ArticlePDF Available

Alpha-Lipoic Acid Ameliorates Radiation-Induced Salivary Gland Injury by Preserving Parasympathetic Innervation in Rats

Authors:

Abstract

Radiation therapy is a standard treatment for patients with head and neck cancer. However, radiation exposure to the head and neck induces salivary gland (SG) dysfunction. Alpha lipoic acid (ALA) has been reported to reduce radiation-induced toxicity in normal tissues. In this study, we investigated the effect of ALA on radiation-induced SG dysfunction. Male Sprague–Dawley rats were assigned to the following treatment groups: control, ALA only (100 mg/kg, intraperitoneally), irradiation only, and ALA administration 24 h or 30 min prior to irradiation. The neck area, including SGs, was irradiated evenly at 2 Gy/min (total dose, 18 Gy) using a photon 6 MV linear accelerator. The rats were sacrificed at 2, 6, 8, and 12 weeks after irradiation. Radiation decreased SG weight, saliva secretion, AQP5 expression, parasympathetic innervation (GFRα2 and AchE expression), regeneration potentials (Shh and Ptch expression), salivary trophic factor levels (brain-derived neurotrophic factor and neurturin), and stem cell expression (Sca-1). These features were restored by treatment with ALA. This study demonstrated that ALA can rescue radiation-induced hyposalivation by preserving parasympathetic innervation and regenerative potentials.
Int. J. Mol. Sci. 2020, 21, 2260; doi:10.3390/ijms21072260 www.mdpi.com/journal/ijms
Article
Alpha-Lipoic Acid Ameliorates Radiation-Induced
Salivary Gland Injury by Preserving Parasympathetic
Innervation in Rats
Jin Hyun Kim
1,2,†
, Bae Kwon Jeong
2,3,†
, Si Jung Jang
1
, Jeong Won Yun
1
, Myeong Hee Jung
1
,
Ki Mun Kang
2,3
, Tae Gyu Kim
4
and Seung Hoon Woo
5,
*
1
Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea;
ajini7044@hanmail.net (J.H.K.); sjjang@gnu.ac.kr (S.J.J.); potato-yun@hanmail.net (J.W.Y.);
yallang7@hanmail.net (M.H.J.)
2
Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea;
jsk92@gnu.ac.kr (K.M.K.); ajini7044@hanmail.net (J.H.K.);blue129j@hanmail.net (B.K.J.)
3
Department of Radiation Oncology, Gyeongsang National University, Jinju 52727, Korea;
blue129j@hanmail.net
4
Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of
Medicine, Changwon 51353, Korea; ktg7757@hanmail.net
5
Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University,
Cheonan 31116, Korea ; lesaby@hanmail.net
* Correspondence: lesaby@hanmail.net;
Tel.: +82-41-550-1781; Fax +82-41-550-7837
These authors contributed equally to this work.
Received: 20 January 2020; Accepted: 23 March 2020; Published: 25 March 2020
Abstract: Radiation therapy is a standard treatment for patients with head and neck cancer.
However, radiation exposure to the head and neck induces salivary gland (SG) dysfunction. Alpha
lipoic acid (ALA) has been reported to reduce radiation-induced toxicity in normal tissues. In this
study, we investigated the effect of ALA on radiation-induced SG dysfunction. Male Sprague–
Dawley rats were assigned to the following treatment groups: control, ALA only (100 mg/kg,
intraperitoneally), irradiation only, and ALA administration 24 h or 30 min prior to irradiation. The
neck area, including SGs, was irradiated evenly at 2 Gy/min (total dose, 18 Gy) using a photon 6
MV linear accelerator. The rats were sacrificed at 2, 6, 8, and 12 weeks after irradiation. Radiation
decreased SG weight, saliva secretion, AQP5 expression, parasympathetic innervation (GFRα2 and
AchE expression), regeneration potentials (Shh and Ptch expression), salivary trophic factor levels
(brain-derived neurotrophic factor and neurturin), and stem cell expression (Sca-1). These features
were restored by treatment with ALA. This study demonstrated that ALA can rescue radiation-
induced hyposalivation by preserving parasympathetic innervation and regenerative potentials.
Keywords: radiation therapy; salivary gland; xerostomia; parasympathetic innervation; Alpha
lipoic acid
1. Introduction
Various cancers in the head and neck account for more than 650,000 new cases and 330,000
deaths per year [1]. Radiotherapy is considered as a primary mode of treatment for head and neck
cancers, delivered either alone or in combination with surgery and/or chemotherapy [2]. Xerostomia
is a radiation-induced side effect resulting from damage to salivary glands (SGs) in head and neck
cancers. It leads to a marked deterioration in the quality of life of patients administered radiotherapy,
even when the tumor itself has been controlled [3–5]. Although studies to protect or restore SG
Int. J. Mol. Sci. 2020, 21, 2260 2 of 12
dysfunction by radiation have been performed, most treatments are limited to palliative approaches
[6].
Radiation-induced SG dysfunction is characterized by hyposalivation, loss of saliva-producing
acinar cells, alterations in the epithelium of the ductal compartment, cell death, reactive oxygen
species, inflammation, and fibrosis in SGs [7–10]. Various cell types exist in SGs such as salivary
parenchymal, endothelial, stem/progenitor, and parasympathetic nerve cells. Moreover, damage to
SGs resulting from radiation is also caused by the salivary microenvironment, including impaired
parasympathetic innervation and regenerative potentials, as well as impairments of the SG itself. It
has been reported that rescue or recovery of radiation-induced salivary hypofunction results in the
promotion of parasympathetic innervation or functional stem/progenitor cells to allow the
regeneration of SGs [11].
Parasympathetic innervation influences organ regeneration. Parasympathetic nerves are a vital
component of the progenitor cell niche during development, maintaining a pool of progenitors for
organogenesis. Therapeutic irradiation in patients with head and neck cancers lead to reduced
parasympathetic innervation as well as SG damage [11]. Functional parasympathetic innervation is
associated with functional stem/progenitor cells to protect, replace, or regenerate saliva-producing
cells after irradiation.
Alpha lipoic acid (ALA) is a strong antioxidant exhibiting high reactivity toward free radicals,
and it elevates glutathione levels in tissues [12]. Recently, we reported that ALA protects against
radiation-induced normal tissue injury and dysfunction [7–10]. However, in our previous studies,
saliva is significantly reduced even if the salivary glands were partially intact after irradiation.
Therefore, there is a hypothesis that some factor existed to control these salivary glands. Here, we
aimed to determine whether restoration of parasympathetic innervation by ALA reduces SG
dysfunction after radiation damage.
2. Results
2.1. Radiation Significantly Induces Body Weight and SG Weight Loss, but ALA Ameliorates Radiation-
Induced SG Weight Loss and Reduced Saliva Levels.
Radiation significantly induced body weight loss at all experimental time points. No recovery
was observed in the irradiation group after ALA treatment (Figure 1A). Radiation significantly
induced the loss of gland wet weight at 6 and 8 weeks after radiation. However, the administration
of ALA significantly recovered gland weight at 8 weeks after irradiation compared with that in the
irradiated controls (Figure 1B). In addition, radiation significantly reduced saliva secretion, which
was partially recovered by ALA (Figure 1C). These data suggest that ALA may be involved in the
recovery of irradiation-induced hyposalivation.
Figure 1. ALA ameliorates the SG weight loss and impaired saliva secretion induced by irradiation.
