G418 screening, three stably transfected cell lines named Panc-1/GIU1siRNA-1, -2, and -3 were obtained, with the transfection rates all higher than 80%. qRT-PCR and Western blotting analysis showed that the expression levels of GLI1 in Panc-1/GIUlsiRNA-1, -2, and -3 cellswere all significantly lower than those in Panc-1/siControl cells and the blank control cells(P<0. 05), with the lowest expression found in Panc-1/GLIlsiRNA-1 cels. Conclusion We have successfully constructed a cell line Panc-1/GLI1siRNA-1 with GLU gene stably silenced, which paving a way for future research.
Article
RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, the barriers exist in the blood circulation system and the disease tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs are necessary to break through these barriers and target to disease tissues in local or systemic targeted application. In this review, we summarized barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNAs based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agents delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early.
Article
Full-text available
RNA interference (RNAi) holds considerable promise as a therapeutic approach to silence disease-causing genes, particularly those that encode so-called 'non-druggable' targets that are not amenable to conventional therapeutics such as small molecules, proteins, or monoclonal antibodies. The main obstacle to achieving in vivo gene silencing by RNAi technologies is delivery. Here we show that chemically modified short interfering RNAs (siRNAs) can silence an endogenous gene encoding apolipoprotein B (apoB) after intravenous injection in mice. Administration of chemically modified siRNAs resulted in silencing of the apoB messenger RNA in liver and jejunum, decreased plasma levels of apoB protein, and reduced total cholesterol. We also show that these siRNAs can silence human apoB in a transgenic mouse model. In our in vivo study, the mechanism of action for the siRNAs was proven to occur through RNAi-mediated mRNA degradation, and we determined that cleavage of the apoB mRNA occurred specifically at the predicted site. These findings demonstrate the therapeutic potential of siRNAs for the treatment of disease.
Article
Full-text available
Two fundamental difficulties in the delivery of drugs to treat central nervous system (CNS) diseases are the systemic delivery of therapeutics across the bloodbrain-barrier (BBB), and the targeting of drugs to specific tissues or cells within the brain. With the advent and promise of RNA-based therapeutics that utilize RNA interference (RNAi) to trigger specific silencing of genes within diseased tissues, the necessity to surmount such obstacles has become even more urgent. Most pre-clinical and clinical studies on delivery of RNAi to the CNS have utilized invasive, intra-cerebral delivery of RNA to the targeted tissue. Thus, methods need to be developed to facilitate delivery of therapeutically significant quantities of RNA to the CNS via the systemic route, and to elicit clinically significant RNAi effects within the CNS tissues. Cell-penetrating-peptides (CPPs) are 'molecular delivery vehicles' that can traverse cell membranes and co-transport peptides or polynucleotides. The present invention examines 1) the utility of CPP-RNA duplexes for delivery of RNA to CNS tissues and, 2) cell-mediated release of the RNA payload once the CPP-RNA duplex is internalized by the CNS cells. The invention and embodiments listed therein outline molecular tools that can be adapted for non-invasive, systemic delivery of therapeutic RNA to the CNS in a future clinical setting.
Article
Full-text available
Instability and inadequate biodistribution of double-stranded RNA are major drawbacks to the clinical use of RNA interference. This work compares chemical modification and nanoparticle formulation as strategies to improve the systemic delivery of small interfering RNA (siRNA). Variable levels of chemical modified siRNA, either naked or within nanoparticle, were intravenously injected into mice to study temporal stability and biodistribution detected by direct radioactive labeling or by northern blotting. Naked siRNA showed rapid renal clearance, with circulatory half-life of <5 minutes that could be extended to >30 minutes by cholesterol conjugation. The integrity of the chemically stabilized siRNA was maintained in blood for at least 30 minutes, whereas, unmodified siRNA duplex was degraded within 1 minute. Intact chemically modified siRNA could also be detected in all analyzed organs at 30 minutes but disappeared at 24 hours, except for heavy locked nucleic acid (LNA)-modified and cholesterol-conjugated siRNA in the lungs. Chitosan, liposomal, or JetPEI formulation greatly improved the stability and biodistribution of siRNA. Interestingly, high siRNA accumulation of the chitosan/siRNA formulation within the kidney was observed 24 hours postadministration. This comparative study highlights improvements to siRNA stability and pharmacokinetics, key determinants for development of clinically relevant RNAi therapeutics.
Article
Full-text available
Neovascularization in response to tissue injury consists of the dual invasion of blood (hemangiogenesis) and lymphatic (lymphangiogenesis) vessels. We reported recently that 21-nt or longer small interfering RNAs (siRNAs) can suppress hemangiogenesis in mouse models of choroidal neovascularization and dermal wound healing independently of RNA interference by directly activating Toll-like receptor 3 (TLR3), a double-stranded RNA immune receptor, on the cell surface of blood endothelial cells. Here, we show that a 21-nt nontargeted siRNA suppresses both hemangiogenesis and lymphangiogenesis in mouse models of neovascularization induced by corneal sutures or hindlimb ischemia as efficiently as a 21-nt siRNA targeting vascular endothelial growth factor-A. In contrast, a 7-nt nontargeted siRNA, which is too short to activate TLR3, does not block hemangiogenesis or lymphangiogenesis in these models. Exposure to 21-nt siRNA, which we demonstrate is not internalized unless cell-permeating moieties are used, triggers phosphorylation of cell surface TLR3 on lymphatic endothelial cells and induces apoptosis. These findings introduce TLR3 activation as a method of jointly suppressing blood and lymphatic neovascularization and simultaneously raise new concerns about the undesirable effects of siRNAs on both circulatory systems.
