ArticleLiterature Review

Dragging Ras Back in the Ring

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Ras proteins play a major role in human cancers but have not yielded to therapeutic attack. Ras-driven cancers are among the most difficult to treat and often excluded from therapies. The Ras proteins have been termed "undruggable," based on failures from an era in which understanding of signaling transduction, feedback loops, redundancy, tumor heterogeneity, and Ras' oncogenic role was poor. Structures of Ras oncoproteins bound to their effectors or regulators are unsolved, and it is unknown precisely how Ras proteins activate their downstream targets. These knowledge gaps have impaired development of therapeutic strategies. A better understanding of Ras biology and biochemistry, coupled with new ways of targeting undruggable proteins, is likely to lead to new ways of defeating Ras-driven cancers.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Despite of decades of extensive endeavors, targeting Ras mutants for cancer therapy remains intractable 1,[8][9][10] . Because Ras proteins bind GTP with picomolar affinity, early approach on developing competitive antagonists of GTP binding achieved no success 1,10 . ...
... Despite of decades of extensive endeavors, targeting Ras mutants for cancer therapy remains intractable 1,[8][9][10] . Because Ras proteins bind GTP with picomolar affinity, early approach on developing competitive antagonists of GTP binding achieved no success 1,10 . Meanwhile, the challenge of directly targeting Ras is also raised by no deep hydrophobic pockets on the surface of Ras for small-molecule compound binding 11 , which led to a perception that Ras proteins are undruggable 1,12 . ...
... Meanwhile, the challenge of directly targeting Ras is also raised by no deep hydrophobic pockets on the surface of Ras for small-molecule compound binding 11 , which led to a perception that Ras proteins are undruggable 1,12 . However, given the prevalence of Ras mutations in cancers, targeting mutated Ras proteins is still drawing very much attention 1,[8][9][10]12,13 . Recent studies reported designs of pan-Ras inhibitors that can simultaneously bind to two or more adjacent sites on Ras proteins, therefore prevent oncogenic Ras mutants that constitutively bind GTP are resistant to the ubiquitination mediated by Nedd4-1. ...
Preprint
K-Ras mutations represent a most prevalent oncogenic alteration in human cancers. Despite of tremendous efforts, it remains a big challenge to develop inhibitors that can target the oncogenic K-Ras mutants, especially mutants without specific active or charged side chains such as K-RasG12V. Here, taking advantage of our previous finding that Nedd4-1 is a bona fide E3 ubiquitin ligase for wild-type Ras proteins, we developed a compound XMU-MP-9 that can promote ubiquitination and degradation of various K-Ras mutants including K-RasG12V, and significantly inhibit proliferation and tumor development of K-Ras mutant harboring cells. Mechanistically, XMU-MP-9 acts as a molecular glue to bind both the C2 domain of Nedd4-1 and an allosteric site of K-Ras to enhance Nedd4-1 and K-Ras interaction. Hence, our study presents a robust strategy to develop small-molecule degrader of K-Ras mutants, and also sheds light on the development of small-molecule degraders for H-Ras and N-Ras mutants.
... This difficulty is reflected in the presence of smooth surfaces and a lack of deep pockets, including proteins associated with cancer drivers and many interfaces for protein-protein interactions (PPIs) [1][2][3]. RAS family members are the most challenging to inhibit with small molecules [3][4][5][6][7]. Specifically, mutations of KRAS G12C, G12D, and G12V are frequent in human cancers [7]. ...
... The inhibition of this pocket has been attempted for nearly 40 years. However, progress has been hindered by the exceptionally high affinity between GTP and RAS proteins [1,4,8]. While inhibitors targeting KRAS G12C have been recently clinically approved [6,9], inhibitors for KRAS G12D/V, which address a greater clinical need, remain under development. ...