Sprague–Dawley rats were subjected to 18 Gy irradiation in the head and neck region. (A) Body
weight, (B) SG weight, and (C) saliva levels were measured at each time points after irradiation. N =
3-4 SGs/group. a, control vs. irradiation group. b, ALA vs. irradiation groups. c, irradiation vs. ALA
plus irradiation groups. Values are represented as the mean ± SEM.
a,b,c
p < 0.05.
Int. J. Mol. Sci. 2020, 21, 2260 3 of 12
2.2. ALA Restores Radiation-Induced AQP5 Expression.
The secretion of saliva occurs via aquaporin5 (AQP5) during the process of SG water discharge.
Irradiation significantly reduced the expression of AQP5 protein in SGs at 2, 6, 8, and 2 weeks after
irradiation, but ALA significantly improved the AQP5 expression level to the same extent each week
after irradiation as indicated by Western blot analysis (Figure 2A). However, unchanged expression
of AQP5 was observed in the control and ALA-only groups (Supplementary Figure 1). The
preservation of AQP5 protein expression by ALA administration was further confirmed by
immunohistochemical staining. Consistently, AQP5-positive acinar cell numbers were significantly
decreased in the irradiation group at each time point but were significantly restored by ALA, as
shown by Western blotting (Figure 2B). These data indicate that ALA contributed to the recovery of
salivary function impaired by irradiation.
Figure 2. The administration of ALA improves radiation-induced AQP5 expression. Sprague–Dawley
rats were subjected to 18 Gy radiation in the head and neck region. (A) SGs were collected at each
time points after irradiation and subjected to Western blotting. β-actin was used as the loading
control. Western blot for the expression of AQP5 is normalized to β-actin, the expression was shown
as signal intensity, and the expression in each group was represented as fold change. The fold change
is calculated as the ratio of the final value in each group to the value in the control group at 2 weeks
(set as “1”). Size markers mean 25 and 50 kDa from upper. Con; control (n = 3). RT; irradiation only
group (n = 4). ALA+RT; ALA plus irradiation groups (n = 3). (B) immunohistochemical staining of
AQP5 was shown in representative images. Positive signals were calculated as signal density. The
fold change is calculated as the ratio of the final value in each group to the value in
control group at
2 weeks (set as “1”). Scale bar, 50 μm. N = 3-4 SGs/group. Values are represented as the mean ± SEM.
*p < 0.05.
2.3. ALA Preserves Parasympathetic Innervation
Radiation affects parasympathetic innervation in SGs, and parasympathetic stimulation
improves regeneration of SGs after irradiation [13,14]. To examine the effects of ALA on radiation-
Int. J. Mol. Sci. 2020, 21, 2260 4 of 12
induced damage of the parasympathetic nerve in SGs, we investigated the protein levels of glial cell-
line derived neurotrophic factor family receptor alpha 2 (GFRα2), a marker of parasympathetic
innervation, in SGs. The radiation-induced impairment of GFRα2 protein expression was
significantly ameliorated by ALA administration (Figure 3A, D). However, expression level of GFRa2
in ALA-only groups was not significant different to control groups (Supplementary Figure 1). This
was confirmed by immunohistochemical staining of acetylcholinesterase (AchE), another marker of
parasympathetic innervation (Figure 3B,D), and by immunofluorescent staining of neurofilaments of
parasympathetic innervation (Figure 3C,D). These data suggest that ALA protects SGs from
radiation-induced SG hypofunction by preventing parasympathetic innervation in SGs.
Figure 3. ALA rescues parasympathetic innervation in SGs. Sprague–Dawley rats were subjected to
18 Gy radiation in the head and neck region. (A) SGs were collected at each time points after radiation
and subjected to Western blotting of GFRα2. β-actin was used as the loading control. The expression
of GFRa2 is normalized to β-actin, was shown as signal intensity, and the expression in each group
was represented as fold change.
The fold change is calculated as the ratio of the final value in each
group to the value in control group at 2 weeks (set as “1”). Size markers mean 50 kDa. Con; control
(n = 3). RT; irradiation only group (n = 4). ALA+RT; ALA plus irradiation groups (n = 3). The
immunohistochemical staining of AchE (brown in (B) and neurofilaments (C) was shown in
representative images. * indicate the ducts in SGs in C. Scale bar, 50 μm. N = 3–4 SGs/group. (D)
Western blot and positive signals for each target were calculated as signal density. Values are
represented as the mean ± SEM.
*p < 0.05.
2.4. ALA Improves Neurotrophic Factor Levels in SGs.
The radiation-induced impairment of parasympathetic innervation in SGs is rescued by the
increased production of neurotrophic factors [13]. The brain-derived neurotrophic factor (BDNF) and
neurturin levels in SGs were significantly reduced by radiation at each time point, but the BDNF level
Int. J. Mol. Sci. 2020, 21, 2260 5 of 12
was significantly improved at 2 and 8 weeks, and the neurturin level at 8 and 12 weeks, after
irradiation in the ALA-treated irradiation group (Figure 4A). No significant difference was found in
the serum BDNF and neurturin level in all groups at all time point. (Figure 4B). These data indicate
that ALA preserves parasympathetic innervation by maintaining neurotrophic factor levels in SGs
following irradiation.
Figure 4. ALA maintains neurotrophic factor levels in SGs. Sprague–Dawley rats were subjected to
18 Gy irradiation in the head and neck region. SGs and serum were collected at each time points after
irradiation and subjected to ELISA to measure BDNF (left in A and B) and neurturin (right in A and
B) levels. N = 12–16 SGs/group. Values are represented as the mean ± SEM.
* p < 0.05.
2.5. ALA Increases SG Regeneration
Hedgehog (Hh) signaling is known to be activated during the functional regeneration of adult
SGs after duct ligation [15]. Moreover, transient activation of the Sonic Hedgehog (Shh) gene rescues
radiation-induced hyposalivation [13]. We investigated the effect of ALA on radiation-induced Hh
signaling. The mRNA expression levels of Shh and its receptor Patched (Ptch), Hh signaling and
regeneration-related factors, were measured by qPCR. In the irradiation group, Shh and Ptch Mrna
levels were decreased; however, in the irradiation group treated with ALA, the mRNA level of Shh
was increased at 2 and 6 weeks and that of Ptch at 2, 6, and 8 weeks (Figure 5). This suggests that
ALA is involved in SG regeneration after irradiation via Hh signaling.
Int. J. Mol. Sci. 2020, 21, 2260 6 of 12
Figure 5. ALA rescues Hh signaling in SGs after irradiation. Sprague–Dawley rats were subjected to
18 Gy radiation in the head and neck region. SGs were collected at each time points, and RNA was
extracted and subjected to qPCR analysis of Shh and Ptch expression. N = 12–16 SGs/group. Values
are represented as the mean ± SEM.
*p < 0.05.
2.6. ALA Rescues the Endogenous Resident Stem Cell Population.
To examine the effect of ALA on the regenerative potential of SGs, we assessed the production
of stem cells in irradiated glands treated with ALA. Rodent SG stem cell/progenitor cells express
well-established stem cell markers, including Sca-1 [16]. However, the number of Sca-1-positive cells
is extremely low in vivo. Thus, we performed reverse-transcription PCR to assess Sca-1 expression.