Article
Full-text available
Internal ribosome entry site (IRES)-mediated translation of input viral RNA is the initial required step for the replication of the positive-stranded genome of hepatitis C virus (HCV). We have shown previously the importance of the GCAC sequence near the initiator AUG within the stem and loop IV (SLIV) region in mediating ribosome assembly on HCV RNA. Here, we demonstrate selective inhibition of HCV-IRES-mediated translation using short hairpin (sh)RNA targeting the same site within the HCV IRES. sh-SLIV showed significant inhibition of viral RNA replication in a human hepatocellular carcinoma (Huh7) cell line harbouring a HCV monocistronic replicon. More importantly, co-transfection of infectious HCV-H77s RNA and sh-SLIV in Huh7.5 cells successfully demonstrated a significant decrease in viral RNA in HCV cell culture. Additionally, we report, for the first time, the targeted delivery of sh-SLIV RNA into mice liver using Sendai virosomes and demonstrate selective inhibition of HCV-IRES-mediated translation. Results provide the proof of concept that Sendai virosomes could be used for the efficient delivery of shRNAs into liver tissue to block HCV replication.
Article
Full-text available
Oligonucleotides including antisense oligonucleotides and siRNA are emerging as promising therapeutic agents against a variety of diseases. Effective delivery of these molecules is critical to their successful clinical application. Targeted systems can greatly improve the efficiency and specificity of oligonucleotides delivery. Meanwhile, an effective delivery system must successfully overcome a multitude of biological barriers to enable the oligonucleotides to reach the site of action and access their biological targets. Several delivery strategies based on different platform technologies and different targeting ligands have been developed to achieve these objectives. This review aims at providing a summary and perspective on recent progress in this very active area of research.
Article
Full-text available
RNA interference therapeutics afford the potential to silence target gene expression specifically, thereby blocking production of disease-causing proteins. The development of safe and effective systemic small interfering RNA (siRNA) delivery systems is of central importance to the therapeutic application of siRNA. Lipid and lipid-like materials are currently the most well-studied siRNA delivery systems for liver delivery, having been utilized in several animal models, including nonhuman primates. Here, we describe the development of a multicomponent, systemic siRNA delivery system, based on the novel lipid-like material 98N(12)-5(1). We show that in vivo delivery efficacy is affected by many parameters, including the formulation composition, nature of particle PEGylation, degree of drug loading, and biophysical parameters such as particle size. In particular, small changes in the anchor chain length of poly(ethylene glycol) (PEG) lipids can result in significant effects on in vivo efficacy. The lead formulation developed is liver targeted (>90% injected dose distributes to liver) and can induce fully reversible, long-duration gene silencing without loss of activity following repeat administration.
Article
Full-text available
RNA interference (RNAi) is a powerful endogenous process initiated by short double stranded RNAs, which results in sequence-specific posttranscriptional gene silencing. The ability to block the expression of any disease-causing or disease-related protein emphasizes the huge therapeutic potential of this technology. In a clinical setting, however, the use of RNAi-based therapeutics is limited by their short serum half lives and poor uptake into cells. In this review, we provide an overview of recent patents in the field of short interfering RNA (siRNA) delivery and discuss recent progress in the development of efficient siRNA delivery vehicles enhancing the pharmacokinetic properties of RNAi-based therapeutics and promoting cellular uptake.
Article
Full-text available
In this study, we tested the use of cationic polymer derivatives of biocompatible hyaluronic acid (HA) as a delivery system of siRNA and antisense oligonucleotides. HA was modified with cationic polymer polyethylenimine (PEI). When compared with PEI alone, cationic PEI derivatives of HA (HA-PEI) provided increased cellular delivery of Small interfering RNA (siRNA) in B16F1, A549, HeLa, and Hep3B tumor cells. Indeed, more than 95% of the cells were positive for siRNA following its delivery with HA-PEI. A survivin-specific siRNA that was delivered using HA-PEI potently reduced the mRNA expression levels of the target gene in all of the cell lines. By contrast, survivin-specific siRNA delivered by PEI alone did not induce a significant reduction in mRNA levels. In green fluorescent protein (GFP)-expressing 293 T cells, a loss of GFP expression was evident in the cells that had been treated with GFP-specific siRNA and HA-PEI complex. The inhibition of target gene expression by antisense oligonucleotide G3139 was also enhanced after delivery with HA-PEI. Moreover, HA-PEI displayed lower cytotoxicity than PEI alone. These results suggest that HA-PEI could be further developed as biocompatible delivery systems of siRNA and antisense oligonucleotides for enhanced cellular uptake and inhibition of target gene expression.
Article
Full-text available
Immunoliposomes (antibody-directed liposomes) were used in the present study for delivery of the antineoplastic agent daunomycin to the rat brain. A coupling procedure was introduced, which allows conjugation of a thiolated antibody to maleimide-grafted 85-nm liposomes sterically stabilized with PEG. Antibody was thereby coupled to the terminal end of a PEG-conjugated linker lipid. No brain uptake of PEG-conjugated liposomes carrying [3H]daunomycin was observed. However, brain targeting of immunoliposomes carrying [3H]daunomycin was mediated by the OX26 monoclonal antibody to the rat transferrin receptor, which is selectively enriched at the brain microvascular endothelium that comprises the blood-brain barrier in vivo. Coupling of 30 OX26 antibodies per liposome resulted in optimal brain delivery. Saturation of delivery was observed at higher antibody densities. Determination of brain levels of immunoliposomes over 24 h revealed that immunoliposomes accumulate in brain tissue. Brain targeting of immunoliposomes was not observed in immunoliposomes conjugated with a mouse IgG2a isotype control. In addition, coinjection of free OX26 saturated plasma clearance of immunoliposomes. Since a single liposome may carry > or = 10,000 drug molecules, the use of PEG-conjugated immunoliposomes increases the drug carrying capacity of the monoclonal antibody by up to 4 logarithmic orders in magnitude. In summary, specific OX26-mediated targeting of daunomycin to the rat brain was achieved by the use of an immunoliposome-based drug delivery system.