Article
Full-text available
“Undruggable” targets such as KRAS are particularly challenging in the development of drugs. We devised a novel chemical knockdown strategy, CANDDY (Chemical knockdown with Affinity aNd Degradation DYnamics) technology, which promotes protein degradation using small molecules (CANDDY molecules) that are conjugated to a degradation tag (CANDDY tag) modified from proteasome inhibitors. We demonstrated that CANDDY tags allowed for direct proteasomal target degradation independent of ubiquitination. We synthesized a KRAS-degrading CANDDY molecule, TUS-007, which induced degradation in KRAS mutants (G12D and G12V) and wild-type KRAS. We confirmed the tumor suppression effect of TUS-007 in subcutaneous xenograft models of human colon cells (KRAS G12V) with intraperitoneal administrations and in orthotopic xenograft models of human pancreatic cells (KRAS G12D) with oral administrations. Thus, CANDDY technology has the potential to therapeutically target previously undruggable proteins, providing a simpler and more practical drug targeting approach and avoiding the difficulties in matchmaking between the E3 enzyme and the target.
... Sharma et al., (2010) [22] reported that application of RDF + 15 kg ZnSO 4 recorded significantly higher number of pods plant -1 , number of seeds pod -1 , 100-seed weight and seed yield of pigeonpea (13.78 q ha -1 ) followed by RDF + 25 kg ZnSO 4 (13.53 q ha -1 ) and RDF + seed treatment with sodium molybdate @ 4 g kg -1 (12.42 q ha -1 ) as compared to control (7.78 q ha -1 ). Stephen et al., (2014) [23] Ambrose Alli University's Teaching and Research Farm in Ekpoma, Nigeria, conducted an experiment to study the influence of different rates of phosphorus fertilizer on pigeonpea growth, yield, nodulation, and nutrient uptake (Cajanas cajan). Increasing the amount of P fertilizer above 25 kg ha -1 had no significant effect on pigeonpea yield therefore, 25 kg ha -1 is the recommended rate. ...
... The increase in yield might be attributed to the beneficial impact of coupling organics with balanced inorganic fertilization to the extent of with FYM @ 3t ha -1 with 'Harit-Harvardan' @5 kg ha -1 + RDF + seed inoculation of biofertilizer over RDF alone. These observations complemented the findings of Kumar and Gautam (2004) [24] , Patil and padmani (2007) [26] In pigeonpea, application of 100 per cent RDF ha -1 combined with FYM @ 5 t ha -1 resulted in significantly higher grain yield (1,436 kg ha -1 ), number of pods plant -1 (178.96), and number of grains pod -1 (4.13), although 75 per cent RDF ha -1 along with FYM @ 5 t ha -1 was significantly superior to control. Patil and Padmani (2007a) [11] Researchers in Junagadh, Gujarat, reported that using 100 per cent RDF (25 N + 50 P 2 O 5 + K 2 O 0.0 kg ha -1 ) significantly increased plant height, branches plant -1 , and nodule counts compared to control and 50 per cent RDF, though it was on par with 75 per cent RDF. ...
... In lung and pancreatic ductal adenocarcinoma (LUAD and PDAC), KRAS mutation frequency reaches ~ 25 and 90% of cases respectively [1,2]. These cancers share a notable dependency on aberrant KRAS expression through activation of canonical ''proximal'' effectors, mainly the RAF-MEK-ERK and the PI3K-AKT-mTOR pathways [3,4]. Consequently, BRAF, MEK1/2, PI3K or mTOR inhibitors were developed and progressed to clinical trials. ...
... For instance, phosphatidic acid (PA) functions as a docking site for the selective recruitment of effector proteins to local cell membrane compartments that are involved in transducing signals [8]. Also, phosphatidylinositol (PI) has a central role in the regulation of PI3K-mediated oncogenesis as a precursor to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [9]. In the KRAS setting, mut Kras increases the levels of phospholipids (i.e., phosphoinositide derivatives) to foster oncogenesis [10]. ...
Article
Full-text available
Background The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC. Methods Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models. Results PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients’ survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC. Conclusions Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.