Irradiation alone significantly reduced Sca-1 mRNA expression at 6, 8, and 12 weeks after irradiation,
suggesting a deficit in resident SG stem/progenitor cells compared with non-irradiated controls. Rats
that received ALA demonstrated significantly enhanced Sca-1 mRNA expression compared with the
irradiated group (Figure 6A,C). To confirm effect of ALA on the preservation of stem cell population,
we performed immunostaining for c-Kit. c-Kit is also known to SG stem/progenitor cell markers in
mice and rodents [17]. c-Kit-positive signals were detected in the excretory ductal cells of the
submandibular gland (arrow in Figure 6B). The localization of c-Kit-positive signals coincided well
with the previous report [17]. Irradiation significantly downregulated c-Kit expression particularly
in ductal structures in all time points (RT), whereas ALA treatment prior to irradiation restored c-Kit
expression significantly in 2 weeks, but tended to ameliorate in other time points (ALA + RT) (Figures
6B,D). These data suggest that ALA can rescue resident stem cells in the irradiated SG environment.
Int. J. Mol. Sci. 2020, 21, 2260 7 of 12
Figure 6. ALA ameliorates radiation-induced impairment of stem cells. Sprague–Dawley rats were
subjected to 18 Gy radiation in the head and neck region. (A and C) SGs were collected at each time
points, and RNA was extracted and subjected to reverse-transcription PCR analysis of Sca-1. GAPDH
was used as the loading control. The expression level of Sca-1 is normalized to GAPDH. The
expression in each group was represented as fold change.
Con; control (n = 3). ALA; ALA only treated
group (n = 3). RT; irradiation only group (n = 3). ALA+RT; ALA plus irradiation groups (n = 3). (B and
D) The sections were immunostained with anti-c-Kit. Figures are representative images from each
group. c-Kit positive signals on SG sections (B) and the quantification of staining intensity (D). Scale
bar, 50 μm. N = 3–4 SGs/group. The fold change is calculated as the ratio of the final value in each
group to the value in control group at 2 weeks (set as “1”). Values are represented as the mean ± SEM.
* p < 0.05.
3. Discussion
The present study showed that ALA can promote salivary regeneration by restoring
parasympathetic innervation and preserving resident stem cell populations after irradiation. In the
previous study, we demonstrated that the loss of secretory acinar cells was the major cause of
xerostomia after irradiation, and that ALA restored salivary acinar cells by reducing apoptosis,
inflammation, and fibrosis [10]. However, this effect of ALA may be temporary and is limited to SG
tissue itself. The early effects of radiation therapy may be induced by salivary tissue membrane
damage, whereas more delayed and long-term effects have been proposed to be a consequence of
radiation-induced damage of progenitor cells within the adult SG, leading to a compromise in the
regenerative capacity of the gland [18]. Finally, these long-term effects after irradiation are a major
cause of xerostomia. Thus, there is a shift to change the focus from SG tissue restoration to extra-SG
tissue regeneration. Saliva secretion is closely related to neurotransmitters, secreted from
parasympathetic nerves, which binds to and activates its receptor in SG cells [19]. This receptor, when
coupled with acetylcholine, activates downstream signaling and consequently elevates the
intracellular calcium level in apical salivary cells [14]. Indeed, the anatomy of gland innervation may,
in part, explain the effects of radiation therapy on autonomic nerves. Because the cell bodies of
parasympathetic ganglia are located within SGs, they may be more affected by radiation therapy,
whereas sympathetic nerve cell bodies are located in the superior cervical ganglion, and are thus
Int. J. Mol. Sci. 2020, 21, 2260 8 of 12
distant from the site of radiation therapy [19–22]. The maintenance of a progenitor cell population as
a reservoir of undifferentiated cells is required for the development and regeneration. Knox et al.
reported that the removal of the parasympathetic ganglion in mouse explant organ culture decreased
the number and morphogenesis of keratin 5-positive epithelial progenitor cells [23]. They also
demonstrated that acetylcholine signaling, via the muscarinic M1 receptor and epidermal growth
factor receptor, increased epithelial morphogenesis and the proliferation of keratin 5-positive
progenitor cells. Parasympathetic innervation prevents the epithelial progenitor cell population from
differentiating, which is required for organogenesis. Therefore, the mechanism underlying
parasympathetic innervation maintenance may be a therapeutic target for organ repair or
regeneration. In particular, it has been reported that activation of acetylcholine and its receptor leads
to increased levels of cytoplasmic calcium, which plays an important role in the translocation of
AQP5, a water transport channel protein, in SG cells [23]. This suggests that water transport in SG is
controlled by parasympathetic signal transduction. In this experiment, increased AQP5 expression
by ALA may have resulted from protection of parasympathetic innervation by ALA (Figures 2 and
3). The neurotrophic factor neurturin regulates parasympathetic ganglion function, which affects SG
development as well as salivation, and interacts with the receptor GFRα2. We found that ALA is
involved in enhanced parasympathetic protection via the rescue of GFRα2 and AchE expression and
the preservation of the levels of the nerve growth factors BDNF and neurturin in SGs (Figures 3 and
4).
This suggests that ALA ameliorates the radiation-induced impairment of parasympathetic
innervation in SGs. In addition, Hh signaling rescues radiation-induced hyposalivation [24].
Transient activation of the Hh pathway by Shh gene delivery may rescue salivary function after
irradiation, and the Hh/Gli pathway may primarily function non-cell-autonomously to achieve the
rescue effect. We showed that ALA significantly increased the mRNA expression levels of Shh and
Ptch mRNA, which are Hh signaling and regeneration-related factors (Figure 5). Previous studies
showed that pronounced regenerative potentials are generated by injury in SGs [25–27], as indicated
by the proliferation and differentiation of ductal and acinar cells and the rather rapid return of saliva
secretion to basal levels. Acinar cells of SGs are replaced by the stem cell population [28]. Aure et al.
reported that acinar cell proliferation accounts for the postnatal growth and expansion of SGs, as well
as for the maintenance and regeneration of the adult organ [29]. In addition, Pringle et al. showed
that the low-dose radiation used to induce SG hypofunction permits the survival of endogenous
stem/progenitor cells with regenerative potential in a murine model [16]. Stem/progenitor cells exist
in rodent SGs and express surface markers, including Sca-1 [16]. According to our data, ALA
significantly recovered Sca-1 and c-kit expression reduced by radiation (Figure. 6), suggesting that
ALA is involved in the preservation of resident stem cells as well as activation of parasympathetic
innervation after irradiation.
Although adult stem cells are advantageous for therapeutic promise in regenerative medicine,
translation to the clinic is uncommon due to factors such as few stem cell populations, immune
rejection, long-term engraftment capacity, and less functional rescue potential. To overcome this
limitation, stem cells should be provided as an endogenous boost of SG function against injury. The
incidence of head and neck cancer has increased in younger patients as well as in the elderly.
Therefore, it may be necessary to stimulate or enhance regenerative potential using clinically relevant
agents that have been verified for clinical use. ALA is now in clinic use and is mainly used for
improving symptoms of the patients with diabetic neuropathy. However, its use and effects are still
controversial in other clinical conditions. Although this study does not show the effects of ALA on
head and neck cancer, we believe that ALA is capable of treating radiation-induced neuropathy. In
conclusion, the current data indicate that ALA has a promising therapeutic potential against
radiation-induced salivary dysfunction.
4. Materials and Methods
4.1. Ethics Statement
Int. J. Mol. Sci. 2020, 21, 2260 9 of 12
The Gyeongsang National University Institutional Animal Care and Ethics Committee approved
this study (GLA-120120-R0002) on Jan. 20, 2012.