Article
Full-text available
The target cells for gene therapy of cystic fibrosis lung disease are the well differentiated cells that line airway lumens. Employing cultures of airway epithelial cells that grow like "islands" and exhibit a continuum of cellular differentiation, we studied the mechanisms that render well differentiated cells more difficult to transfect with cationic liposomes than poorly differentiated cells. The poorly differentiated cells at the edge of the islands were transfectable with liposome-DNA complexes (pCMVbeta:LipofectACE = 1:5 (w/w)), whereas the more differentiated cells in the center of the islands were not. Evaluation of the steps leading to lipid-mediated transfection revealed that edge cells bound more liposome-DNA complexes, in part due to a more negative surface charge (as measured by cationized ferritin binding), and that edge cells internalized more liposome-DNA complexes than central cells. Edge cells exhibited receptor-mediated endocytosis of LDL, pinocytosis of 10-nm microspheres, and phagocytosis of 2-microm microspheres, whereas central cells were only capable of receptor-mediated endocytosis. Cytochalasin B, which inhibited pinocytosis by 65% and phagocytosis by 93%, decreased edge cell liposome-DNA complex entry by 50%. Potassium depletion, which decreased phagocytosis by >90% but had no effect on pinocytosis, inhibited edge cell liposome-DNA complex entry by 71%. These results indicate that liposome-DNA complexes enter edge cells via phagocytosis and that this pathway is not detectable in central cells. In conclusion, both reduced negative surface charge and absence of phagocytosis internalization pathways in relatively differentiated cells may explain differentiation-dependent decrements in cationic liposome-mediated gene transfer in airway epithelia.
Article
Full-text available
We provide evidence of direct transfer of functional DNA from bacteria to mammalian cells. An Escherichia coli K12 diaminopimelate auxotroph made invasive by cloning the invasin gene from Yersinia pseudotuberculosis transfers DNA after simple co-incubation, into a variety of mammalian cell lines. Transfer efficiency was enhanced in some cells by coexpression of the gene for listeriolysin from Listeria monocytogenes. Expression of the acquired genes occurs in both dividing and quiescent cells. The only requirement for bacteria to transfer genetic material into nonprofessional phagocytic cells and macrophages is the ability to invade the host cell.
Article
Full-text available
We have recently reported that liposomes in combination with histidine (HK)-containing polymers enhanced the expression of luciferase in transfected cells. In transformed or malignant cell lines, branched HK polymers (combined with liposome carriers) were significantly more effective than the linear HK polymer in stimulating gene expression. In the current study, we found that the linear HK polymer enhanced gene expression in primary cell lines more effectively than the branched polymers. The differences in the optimal carrier (linear versus branched) were not due to initial cellular uptake, size of the complexes or level of gene expression. There was, however, a strong association between the optimal type of HK polymer and the pH of endocytic vesicles (P = 0.0058). By altering the percentage of histidines carrying a positive charge, the endosomal pH of a cell may determine the amount of DNA released from the linear or branched HK polymer. In the two cell lines in which the linear HK was the optimal polymer, the endocytic vesicles were strongly acidic with a pH of <5.0. Conversely, in the four cell lines in which the branched polymers were optimal transfection agents, the pH of endocytic vesicles was >6.0. Furthermore, binding data support the relationship between DNA release from the optimal HK polymer and endosomal pH. The interplay between optimal HK polymers and the endosomal pH may lead to improved gene-delivery polymers tailored to a particular cell.
Article
Full-text available
Cdk9 is a member of the Cdc2-like family of kinases. Its cyclin partners are members of the family of cyclin T (T1, T2a and T2b) and cyclin K. The Cdk9/cyclin T complexes appear to be involved in regulating several physiological processes. Cdk9/cyclin T1 belongs to the P-TEFb complex, and is responsible for the phosphorylation of the carboxyl-terminal domain (CTD) of the RNA Polymerase II, thus promoting general elongation. Cdk9 has also been described as the kinase of the TAK complex, which is homologous to the P-TEFb complex and involved in HIV replication. Cdk9 also appears to be involved in the differentiation program of several cell types, such as muscle cells, monocytes and neurons, suggesting that it may have a function in controlling specific differentiative pathways. In addition, Cdk9 seems to have an anti-apoptotic function in monocytes, that may be related to its control over differentiation of monocytes. This data suggests the involvement of Cdk9 in several physiological processes in the cell, the deregulation of which may be related to the genesis of transforming events, that may in turn lead to the onset of cancer. In addition, since the complex Cdk9/cyclin T1 is able to bind to the HIV-1 product Tat, the study of the functions of Cdk9/cyclin T may be of interest in understanding the basal mechanisms that regulate HIV replication.