4.2. Radiation Exposure
We assigned male Sprague–Dawley rats (230–250 g; Koatech Inc., Peongtaek, Korea) to the
following groups: control, n = 12 (Con); ALA administration alone, n = 12 (ALA); irradiation alone, n
= 16 (RT); and ALA administration before irradiation, n = 16 (ALA + RT). Each number of animals
reflects numbers in all time points (2, 6, 8, and 12 week) per individual experiment. Three experiments
were performed independently. We administered ALA (100 mg/kg, intraperitoneally; Bukwang
Pharmaceutical Co., Seoul, Korea) either 24 h or 30 min before irradiation, and we chose the dose and
frequency based on previous studies. [19,23,24] The neck area was evenly irradiated with 2 Gy/min
(total dose, 18 Gy) using a photon 6- MV linear accelerator (21EX,; Varian, Palo Alto, CA, USA). A 3-
cm block of Lucite was positioned above the head and neck to provide adequate buildup and facilitate
even radiation distribution. Each rat was exposed to a single dose of radiation and was sacrificed 2,
6, 8, or 12 weeks after radiation.
4.3. Salivary Gland Function
Salivary functional activity was evaluated through the measurement of saliva secretion.
Pilocarpine (1 mg/kg, intraperitoneally, Isopto Carpine; Alcon Korea Ltd., Seoul, Korea) was injected,
and after 8 min the saliva output was collected from the floor of the mouth for 5 min. The collected
saliva was placed in pre-weighed 1.5 mL tubes, and the volume was normalized to body weight.
Salivary lag times and flow rate were also measured. Salivary flow rates (total saliva weight divided
by the collection time) and lag time (time from stimulation to the commencement of saliva secretion)
were calculated.
4.4. Immunoblotting
SGs were homogenized in lysis buffer. The resulting proteins (50 μg) were loaded on a sodium
dodecyl sulfate–polyacrylamide gel and electroblotted. The blots were probed with primary
antibodies against polyclonal anti-aquaporin 5 (AQP5) (Abcam, Cambridge, MA, USA) and anti-glial
cell-derived neurotrophic factor family receptor α2 (GFR α2) (Abcam) at 4 °C overnight. The primary
antibody was visualized by a secondary antibody and an enhanced chemiluminescence kit
(Amersham Pharmacia Biotech, Piscataway, NJ, USA).
4.5. Immunohistochemistry
After deparaffinization, the sections were incubated with primary antibodies against polyclonal
anti-AQP5 (Abcam), anti-acetylcholinesterase (Elabscience, Houston, TX, USA), anti-neurofilaments
(Abcam, Cambridge, UK), and anti-c-Kit (Sigma, St. Louis, MO, USA) followed by Alexa 488
fluorophore conjugated secondary antibody and biotin-conjugated secondary IgG (diluted 1:200;
Vector Laboratories, Burlingame, CA, USA), avidin–biotin–peroxidase complex (ABC Elite Kit;
Vector Laboratories, Burlingame, CA, USA), and diaminobenzidine tetrahydrochloride. Next, we
visualized the section by light or epifluorescence microscopy, captured, and analyzed the digital
images.
4.6. Enzyme-Linked Immunosorbent Assay (ELISA)
To verify the effects of ALA on salivary regeneration, ELISAs for neurotrophic factors were
performed. Fresh tissues and serum were collected and stored at −80 . The levels of BDNF
(Quantikine ELISA kit; R&D Systems, Minneapolis, MN, USA) and neurturin (ELISA kit; Elabscience,
Houston, TX, USA) were measured according to the manufacturer’s instructions.
Int. J. Mol. Sci. 2020, 21, 2260 10 of 12
4.7. Quantitative Real-Time Polymerase Chain Reaction (qPCR)
The transcript levels of Shh and Ptch, key proteins involved in Hh signaling, were measured by
qPCR. Salivary tissues were resuspended in TRIzol Reagent (Invitrogen Life Technologies, Carlsbad,
CA, USA), and total RNA was extracted. Purified RNA was subsequently reverse transcribed into
cDNA using the iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA). After reverse
transcription, quantitative cDNA was amplified using the TaqMan gene expression assay mix (Shh;
Rn00568129; Ptch: Rn01527980) on the Applied Biosystems qPCR system (Applied Biosystems Inc.,
Foster City, CA, USA). The thermal cycle conditions were as follows: denaturation at 95°C for 3 min,
followed by 50 cycles of denaturation at 95°C for 10 s, and annealing and extension at 60°C for 30 s.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an internal control for
normalization of RNA quantity. The relative gene expression level in each sample was quantified
using the 2
-ΔΔCt
method.
4.8. Reverse-Transcription PCR
Total RNA was extracted from salivary tissues using the TRIzol method (GIBCO BRL, Grand
Island, NY, USA). RNA (5 μg) was converted into cDNA, and the resulting cDNA (2.0 μL) was
subjected to PCR amplification. The primer sequences were as follows: 5′-
AACCATATTTGCCTTCCCGTC-3′ (sense) and 5′-GAGATCTGAAAGCCCTAGAG-3′ (antisense) for
Sca-1, and 5′-TCCCTCAAGATTGTCAGCAA-3′ (sense) and 5′-AGATCCACAACGGATACATT-3′
(antisense) for GAPDH.
4.9. Statistical Analysis
Statistical analyses were performed using Graph Pad Prism 8 (Graph Pad Software Inc., La Jolla,
CA, USA). The Mann–Whitney U test was used to examine the differences between two groups. A P-
value < 0.05 was considered significant.
5. Conclusions
ALA ameliorates the hyposalivation of SGs induced by therapeutic irradiation in two ways.
First, it protects salivary cells by preserving the signaling induced by parasympathetic innervation.
Second, it promotes the proliferation and differentiation of salivary cells by emanating regenerative
signals from resident stem/progenitor cells. Therefore, we propose that ALA is a potential agent
against radiation-induced hyposalivation in patients with head and neck cancers.
Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/21/7/2260/s1.
Author Contributions: Experimental design and writing: J.H.K., S.H.W., B.K.J. Interpretation of the data: J. H.K.,
S.H.W., K.M.K., T.G.K., B.K.J. Preparing and Analysis of the data: S.J.J., J.W.Y., M.H.J., T.G.K. All authors have
read and agreed to the published version of the manuscript.
Funding: This research was supported by the National Research Foundation (NRF) of Korea by the Ministry of
Education (2015R1D1A1A01056773), by Leading Foreign Research Institute Recruitment Program through NRF)
funded by the Ministry of science and ICT (MIST) (NRF-2018K1A4A3A02060572).
Acknowledgments: We thank radiologists for excellent technical assistance.We thank to the National Research
Foundation (NRF) of Korea by the Ministry of Education (2019R1H1A2079848) and the Korea Health Technology
R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of
health & Welfare, Republic of Korea (HI15C1524).
Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.
Int. J. Mol. Sci. 2020, 21, 2260 11 of 12
Reference
1. Bray, F.; Ferlay, J.; Soerjomataram, I. Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424.
2. Burlage, F.R., Coppes, R.P. Meertens H et al. Parotid and submandibular/sublingual salivary flow during
high dose radiotherapy. Radiother. Oncol. 2001, 61, 271–274.
3. Jellema, A.P.; Slotman, B.J. Doornaert P et al. Impact of radiation-induced xerostomia on quality of life after
primary radiotherapy among patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007; 69,
751–760.
4. Langendijk, J.A.; Doornaert, P.; Verdonck-de Leeuw, I.M. Impact of late treatment-related toxicity on
quality of life among patients with head and neck cancer treated with radiotherapy. J. Clin. Oncol. 2008, 26,
3770–3776.
5. Osailan, S.; Pramanik, R.; Shirodaria, S.; Challacombe, S.J.; Proctor, G.B. Investigating the relationship
between hyposalivation and mucosal wetness. Oral Dis 2011; 17: 109–114.
6. Dawes, C. Salivary flow patterns and the health of hard and soft oral tissues. J. Am. Dent. Assoc. 2008, 139
18-24.
7. Jeong, B.K.; Song, J.H.; Jeong, H. Effect of alpha-lipoic acid on radiation-induced small intestine injury in
mice. Oncotarget 2016, 7, 15105–15117.
8. Jung, J.H.; Jung, J.; Kim, S.K.; Woo, S.H.; Kang, K.M.; Jeong, B.K.; Jung, M.H.; Kim, J.H.; Hahm, J.R.
Alpha
lipoic acid attenuates radiation-induced thyroid injury in rats. PLoS ONE 2014; 9, e112253.
9. Kim, J.H.; Jung, M.H.; Kim, J.P.; Kim, H.J.; Jung, J.H.; Hahm, J.R.; Kang K.M.; Jeong B.K.; Woo S.H. Alpha
lipoic acid attenuates radiation-induced oral mucositis in rats. Oncotarget 2017, 8, 72739–72747.
10. Kim, J.H.; Kim, K.M.; Jung, M.H.; Jung, J.H.; Kang, K.M.; Jeong, B.K.; Kim, J.P.; Park, J.J.;Woo, S.H.
Protective effects of alpha lipoic acid on radiation-induced salivary gland injury in rats. Oncotarget 2016, 7,
29143–29153.
11. Lombaert, I.; Movahednia, M.M.; Adine, C.; Ferreira, J.N. Concise Review: Salivary Gland Regeneration:
Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells 2017, 35, 97–105.
12. Bilska, A., Wlodek, L. Lipoic acid - the drug of the future? Pharmacol Rep. 2005, 57, 570–577.
13. Hai, B.; Qin, L.; Yang, Z.; Zhao, Q.; Shangguan, L.; Ti, X.; Zhao, Y.; Kim, S.; Rangaraj, D.; Liu, F. Transient
activation of hedgehog pathway rescued irradiation-induced hyposalivation by preserving salivary
stem/progenitor cells and parasympathetic innervation. Clin. Cancer Res. 2014, 20, 140–150.
14. Knox, S.M.; Lombaert, I.M.; Haddox, C.L.; Abrams, S.R.; Cotrim, A.; Wilson, A.J.; Hoffman, M.P.
Parasympathetic stimulation improves epithelial organ regeneration. Nat. Commun. 2013, 4, 1494.
15. Hai, B.; Yang, Z.; Millar, S.E.; Choi, Y.S.; Taketo, M.M.; Nagy, A.; Liu, F. Wnt/beta-catenin signaling
regulates postnatal development and regeneration of the salivary gland. Stem Cells Dev. 2010, 19, 1793–
1801.
16. Pringle, S.; Maimets, M.; van der Zwaag, M.; Stokman, M.A.; van Gosliga, D.; Zwart, E.; Witjes, M.J.; de
Haan, G.; van Os, R.; Coppes, R.P. Human Salivary Gland Stem Cells Functionally Restore Radiation
Damaged Salivary Glands. Stem Cells 2016, 34, 640–652.
17. Nanduri, L.S.; Maimets, M.; Pringle, S.A.; van der Zwaag M.; van Os R.P.; Coppes R.P. Regeneration of
irradiated salivary glands with stem cell marker expressing cells. Radiother. Oncol. 2011, 99, 367–372.
18. Konings, A.W.; Coppes, R.P.; Vissink, A. On the mechanism of salivary gland radiosensitivity. Int. J. Radiat.
Oncol. Biol. Phys. 2005, 62, 1187–1194.
19. Proctor, G.B.; Carpenter, G,H. Regulation of salivary gland function by autonomic nerves. Auton. Neurosci.
2007, 133, 3–18.
20. Choi, J.S.; An, H.Y.; Park, I.S.; Kim S.K.; Kim Y.M.; Lim J.Y. Radioprotective Effect of Epigallocatechin-3-
Gallate on Salivary Gland Dysfunction After Radioiodine Ablation in a Murine Model. Clin. Exp.
Otorhinolaryngol 2016, 9, 244–251.
21. Kim, Y.H.; Chung, W.K.; Jeong, J.U.; et al. Evaluation of Prognostic Factors for the Parotid Cancer Treated
With Surgery and Postoperative Radiotherapy. Clin. Exp. Otorhinolaryngol 2020, 13, 69–76.
22. Noh, J.M.; Ahn, Y.C.; Nam, H.; Park W.; Baek C.H.; Son Y.I.; Jeong H.S. Treatment Results of Major Salivary
Gland Cancer by Surgery with or without Postoperative Radiation Therapy. Clin. Exp. Otorhinolaryngol
2010; 3, 96–101.
Int. J. Mol. Sci. 2020, 21, 2260 12 of 12
23. Ishikawa, Y.; Eguchi. T.; Skowronski, M.T.; Ishida, H. Acetylcholine acts on M3 muscarinic receptors and
induces the translocation of aquaporin5 water channel via cytosolic Ca2+ elevation in rat parotid glands.
Biochem. Biophys. Res. Commun. 1998, 245, 835–840.
24. Hai, B.; Zhao, Q.; Qin, L.; Rangaraj, D.;Gutti, V.R.; Liu F. Rescue Effects and Underlying Mechanisms of
Intragland Shh Gene Delivery on Irradiation-Induced Hyposalivation. Hum. Gene Ther. 2016, 27, 390–399.
25. Cotroneo, E.; Proctor, G.B.; Carpenter, G.H. Regeneration of acinar cells following ligation of rat
submandibular gland retraces the embryonic-perinatal pathway of cytodifferentiation. Differentiation 2010,
79, 120–130.
26. Cotroneo, E.; Proctor, G.B.; Paterson, K.L.; Carpenter, G.H. Early markers of regeneration following ductal
ligation in rat submandibular gland. Cell Tissue Res. 2008, 332, 227–235.
27. Katsumata, O.; Sato, Y.; Sakai, Y.; Yamashina, S. Intercalated duct cells in the rat parotid gland may behave
as tissue stem cells. Anat. Sci. Int. 2009, 84, 148–154.
28. Pringle S, Van Os R, Coppes RP. Concise review: Adult salivary gland stem cells and a potential therapy
for xerostomia. Stem Cells 2013, 31, 613–619.
29. Aure, M.H.; Konieczny, S.F. Ovitt CE. Salivary gland homeostasis is maintained through acinar cell self-
duplication. Dev. Cell 2015, 33, 231–237.
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
... Biopsies from IR human SGs show hyperinnervation characterized by an increase of tyrosine hydroxylase (TH)-positive sympathetic neurons and a lower abundance of GFRa2-positive parasympathetic nerves (426). Consistently, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and NTRN and the NRTN receptor GRFa2 are reduced in irradiated SGs from rats and minipigs (427,428). In SMG explants, IR leads to neuronal apoptosis within 24-72 h and treatment with NRTN has a protective effect that allows for neuronal survival and gland regeneration (426). ...
... Similarly, gene delivery of human NRTN to the SGs of mice and minipigs before IR results in preservation of secretory function (36,37). Alternatively, alterations in neurotrophic factor expression in irradiated rats were prevented by pretreatment with alpha-lipoic acid and rescued via gene delivery of Shh at 4 wk after IR in minipigs (427,428). In addition, endothelial cell death occurs as early as 4 h after IR in mice (429), and in minipigs microvascular damage is measurable by decreased blood flow and levels of VEGF up to 20 wk after damage (428). ...