Article
Full-text available
An ideal therapeutic for cancer would be one that selectively targets to tumor cells, is nontoxic to normal cells, and that could be systemically delivered, thereby reaching metastases as well as primary tumor. Immunoliposomes directed by monoclonal antibody or its fragments are promising vehicles for tumor-targeted drug delivery. However, there is currently very limited data on gene delivery using these vehicles. We have recently described a cationic immunoliposome system directed by a lipid-tagged, single-chain antibody Fv fragment (scFv) against the human transferrin receptor (TfR) that shows promising efficacy for systemic p53 tumor suppressor gene therapy in a human breast cancer metastasis model. However, the extremely low yield of this lipid-tagged scFv limited further downstream development and studies. Here we report a different expression strategy for the anti-TfR scFv, which produces high levels of protein without any tags, and a different approach for complexing the targeting scFv to the liposomes. This approach entails covalently conjugating the scFv to the liposome via a cysteine at the 3'-end of the protein and a maleimide group on the liposome. Our results show that this conjugation does not impair the immunological activity or targeting ability of the scFv. The scFv-cys targets the cationic liposome-DNA complex (lipoplex) to tumor cells and enhances the transfection efficiencies both in vitro and in vivo in a variety of human tumor models. This scFv-immunoliposome can deliver the complexed gene systemically to tumors in vivo, where it is efficiently expressed. In comparison with the whole antibody or transferrin molecule itself, the scFv has a much smaller size for better penetration into solid tumors. It is also a recombinant protein rather than a blood product; thus, large scale production and strict quality control are feasible. This new approach provides a promising system for tumor-targeted gene delivery that may have potential for systemic gene therapy of various human cancers.
Article
Full-text available
Ribonucleotide reductase is emerging as an important determinant of gemcitabine chemoresistance in human cancers. Activity of this enzyme, which catalyses conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotides, is modulated by levels of its M2 subunit (RRM2). Here we show that RRM2 overexpression is associated with gemcitabine chemoresistance in pancreatic adenocarcinoma cells, and that suppression of RRM2 expression using RNA interference mediated by small interfering RNA (siRNA) enhances gemcitabine-induced cytotoxicity in vitro. We demonstrate the ability of systemically administered RRM2 siRNA to suppress tumoral RRM2 expression in an orthotopic xenograft model of pancreatic adenocarcinoma. Synergism between RRM2 siRNA and gemcitabine results in markedly suppressed tumor growth, increased tumor apoptosis and inhibition of metastasis. Our findings confirm the importance of RRM2 in pancreatic adenocarcinoma gemcitabine chemoresistance. This is the first demonstration that systemic delivery of siRNA-based therapy can enhance the efficacy of an anticancer nucleoside analog.
Article
Purpose: To determine the safety and efficacy of small interfering RNA (siRNA) directed against vascular endothelial growth factor (VEGF) in a nonhuman primate model of laser-induced choroidal neovascularization (CNV). Methods: Each animal received laser rupture of Bruch's membrane to induce CNV in both eyes. Each animal was then randomized to receive 0.05 mL of either vehicle alone or VEGF siRNA at 70 microg, 150 microg, or 350 microg in both eyes by intravitreal injection. Eyes were monitored weekly by ophthalmic examination, color photography, and fluorescein angiography for 36 days after laser injury. Electroretinograms were measured at baseline and at 5 weeks after laser. CNV on fluorescein angiograms were measured for area and graded for clinically significant leakage in a standardized, randomized, and double-masked fashion on days 15, 22, 29, and 36 after laser. Results: VEGF siRNA did not cause any change in electroretinographic, hemorrhage, inflammation, or clinical signs of toxicity. A single administration of VEGF siRNA significantly inhibited growth of CNV and attenuated angiographic leakage in a dose-dependent manner. Conclusion: Intravitreal injection of VEGF siRNA is capable of inhibiting the growth and vascular permeability of laser-induced CNV in a nonhuman primate in a dose-dependent manner. This study demonstrates preclinical proof of a principle that supports proceeding to clinical studies of VEGF siRNA in patients with exudative age-related macular degeneration.
Article
Double-stranded RNA (dsRNA) directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). Using a recently developed Drosophila in vitro system, we examined the molecular mechanism underlying RNAi. We find that RNAi is ATP dependent yet uncoupled from mRNA translation. During the RNAi reaction, both strands of the dsRNA are processed to RNA segments 21–23 nucleotides in length. Processing of the dsRNA to the small RNA fragments does not require the targeted mRNA. The mRNA is cleaved only within the region of identity with the dsRNA. Cleavage occurs at sites 21–23 nucleotides apart, the same interval observed for the dsRNA itself, suggesting that the 21–23 nucleotide fragments from the dsRNA are guiding mRNA cleavage.
Article
We have recently reported that liposomes in combination with histidine (HK)-containing polymers enhanced the expression of luciferase in transfected cells. In transformed or malignant cell lines, branched HK polymers (combined with liposome carriers) were significantly more effective than the linear HK polymer in stimulating gene expression. In the current study, we found that the linear HK polymer enhanced gene expression in primary cell lines more effectively than the branched polymers. The differences in the optimal carrier (linear versus branched) were not due to initial cellular uptake, size of the complexes or level of gene expression. There was, however, a strong association between the optimal type of HK polymer and the pH of endocytic vesicles (P = 0.0058). By altering the percentage of histidines carrying a positive charge, the endosomal pH of a cell may determine the amount of DNA released from the linear or branched HK polymer. In the two cell lines in which the linear HK was the optimal polymer, the endocytic vesicles were strongly acidic with a pH of <5.0. Conversely, in the four cell lines in which the branched polymers were optimal transfection agents, the pH of endocytic vesicles was >6.0. Furthermore, binding data support the relationship between DNA release from the optimal HK polymer and endosomal pH. The interplay between optimal HK polymers and the endosomal pH may lead to improved gene-delivery polymers tailored to a particular cell.