Article
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular and genetic levels; the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis and regeneration and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
... Reduced or loss of AQP5 expression [84,85] and/or altered AQP5 translocation [86] may participate to xerostomia in patients with head and neck cancer treated with ionizing radiation therapy. In addition, decreased AQP5 expression and saliva secretion were also detected following irradiation of the neck area in mice and rats [87][88][89][90][91] and could be reverted in rats by administration of pilocarpine, a muscarinic receptor agonist [92]. ...
Article
Full-text available
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner’s gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
... SG cells can be protected by preserving the signals induced by parasympathetic innervation and releasing regeneration signals that promote cell proliferation. When the dose is sufficient, it can also radiosensitize tumor cells [4,61]. Epigallocatechin 3-gallate (EGCG), a phenolic antioxidant, inhibits free radical chain reactions by capturing peroxide free radicals. ...
Article
Full-text available
In patients with head and neck cancer, irradiation (IR)-sensitive salivary gland (SG) tissue is highly prone to damage during radiotherapy (RT). This leads to SG hypofunction and xerostomia. Xerostomia is defined as the subjective complaint of dry mouth, which can cause other symptoms and adversely affect the quality of life. In recent years, diagnostic techniques have constantly improved with the emergence of more reliable and valid questionnaires as well as more accurate equipment for saliva flow rate measurement and imaging methods. Preventive measures such as the antioxidant MitoTEMPO, botulinum toxin (BoNT), and growth factors have been successfully applied in animal experiments, resulting in positive outcomes. Interventions, such as the new delivery methods of pilocarpine, edible saliva substitutes, acupuncture and electrical stimulation, gene transfer, and stem cell transplantation, have shown potential to alleviate or restore xerostomia in patients. The review summarizes the existing and new diagnostic methods for xerostomia, along with current and potential strategies for reducing IR-induced damage to SG function. We also aim to provide guidance on the advantages and disadvantages of the diagnostic methods. Additionally, most prevention and treatment methods remain in the stage of animal experiments, suggesting a need for further clinical research, among which we believe that antioxidants, gene transfer, and stem cell transplantation have broad prospects.
... The apoptosis of epithelial cells reduces the expression of brain-derived neurotrophic factor (BDNF), neurotrophic factor, and nerve growth factor, which directly causes the downregulation of parasympathetic nerve function. The downregulation of Chrm1 and Chrm3 transcription levels and the decline of stem cells' ability to respond to acetylcholine reduce the number of stem cells [41][42][43]. Radiotherapy additionally reduces the expression of neuronal tubulin (Tubb3), which is a marker of axons in parasympathetic nerves and has previously been shown to affect the maintenance of epithelial progenitor cells [38]. ...
Article
Full-text available
Radiation therapy is a common treatment for head and neck cancers. However, because of the presence of nerve structures (brain stem, spinal cord, and brachial plexus), salivary glands (SGs), mucous membranes, and swallowing muscles in the head and neck regions, radiotherapy inevitably causes damage to these normal tissues. Among them, SG injury is a serious adverse event, and its clinical manifestations include changes in taste, difficulty chewing and swallowing, oral infections, and dental caries. These clinical symptoms seriously reduce a patient’s quality of life. Therefore, it is important to clarify the mechanism of SG injury caused by radiotherapy. Although the mechanism of radiation-induced SG injury has not yet been determined, recent studies have shown that the mechanisms of calcium signaling, microvascular injury, cellular senescence, and apoptosis are closely related to oxidative stress. In this article, we review the mechanism by which radiotherapy causes oxidative stress and damages the SGs. In addition, we discuss effective methods to prevent and treat radiation-induced SG damage.
Article
Salivary gland damage caused by ionizing radiation (IR) severely affects the patient quality of life and influences the efficacy of radiotherapy. Most current treatment modalities are palliative, so effective prevention of damage caused by IR is essential. Melatonin (MLT) is an antioxidant that has been reported to prevent IR-induced damage in a range of systems, including the hematopoietic system and gastrointestinal tract. In this study, we explored the effects of MLT on whole-neck irradiation (WNI)-induced salivary gland damage in mice. The results revealed that by protecting the channel protein AQP-5, MLT not only alleviates salivary gland dysfunction and maintains salivary flow rate, but also protects salivary gland structure and inhibits the WNI-induced reduction in mucin production and degree of fibrosis. Compared with WNI-treated mice, in those receiving MLT, we observed a modulation of oxidative stress in salivary glands via its effects on 8-OHdG and SOD2, as well as an inhibition of DNA damage and apoptosis. With respect to its radioprotective mechanism, we found that MLT may alleviate WNI-induced xerostomia partly by regulating RPL18A. In vitro, we demonstrated that MLT has radioprotective effects on salivary gland stem cells (SGSCs). In conclusion, our data this study indicate that MLT can effectively alleviate radiation-induced damage in salivary glands, thereby providing a new candidate for the prevention of WNI-induced xerostomia. This article is protected by copyright. All rights reserved.
Article
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Article
Lipoic acid (LA), an endogenous small molecule in organisms, has been extensively used for the highly efficient clinical treatment of malignant diseases, which include diabetes, Alzheimer's disease, and cancer over the past seven decades. Tremendous progresses have been made on the use of LA in nanomedicine for the development of various biomaterials because of its unique biological properties and highly adaptable structure since the first discovery. However, there are few reviews thus far, to our knowledge, summarizing this hot subject of research of LA and its derived biomaterials. For this purpose, we present herein the first comprehensive summary on the design and development of LA and its derived materials for biomedical applications. This review first discusses the therapeutic use of LA followed by the description of synthesis and preclinical study of LA-derived-small molecules. The applications of various LA and poly (lipoic acid) (PLA)-derived-biomaterials are next summarized in detail with an emphasis on the use of LA for the design of biomaterials and the diverse properties. This review describes the development of LA from a clinical therapeutic agent to a building unit of various biomaterials field, which will promote the further discovery of new therapeutic uses of LA as therapeutic agents and facile development of LA-based derivates with greater performance for biomedical applications.
Article
Full-text available
Ionizing radiation (IR) can cause damage to the structure and function of salivary glands. Our research group independently synthesized the ROS scavenger, HL-003. The aim of this study was to explore the protective effects and underlying mechanisms of HL-003 on radiation-induced salivary gland injury. Salivary flow rate measurement, H&E staining, immunohistochemistry, FRAP, TUNEL, and western blotting were used to evaluate the radioprotective effect on salivary glands. The results showed that HL-003 protected the salivary secretion function by protecting the AQP-5 protein, on the salivary epithelial cell membrane, from IR damage. HL-003 reduced oxidative stress in the salivary gland by regulating the expression of ROS-related proteins NOX4, SOD2, and 8-OHdG. Furthermore, HL-003 downregulated the expression of p-p53, Bax, caspase 3, and caspase 9, and upregulated the expression of Bcl-2, suggesting that it could inhibit the activation of p53 to reduce cell apoptosis. In conclusion, HL-003 is an effective radioprotector that prevents damage of the radiation-induced salivary gland.
Article
Full-text available
Polydipsia and xerostomia are the most common complications that seriously affect oral health in patients with diabetes. However, to date, there is no effective treatment for diabetic xerostomia. Recent studies have reported that artesunate (ART) and metformin (Met) improve salivary gland (SG) hypofunction in murine Sjögren’s syndrome. Therefore, aim of this study was to investigate the effect and underlying mechanism of artesunate (ART) alone and in combination with metformin (Met) on hyposalivation in type 2 diabetes mellitus (T2DM) rats. T2DM rats were induced using a high-fat diet and streptozotocin. SPF male Sprague–Dawley rats were divided into the following five groups: normal control group, untreated diabetic group, ART-treated diabetic group (50 mg/kg), Met-treated diabetic group (150 mg/kg), and ART/Met co-treated diabetic group (50 mg/kg ART and 150 mg/kg Met). ART and Met were intragastrically administered daily for 4 weeks. The general conditions, diabetes parameters and serum lipids were evaluated after drug treatment. Furthermore, we observed changes in the central superior salivatory nucleus (SSN) and SG, and changes in the AQP5 expression, parasympathetic innervation (AChE and BDNF expression), and PI3K/AKT pathway- (p-AKT, and p-PI3K), apoptosis- (Bax, Bcl-2, and Caspase3), and autophagy- (LC3 and P62) related markers expression in T2DM rats after treatment. Our results showed that ART or Met alone and ART/Met combination attenuated a range of diabetic symptoms, including weight loss, urine volume increase, water consumption increase, hyperglycemia, insulin resistance, glucose intolerance and dyslipidemia. More importantly, we found that these three treatments, especially ART/Met combination, mitigated hyposalivation in the T2DM rats via improving the central SSN and SGs damage in hyperglycemia. Our data also indicated that ART/Met attenuated SG damage though regulating the PI3K/Akt pathway to inhibit apoptosis and autophagy of SGs in the T2DM rats. Moreover, ART/Met preserved parasympathetic innervation (AChE and BDNF expression) in SGs to alleviate diabetes-induced hyposalivation likely through rescuing central SSN damage. Taken together, these findings might provide a novel rationale and treatment strategy for future treatment of diabetes-induced xerostomia in the clinic.
Article
Purpose Radiation therapy is one of the main cancer treatment modalities applied in 50–70% of cancer patients. Despite the many advantages of this treatment, such as non-invasiveness, organ-preservation, and spatiotemporal flexibility in tumor targeting, it can lead to complications in irradiated healthy cells/tissues. In this regard, the use of radio-protective agents can alleviate radiation-induced complications. This study aimed to review the potential role of alpha-lipoic acid in the prevention/reduction of radiation-induced toxicities on healthy cells/tissues. Methods A systematic search was performed following PRISMA guidelines to identify relevant literature on the “role of alpha-lipoic acid in the treatment of radiotherapy-induced toxicity” in the electronic databases of Web of Science, Embase, PubMed, and Scopus up to January 2021. Based on the inclusion and exclusion criteria of the present study, 278 articles were screened. Finally, 29 articles were included in this systematic review. Results The obtained results showed that in experimental in vivo models, the radiation-treated groups had decreased survival rate and body weight compared to the control groups. It was also found that radiation can induce mild to severe toxicities on gastrointestinal, circulatory, reproductive, central nervous, respiratory, endocrine, exocrine systems, etc. However, the use of alpha-lipoic acid could alleviate the radiation-induced toxicities in most cases. This radio-protective agent exerts its effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and so on. Conclusion According to the obtained results, it can be mentioned that co-treatment of alpha-lipoic acid with radiotherapy ameliorates the radiation-induced toxicities in healthy cells/tissues.
Article
Full-text available
Objectives: To investigate the prognostic factors and treatment outcomes of primary parotid carcinoma treated with surgery and postoperative radiotherapy (PORT). Methods: We reviewed retrospectively 57 patients with primary parotid carcinoma who were treated with surgery and PORT between 2005 and 2014. Superficial parotidectomy was performed in 19 patients, total parotidectomy in 10 patients, and total parotidectomy with lymph node dissection in 28 patients PORT on the tumor bed was performed in 41 patients, while PORT on tumor bed and ipsilateral cervical lymph nodes was performed in 16 patients. Results: With a median follow-up of 66 months, the 5-year overall survival, disease-free survival, locoregional control, and distant control rates were 77.0%, 60.2%, 77.6%, and 72.8%, respectively. The 5-year overall survival by stage was 100%, 100%, 80.0%, and 46.4% in stage I, II, III, and IV, respectively. Recurrences at primary lesions were found in seven patients, while at cervical nodes in six patients. Distant recurrences were developed in 12 patients. No patient with the low and intermediate histologic grade developed distant failure. As prognostic factors, the histologic grade for overall survival (P=0.005), pathological T-stage (P=0.009) and differentiation grade (P=0.009) for disease-free survival, pathological T-stage for locoregional control (P=0.007), and lympho-vascular invasion (P=0.023) for distant recurrence were significant on multivariate analysis. Conclusion: This study revealed that differentiation grade, histologic grade, pathological T-stage, and lympho-vascular invasion were significant independent prognostic factors on clinical outcomes.
Article
Full-text available
Purpose Radiotherapy is currently one of the main treatment modalities for head and neck cancer; however, it also results in severe toxicity to the normal tissue, to the detriment of patients. This study aimed to investigate whether alpha lipoic acid (ALA) could protect against radiation-induced oral mucositis in a rat model. Results On post-irradiation days 4 and 7, the epithelial layer on oral mucosa showed pronounced injury (shortening of the layer) and it is diminished by ALA pretreatment before radiation. Hif-1a expression was significantly induced in the radiation group on days 4, 7, and 28. GLUT1 expression was also induced by radiation at all time points, and the expression levels peaked on day 28. Phosphorylated p53 level was significantly higher in the radiation group on days 4 and 7, and Bax protein expression was significantly higher in the same group on day 4 than ALA-pretreated radiation group. TUNEL-positive staining was significantly lower in the ALA-pretreated radiation group. Materials and methods Rats were assigned to one of the following four groups: control, ALA only (100 mg/kg, i.p.), irradiated, and ALA administered 24 h and 30 min prior to irradiation, with the neck area including the oral mucosa evenly irradiated with 2 Gy per minute (total dose, 18 Gy) using a photon 6-MV linear accelerator. Rats were sacrificed 4, 7, 28, or 56 days after radiation. Conclusions The results show that ALA can be used to ameliorate radiation-induced oral mucositis with head and neck cancer.
Article
Full-text available
The human salivary gland has an elegant architecture of epithelial acini, connecting ductal branching structures, vascular and neuronal networks that together function to produce and secrete saliva. This review focuses on the translation of cell- and tissue-based research towards therapies for patients suffering from salivary gland hypofunction and related dry mouth syndrome (xerostomia), as a consequence of radiation therapy or systemic disease. We will broadly review the recent literature and discuss the clinical prospects of stem/progenitor cell and tissue-based therapies for salivary gland (SG) repair and/or regeneration. Thus far, several strategies have been proposed for the purpose of restoring SG function: (1) transplanting autologous SG-derived epithelial stem/progenitor cells; (2) exploiting non-epithelial cells and/or their bioactive lysates; and (3) tissue engineering approaches using 3D (three-dimensional) biomaterials loaded with SG cells and/or bioactive cues to mimic in vivo SGs. We predict that further scientific improvement in each of these areas will translate to effective therapies towards the repair of damaged glands and the development of miniature SG organoids for the fundamental restoration of saliva secretion. This article is protected by copyright. All rights reserved.