Article
In RNA-mediated interference (RNAi), externally provided mixtures of sense and antisense RNA trigger concerted degradation of homologous cellular RNAs. We show that RNAi requires duplex formation between the two trigger strands, that the duplex must include a region of identity between trigger and target RNAs, and that duplexes as short as 26 bp can trigger RNAi. Consistent with in vitro observations, a fraction of input dsRNA is converted in vivo to short segments of ∼25 nt. Interference assays with modified dsRNAs indicate precise chemical requirements for both bases and backbone of the RNA trigger. Strikingly, certain modifications are well tolerated on the sense, but not the antisense, strand, indicating that the two trigger strands have distinct roles in the interference process.
Article
Gene delivery systems are designed to control the location of administered therapeutic genes within a patient's body. Successful in vivo gene transfer may require (i) the condensation of plasmid and its protection from nuclease degradation, (ii) cellular interaction and internalization of condensed plasmid, (iii) escape of plasmid from endosomes (if endocytosis is involved), and (iv) plasmid entry into cell nuclei. Expression plasmids encoding a therapeutic protein can be, for instance, complexed with cationic liposomes or micelles in order to achieve effective in vivo gene transfer. A thorough knowledge of pharmaceutics and drug delivery, bio-engineering, as well as cell and molecular biology is required to design optimal systems for gene therapy. This mini-review provides a critical discussion on cationic lipid-based gene delivery systems and their possible uses as pharmaceuticals.
Article
Bevasiranib, the first small interfering RNA agent developed for the treatment of neovascular age-related macular degeneration, has demonstrated clinical promise. Injected intravitreally, this small interfering RNA acts by inducing catalytic destruction of messenger RNA to silence gene expression. Bevasiranib targets the production of vascular endothelial growth factor (VEGF) protein. It does not affect existing VEGF protein, suggesting that it may offer a synergistic effect when given in combination with anti-VEGF treatments, such as ranibizumab. The safety of bevasiranib has been supported by preclinical and clinical research.
Article
A relatively recent entrant into molecular biology--double-stranded RNA (dsRNA)--as a class exhibits a unique set of properties: relative stability, affinity for specific proteins and enzymes, ability to activate the interferon pathway and finally, RNA interference (RNAi). In RNAi, unique double-stranded short interfering RNA molecules (siRNA) destroy the corresponding target RNA with exquisite potency and selectivity, thus causing post-transcriptional gene silencing (PTGS). An understanding of the design of gene-specific dsRNA and development of techniques to deliver dsRNA in the cell and in live animals has heralded a new age of gene therapy without gene knockout. This review first summarizes the biological synthesis, metabolism and effect of the dsRNA with special emphasis on siRNA and RNAi. This is followed by the clinical, pharmacological and pharmaceutical prospects of the development of the dsRNA as a drug. It is clear that the dsRNA holds an enormous promise in the treatment of a large number of metabolic and infectious diseases including but not limited to cancer, macular degeneration, diabetic retinopathy, Alzheimer's and other neural disorders, autoimmune diseases, and all viral infections including AIDS (acquired immune deficiency syndrome), hepatitis and respiratory syncytial virus (RSV).
Article
Double-stranded RNA (dsRNA) directs gene-specific, post-transcriptional silencing in many organisms, including vertebrates, and has provided a new tool for studying gene function. The biochemical mechanisms underlying this dsRNA interference (RNAi) are unknown. Here we report the development of a cell-free system from syncytial blastoderm Drosophila embryos that recapitulates many of the features of RNAi. The interference observed in this reaction is sequence specific, is promoted by dsRNA but not single-stranded RNA, functions by specific mRNA degradation, and requires a minimum length of dsRNA. Furthermore, preincubation of dsRNA potentiates its activity. These results demonstrate that RNAi can be mediated by sequence-specific processes in soluble reactions.
Article
Small interfering RNAs (siRNAs) mediate cleavage of specific, complementary mRNA sequences and thus regulate gene expression. Not surprisingly, their use for treatment of diseases that are rooted in aberrant gene expression, such as cancer, has become a paradigm that has gained wide interest. Here, we report the development of dendrimer-conjugated magnetofluorescent nanoworms that we call "dendriworms" as a modular platform for siRNA delivery in vivo. This platform maximizes endosomal escape to robustly produce protein target knockdown in vivo, and is tolerated well in mouse brain. We demonstrate that siRNA-carrying dendriworms can be readily internalized by cells and enable endosomal escape across a wide range of loading doses, whereas dendrimers or nanoworms alone are inefficient. Further, we show that dendriworms carrying siRNA against the epidermal growth factor receptor (EGFR) reduce protein levels of EGFR in human glioblastoma cells by 70-80%, 2.5-fold more efficiently than commercial cationic lipids. Dendriworms were well-tolerated after 7-days of convection-enhanced delivery to the mouse brain and in an EGFR-driven transgenic model of glioblastoma, anti- EGFR dendriworms led to specific and significant suppression of EGFR expression. Collectively, these data establish dendriworms as a multimodal platform that enables fluorescent tracking of siRNA delivery in vivo, cellular entry, endosomal escape, and knockdown of target proteins.
Article
Delivery is a key issue in development of clinically relevant RNAi therapeutics. Polymeric nanoparticles formed by self-assembly of polycations with siRNA can be used for extracellular delivery, cellular uptake and intracellular trafficking as a strategy to improve the therapeutic potential of siRNA. This chapter describes a chitosan-based nanoparticle system for in vitro and in vivo transfection of siRNA into cells. The method exploits the mucoadhesive and mucopermeable properties of this cationic polysaccharide to deliver siRNA across mucosal epithelium and provides a platform for targeting human diseases with RNAi therapeutics.