Article
Full-text available
Objectives: Radioiodine (RI) therapy is known to subject cellular components of salivary glands (SG) to oxidative stress leading to SG dysfunction. However, the protective effects of antioxidants on RI-induced SG damage have not been well investigated. The authors investigated the morphometric and functional effects of epigallocatechin-3-gallate (EGCG) administered prior to RI therapy and compared this with the effects of amifostine (a well-known antioxidant ) in a murine model of RI sialadenitis. Methods: Four-week-old female C57BL/6 mice (n=48) were divided into four groups; a normal control group, a RI-treated group (0.01 mCi/g mouse, orally), an EGCG and RI-treated group, and an amifostine and RI-treated group. Animals in these groups were divided into 3 subgroups and euthanized at 15, 30, and 90 days post-RI treatment. Salivary flow rates and lag times were measured, and morphologic and histologic examinations and TUNEL (terminal deoxynucleotidyl transferase biotin-dUDP nick end labeling) assays were performed. Changes in salivary 99mTc pertechnetate uptake and excretion were followed by single-photon emission computed tomography. Results: Salivary flow rates and lag times to salivation in the EGCG or amifostine groups were better than in the RI-treated group. Histologic examinations of SGs in the EGCG or amifostine group showed more mucin-rich parenchyma and less periductal fibrosis than in the RI-treated group. Fewer apoptotic cells were observed in acini, ducts, and among endothelial cells in the EGCG or amifostine group than in the RI group. In addition, patterns of 99mTc pertechnetate excretion were quite different in the EGCG or amifostine group than in the RI group. Conclusion: EGCG supplementation before RI therapy could protect from RI-induced SG damage in a manner comparable to amifostine, and thus, offers a possible means of preventing SG damage by RI.
Article
Full-text available
Purpose: Radiation therapy is a treatment for patients with head and neck (HN) cancer. However, radiation exposure to the HN often induces salivary gland (SG) dysfunction. We investigated the effect of α-lipoic acid (ALA) on radiation-induced SG injury in rats. Results: ALA preserved acinoductal integrity and acinar cell secretary function following irradiation. These results are related to the mechanisms by which ALA inhibits oxidative stress by inhibiting gp91 mRNA and 8-OHdG expression and apoptosis of acinar cells and ductal cells by inactivating MAPKs in the early period and expression of inflammation-related factors including NF-κB, IκB-α, and TGF-β1 and fibrosis in late irradiated SG. ALA effects began in the acute phase and persisted for at least 56 days after irradiation. Materials and methods: Rats were assigned to followings: control, ALA only (100 mg/kg, i.p.), irradiated, and ALA administered 24 h and 30 min prior to irradiation. The neck area including the SG was evenly irradiated with 2 Gy per minute (total dose, 18 Gy) using a photon 6-MV linear accelerator. Rats were killed at 4, 7, 28, and 56 days after radiation. Conclusions: Our results show that ALA could be used to ameliorate radiation-induced SG injury in patients with HN cancer.
Article
Full-text available
Purpose: Radiation therapy is a highly effective treatment for patients with solid tumors. However, it can cause damage and inflammation in normal tissues. Here, we investigated the effects of alpha-lipoic acid (ALA) as radioprotection agent for the small intestine in a mouse model. Materials and methods: Whole abdomen was evenly irradiated with total a dose of 15 Gy. Mice were treated with either ALA (100 mg/kg, intraperitoneal injection [i.p.]) or saline (equal volume, i.p.) the prior to radiation as 100 mg/kg/day for 3 days. Body weight, food intake, histopathology, and biochemical parameters were evaluated. Results: Significant differences in body weight and food intake were observed between the radiation (RT) and ALA + RT groups. Moreover, the number of crypt cells was higher in the ALA + RT group. Inflammation was decreased and recovery time was shortened in the ALA + RT group compared with the RT group. The levels of inflammation-related factors (i.e., phosphorylated nuclear factor kappaB and matrix metalloproteinase-9) and mitogen-activated protein kinases were significantly decreased in the ALA + RT group compared with those in the RT group. Conclusions: ALA treatment prior to radiation decreases the severity and duration of radiation-induced enteritis by reducing inflammation, oxidative stress, and cell death.
Article
Full-text available
Adult stem cells are often touted as therapeutic agents in the regenerative medicine field, however data detailing both the engraftment and functional capabilities of solid tissue derived human adult epithelial stem cells is scarce. Here we show the isolation of adult human salivary gland (SG) stem/progenitor cells and demonstrate at the single cell level in vitro self-renewal and differentiation into multilineage organoids. We also show in vivo functionality, long-term engraftment and functional restoration in a xenotransplantation model. Indeed, transplanted human salisphere-derived cells restored saliva production and greatly improved the regenerative potential of irradiated SGs. Further selection for c-Kit expression enriches for cells with enhanced regenerative potencies. Interestingly, interaction of transplanted cells with the recipient SG may also be involved in functional recovery. Thus, we show for the first time that salispheres cultured from human SGs contain stem/progenitor cells capable of self-renewal and differentiation and rescue of saliva production. Our study underpins the therapeutic promise of salisphere cell therapy for the treatment of xerostomia. This article is protected by copyright. All rights reserved.
Article
This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high‐quality cancer registry data, the basis for planning and implementing evidence‐based cancer control programs, are not available in most low‐ and middle‐income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1‐31. © 2018 American Cancer Society
Article
Irreversible hypofunction of salivary glands is common in Head and Neck cancer survivors treated with radiotherapy and can only be temporarily relieved with current treatments. We found recently in an inducible sonic hedgehog (Shh) transgenic mouse model that transient activation of Hedgehog pathway following irradiation rescued salivary gland function in males by preserving salivary stem/progenitor cells and parasympathetic innervation. To translate above findings into feasible clinical application, we evaluated effects of Shh gene transfer to salivary glands of wild-type mice on irradiation-induced hyposalivation. Shh or control GFP gene was delivered by noninvasive retrograde ductal instillation of corresponding adenoviral vectors. In both male and female mice, Shh gene delivery efficiently activated Hedgehog/Gli signaling, and significantly improved stimulated saliva secretion and preserved saliva-producing acinar cells following irradiation. In addition to preserving parasympathetic innervation through induction of neurotrophic factors, Shh gene delivery also alleviated the irradiation damage of microvasculature likely via inducing angiogenic factors, but didn't expand the progeny of cells responsive to Hedgehog/Gli signaling. These data indicate that transient activation of Hedgehog pathway by gene delivery is promising to rescue salivary function following irradiation in both genders, and Hedgehog/Gli pathway may function mainly in cell non-autonomous manners to achieve the rescue effect.
Article
Current dogma suggests that salivary gland homeostasis is stem cell dependent. However, the extent of stem cell contribution to salivary gland maintenance has not been determined. We investigated acinar cell replacement during homeostasis, growth, and regeneration, using an inducible CreER(T2) expressed under the control of the Mist1 gene locus. Genetic labeling, followed by a chase period, showed that acinar cell replacement is not driven by the differentiation of unlabeled stem cells. Analysis using R26(Brainbow2.1) reporter revealed continued proliferation and clonal expansion of terminally differentiated acinar cells in all major salivary glands. Induced injury also demonstrated the regenerative potential of pre-labeled acinar cells. Our results support a revised model for salivary gland homeostasis based predominantly on self-duplication of acinar cells, rather than on differentiation of stem cells. The proliferative capacity of differentiated acinar cells may prove critical in the implementation of cell-based strategies to restore the salivary glands. Copyright © 2015 Elsevier Inc. All rights reserved.