Article
RNAi-based therapies are dependent on extracellular and intracellular delivery of RNA molecules for enabling target interaction. Polycation-based nanoparticles (or polyplexes) formed by self-assembly with RNA can be used to modulate pharmacokinetics and intracellular trafficking to improve the therapeutic efficacy of RNAi-based therapeutics. This review describes the application of polyplexes for extracellular and intracellular delivery of synthetic RNA molecules. Focus is given to routes of administration and silencing effects in animal disease models. The inclusion of functional components into the nanoparticle for controlling cellular trafficking and RNA release is discussed. This work highlights the versatile nature of polycation-based nanoparticles to fulfil the delivery requirements for RNA molecules with flexibility in design to evolve alongside an expanding repertoire of RNAi-based drugs.
Article
A major bottleneck in the development of siRNA therapies is their delivery to the desired cell type or tissue, followed by effective passage across the cell membrane with subsequent silencing of the targeted mRNA. To address this problem, we describe the synthesis of core/shell hydrogel nanoparticles (nanogels) with surface-localized peptides that specifically target ovarian carcinoma cell lines possessing high expression levels of the Eph2A receptor. These nanogels are also demonstrated to be highly effective in the noncovalent encapsulation of siRNA and enable cell-specific delivery of the oligonucleotides in serum-containing medium. Cell toxicity and viability assays reveal that the nanogel construct is nontoxic under the conditions studied, as no toxicity or decrease in cell proliferation is observed following delivery. Importantly, a preliminary investigation of gene silencing illustrates that nanogel-mediated delivery of siRNA targeted to the EGF receptor results in knockdown of that receptor. Excellent protection of siRNA during endosomal uptake and endosomal escape of the nanogels is suggested by these results since siRNA activity in the cytosol is required for gene silencing.
Article
RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories-kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review.
Article
Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.
Article
Experimental therapeutics developed to exploit RNA interference (RNAi) are now in clinical studies. Here, the translation from concept to clinic for the first experimental therapeutic to provide targeted delivery of synthetic, small interfering RNA (siRNA) in humans is described. This targeted, nanoparticle formulation of siRNA, denoted as CALAA-01, consists of a cyclodextrin-containing polymer (CDP), a polythethylene glycol (PEG) steric stabilization agent, and human transferrin (Tf) as a targeting ligand for binding to transferrin receptors (TfR) that are typically upregulated on cancer cells. The four component formulation is self-assembled into nanoparticles in the pharmacy and administered intravenously (iv) to patients. The designed features of this experimental therapeutic are described, and their functions illustrated.
Article
Translation of small interfering RNA (siRNA)-based approaches into practical therapeutics is limited because of lack of an effective and cell-specific delivery system. Herein, we present a new method of selectively delivering siRNA to dendritic cells (DCs) in vivo using CD40 siRNA-containing immunoliposomes (siILs) that were decorated with DC-specific DEC-205 mAb. Administration of CD40 siILs resulted in DC-specific cell targeting in vitro and in vivo. On treatment with CD40 siILs, the expression of CD40 in DCs, as well allostimulatory activity was inhibited. In vivo administration resulted in selective siRNA uptake into immune organs and functional immune modulation as assessed using a model antigen. In conclusion, this is the first demonstration of DC-specific siRNA delivery and gene silencing in vivo, which highlights the potential of DC-mediated immune modulation and the feasibility of siRNA-based clinical therapy.
Article
The efficient delivery of therapeutic siRNA into cells of interest is a critical challenge to broad application of RNAi. In this study, we developed a peptide-targeted delivery system for highly efficient receptor-mediated cellular siRNA delivery. The targeted delivery system was readily prepared by in situ functionalization of a polymerizable pH-sensitive amphiphilic surfactant, N-(1-aminoethyl)iminobis[N-(oleicyl-cysteinyl-histinyl-1-aminoethyl)propionamide] (EHCO) and self-assembly with siRNA. The intrinsic pH-sensitive amphiphilicity of EHCO at pH 5-6 was able to induce cell membrane disruption at endosomal pH and facilitate endosomal escape of the siRNA nanoparticles after internalization. The siRNA/EHCO nanoparticles and PEGylated siRNA/EHCO nanoparticles were not cytotoxic as compared to PEI/siRNA or TransFast/siRNA nanoparticles. siRNA/EHCO nanoparticles resulted in higher siRNA delivery efficiency than PEI and TransFast. The PEGylation of the siRNA/EHCO nanoparticles significantly reduced non-specific cell uptake. The incorporation of a bombesin peptide via a PEG spacer resulted in specific cellular uptake and high gene silencing efficiency in CHO-d1EGFP cells with overexpression of bombesin receptors. Receptor-mediated endocytosis and pH-sensitive amphiphilic endosomal escape are the advantageous features of the targeted siRNA delivery system for highly efficient cell-specific siRNA delivery. This novel targeted delivery system holds a great promise for systemic and targeted delivery of therapeutic siRNA.
Article
By virtue of their potential to selectively silence oncogenic molecules in cancer cells, antisense oligonucleotides (ASO) and small interfering RNAs (siRNAs) are powerful tools for development of tailored anti-cancer drugs. The clinical benefit of ASO/siRNA therapeutic is, however, hampered due to poor pharmacokinetics and biodistribution, and suboptimal suppression of the target in tumor tissues. Raf-1 protein serine/threonine kinase is a druggable signaling molecule in cancer therapy. Our laboratory has developed cationic liposomes for systemic delivery of raf ASO (LErafAON) and raf siRNA (LErafsiRNA) to human tumor xenografts grown in athymic mice. LErafAON is also the first ASO containing liposomal drug tested in humans. In this article, we primarily focus on a modified formulation of systemically delivered cationic liposomes containing raf antisense oligonucleotide (md-LErafAON). The cationic liposomes were prepared using dimyristoyl 1,2-diacyl-3-trimethylammonium-propane (DMTAP), phosphatidylcholine (PC), and cholesterol (CHOL). The toxicology, pharmacokinetics, biodistribution, target selectivity, and anti-tumor efficacy studies of md-LErafAON were conducted in mice. We demonstrate that md-LErafAON is the next generation of systemically delivered and well-tolerated antisense therapeutic suitable for clinical evaluation.
Article
This study was conducted to formulate a nonviral delivery system for the delivery of small interfering RNA (siRNA) to B16 melanoma cells in vitro. For this purpose, oleic and stearic acid modified derivatives of branched polyethylenimine (PEI) were prepared and evaluated. The hydrophobically modified polymers increased siRNA condensation up to 3 folds as compared to the parent PEI. The modified PEIs exhibited up to 3-fold higher siRNA protection from degradation in fetal bovine serum as compared to the parent PEI. The formulated complexes were shown to enter B16 cells in a time-dependent fashion, reaching over 90% of the cells after 24 h, as compared to only 5% of the cells displaying siRNA uptake in the absence of any carrier. A proportional reduction in siRNA cell uptake was observed with reduced polymeric content in the formulations. When used to deliver various doses of siRNA to B16 cells, the modified PEIs were superior or comparable to some of the commercially available transfection agents; the hydrophobically modified polymers gave 3-fold increased siRNA delivery than the parent PEI, approximately 5-fold higher delivery than jetPEI and Metafectene, a comparable delivery to Lipofectamine 2000, but a 1.6-fold decreased delivery compared to INTERFERin, which was the most efficient reagent in our hands. Using an siRNA specific for integrin alpha(v), a dose-dependent decrease in integrin alpha(v) levels was demonstrated in B16 cells by flow cytometry, revealing a more pronounced reduction of integrin alpha(v) levels for oleic- and stearic-acid modified PEIs. The overall results suggested that the hydrophobically modified PEIs provide a promising delivery strategy for siRNA therapeutic applications.
Article
Small interfering RNA (siRNA) has been chemically conjugated to a variety of bioactive molecules, lipids, polymers, peptides, and inorganic nanostructured materials to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver siRNAs to the target cells and tissues, many different siRNA bioconjugates were synthesized and characterized, and their gene silencing efficiencies were tested in vitro and in vivo. In this review, recent developments of siRNA bioconjugates are summarized.
Article
Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.
Article
An ability to generate a well defined lipid-based carrier system for the delivery of plasmid DNA in vivo requires the characterization of factors governing DNA/lipid interactions and carrier formation. We report that a hydrophobic DNA/lipid complex can be formed following addition of cationic lipids to DNA in a Bligh and Dyer monophase consisting of chloroform/methanol/water (1:2.1:1). Subsequent partitioning of the monophase into a two-phase system allows for the extraction of DNA into the organic phase. When using monovalent cationic lipids, such as dimethyldioctadecylammonium bromide, dioleyldimethylammonium chloride, and 1,2-dioleyl-3-N,N,N-trimethylaminopropane chloride, greater than 95% of the DNA present can be recovered in the organic phase when the lipid is added at concentrations sufficient to neutralize DNA phosphate charge. When the polyvalent cationic lipids 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl- 1- propanaminium trifluoroacetate and diheptadecylamidoglycyl spermidine are used, efficient extraction of the DNA into the organic phase is also achieved when the charge ratio between lipid and DNA is approximately equal. Formation of the hydrophobic DNA complex can only be achieved with cationic lipids. In the absence of added cations or in the presence of excess Ca2+, L-lysine, or poly(L-lysine), 100% of the DNA is recovered in the aqueous fraction. The monovalent cationic lipid/DNA complexes can also be prepared in the presence of detergent; however, low concentrations of NaCl (< 1 mM) lead to dissociation of the complex. Importantly, these results clearly demonstrate that cationic lipid binding does not lead to DNA condensation. The methods described, therefore, enable DNA/lipid complexes to be characterized in the absence of DNA condensation.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
Ovarian cancer is the leading cause of death in gynecological cancers. To date, there are no prognostic factors in ovarian cancer that adequately account for tumor biology and the course of the disease. In recent years, some reports have described the prognostic significance of the amplification and overexpression of the oncogene c-erbB-2 (HER2/neu) in various human cancers, including ovarian cancer. The c-erbB-2 proto-oncogene is located on the long arm of chromosome 17. It encodes a 185 kD transmembrane glycoprotein receptor (p185HER2) that has sequence similarities with the epidermal growth factor receptor (EGF-R). In ovarian cancer, the percentage of c-erbB-2 positive cases varies from 9 to 32%. Correlation with tumor stage and the degree of histological differentiation was not observed. The overexpression of c-erbB-2 is a new and statistically independent prognostic factor. The overexpression of oncogene c-erbB-2 in ovarian cancer can-be detected by immunohistochemistry staining for the protein p185 and characterizes a group with unfavorable tumor biology and a significantly worse prognosis. Elevated serum levels of the c-erbB-2 oncoprotein have been identified in patients with various cancers known to overexpress the c-erbB-2 oncogene. The detection of a p185 oncoprotein fragment in the sera of ovarian cancer patients was recently published by our group. Antiproliferative effects of monoclonal antibodies directed against p185 have been demonstrated in breast cancer patients. This may lead to a new approach in ovarian carcinoma therapy, too, over and above the diagnostic aspects.
Article
Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene. Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts. RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression. Here we investigate the requirements for structure and delivery of the interfering RNA. To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually. After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference. The effects of this interference were evident in both the injected animals and their progeny. Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Article
Double-stranded RNA (dsRNA) directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). Using a recently developed Drosophila in vitro system, we examined the molecular mechanism underlying RNAi. We find that RNAi is ATP dependent yet uncoupled from mRNA translation. During the RNAi reaction, both strands of the dsRNA are processed to RNA segments 21-23 nucleotides in length. Processing of the dsRNA to the small RNA fragments does not require the targeted mRNA. The mRNA is cleaved only within the region of identity with the dsRNA. Cleavage occurs at sites 21-23 nucleotides apart, the same interval observed for the dsRNA itself, suggesting that the 21-23 nucleotide fragments from the dsRNA are guiding mRNA cleavage.
Article
In RNA-mediated interference (RNAi), externally provided mixtures of sense and antisense RNA trigger concerted degradation of homologous cellular RNAs. We show that RNAi requires duplex formation between the two trigger strands, that the duplex must include a region of identity between trigger and target RNAs, and that duplexes as short as 26 bp can trigger RNAi. Consistent with in vitro observations, a fraction of input dsRNA is converted in vivo to short segments of approximately 25 nt. Interference assays with modified dsRNAs indicate precise chemical requirements for both bases and backbone of the RNA trigger. Strikingly, certain modifications are well tolerated on the sense, but not the antisense, strand, indicating that the two trigger strands have distinct roles in the interference process.
Article
Double-stranded RNA (dsRNA) induces sequence-specific posttranscriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 21- and 22-nt RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III-like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3' ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.
Article
We have developed a potential tumor-targeting peptide vector (cRGD-hK) that is intended to be systemically and repeatedly administered to patients with advanced solid tumors. The peptide vector of 36 l-amino acid residues, CRGDCF(K[H-]KKK)6, comprises a tumor-homing RGD motif, a DNA-binding oligolysine, and histidyl residues to facilitate the delivery into the cytosol. Using cytomegalovirus-driven luciferase expression plasmids as a reporter, we tested the transfection efficiency of cRGD-hK in hepatoma and pancreatic cancer cell lines. Transfection with the cRGD-hK/plasmid complexes (molar ratio 4000:1) was inhibited by 50 nM bafilomycin A1, an inhibitor of the vacuolar ATPase endosomal proton pump, or 10 microM cycloRGDfV, an integrin alphavbeta3 antagonist, indicating that the three elements of cRGD-hK could function as expected, at least in vitro. In nude mice bearing tumors created by subcutaneous inoculation, luciferase activity in the tumor tissues 48 hours after the injection of the cRGD-hK/plasmid complexes through the tail vein (20 microg plasmids per mouse) was significantly higher than that in the lung, kidney, and spleen, but only slightly higher than that in the liver. Although the latter difference was small, we propose a potential nonviral gene therapy for advanced solid tumors through use of the tumor-targeting peptide vector.
Article
RNA interference mediated by small interfering RNAs (siRNAs) is a powerful technology allowing the silencing of mamalian genes with great specificity and potency. The purpose of this study was to demonstrate the feasibility of RNA interference mediated by siRNA in retinal cells in vitro and in the murine retina in vivo. siRNAs specific for enhanced green fluorescent protein (EGFP) and murine and human vascular endothelial growth factor (VEGF) were designed. In vitro studies in human cell lines entailed modulation of endogenous VEGF levels through chemically induced hypoxia. Effects of siRNA treatment on these levels were measured by ELISA. In vivo studies evaluating effects of siRNA on levels of EGFP and VEGF were performed by co-injecting recombinant viruses carrying EGFP or hVEGF cDNAs along with the appropriate siRNAs subretinally in mice. Additional studies aimed at blocking production of endogenous mVEGF were performed using laser-induced choroidal neovascularization (CNV) in mice. Effects of in vivo treatments were evaluated ophthalmoscopically. Retinal/choroidal flat mounts were evaluated after perfusion with dextran-fluorescein. Alternatively, retinas were evaluated in histological sections or VEGF levels were measured in intact eyes using ELISA. Successful delivery of siRNA to the subretinal space was confirmed by observing significantly reduced levels of EGFP in eyes treated with Ad.CMV.EGFP plus EGFP-directed siRNA. siRNAs directed against hVEGF effectively and specifically inhibit hypoxia-induced VEGF levels in human cell lines and after adenoviral induced hVEGF transgene expression in vivo. In addition, subretinal delivery of siRNA directed against murine Vegf significantly inhibited CNV after laser photocoagulation. Delivery of siRNA can be used in vitro and in vivo to target specific RNAs and to reduce the levels of the specific protein product in the targeted cells. This work suggests that RNA interference has potential for application to studies of retinal biology and for the treatment of a variety of retinal diseases, including those involving abnormal blood vessel growth.
Article
RNA interference (RNAi) represents one of the most promising new frontiers in drug discovery. Short double-stranded RNA molecules are able to sequence-specifically inhibit expression of genes. This young technology offers both opportunities and challenges to nucleic acid chemists.
Article
Existing data identify EWS-FLI1 as indispensable for sustained Ewing's sarcoma growth and as the ideal therapeutic target in this disease. The siRNA may hold great promises as a fusion gene specific agent. RNAi mediated suppression of EWS-FLI1 is likely to result in an altered tumor cell phenotype including changes in chemosensitivity, and a restored differentiation potential. Thus, RNAi may serve as an adjuvant to chemotherapy. As a therapeutic means however, RNAi is hampered by limitations in the delivery of the agent and emergence of resistant clones. In vitro suppression of EWS-FLI1 expression will allow to define the phenotypic characteristics of dormant tumor cells that may give rise to late relapses, enabling improved diagnosis and treatment even of minimal residual disease.