... For articles and references analysis, the most locally cited articles could be divided into three categories: i) Clarify the biological characteristics and interplay effectors of KRAS: Stephen AG, Cox AD, and Simanshu DK et al. provided in-depth insights into the functional mechanisms, Interaction effector, and posttranslational modification. What is more, the following was a thorough review and discussion on the current progress of KRAS targeted approaches, including restoring GTP hydrolysis, altering RAS localization, targeting RAS post-translational modification, targeting upstream/downstream effectors, directly attacking RAS proteins, and utilizing synthetic lethal screening, thus, offering a theoretical underpinning and possible direction for the development of KRAS-targeted medications (4,24,26). inhibitor sotorasib in the first dosing cohorts and represents a potentially transformative therapy for patients for whom effective treatments are lacking (28). Hong DS et al. conducted a phase I clinical trial of sotorasib among patients with advanced solid tumors carrying the KRAS G12C mutation (29). ...
Article
Full-text available
Introduction Cancer represents a significant global public health concern. In recent years, the incidence of cancer has been on the rise worldwide due to various factors, including diet, environment, and an aging population. Simultaneously, advancements in tumor molecular biology and genomics have led to a shift from systemic chemotherapy focused on disease sites and morphopathology towards precise targeted therapy for driver gene mutations. Therefore, we propose a comprehensive review aimed at exploring the research hotspots and directions in the field of Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant cancers over the past decade, providing valuable insights for cancer treatment strategies. Specifically, we aim to present an intellectual landscape using data obtained from the Web of Science (WoS) regarding KRAS mutation. Methods Bibliometrix, VOSviewer, CiteSpace, and HistCite were employed to conduct scientometric analyses on national publications, influential authors, highly cited articles, frequent keywords, etc. Results A total of 16,609 publications met the screening criteria and exhibited a consistent annual growth trend overall. Among 102 countries/regions, the United States occupied the vast majority share of the published volume. The journal Oncotarget had the highest circulation among all scientific publications. Moreover, the most seminal articles in this field primarily focus on biology and targeted therapies, with overcoming drug resistance being identified as a future research direction. Conclusion The findings of the thematic analysis indicate that KRAS mutation in lung cancer, the prognosis following B-Raf proto-oncogene, serine/threonine kinase (BRAF) or rat sarcoma (RAS) mutations, and anti-epidermal growth factor receptor (EGFR)-related lung cancer are the significant hotspots in the given field. Considering the significant advancements made in direct targeting drugs like sotorasib, it is anticipated that interest in cancers associated with KRAS mutations will remain steadfast.
... While these inhibitors are each approved against various malignancies, mutant KRAS is not typically a specific biomarker [45]. Clinical trials involving inhibitors against RAF and MEK have not received approval for treating KRAS-mutant cancers [46]. ...
Article
Full-text available
KRAS is a small GTPase that is among the most commonly mutated oncogenes in cancer. Here, we discuss KRAS biology, therapeutic avenues to target it, and mechanisms of resistance that tumors employ in response to KRAS inhibition. Several strategies are under investigation for inhibiting oncogenic KRAS, including small molecule compounds targeting specific KRAS mutations, pan-KRAS inhibitors, PROTACs, siRNAs, PNAs, and mutant KRAS-specific immunostimulatory strategies. A central challenge to therapeutic effectiveness is the frequent development of resistance to these treatments. Direct resistance mechanisms can involve KRAS mutations that reduce drug efficacy or copy number alterations that increase the expression of mutant KRAS. Indirect resistance mechanisms arise from mutations that can rescue mutant KRAS-dependent cells either by reactivating the same signaling or via alternative pathways. Further, non-mutational forms of resistance can take the form of epigenetic marks, transcriptional reprogramming, or alterations within the tumor microenvironment. As the possible strategies to inhibit KRAS expand, understanding the nuances of resistance mechanisms is paramount to the development of both enhanced therapeutics and innovative drug combinations.
... RAB4B is considered a key protein in T cells, which contributes to the control of the white adipose tissue amplification and insulin sensitivity by regulating fat Th17/Treg balance (7). RAB4B has also been implicated in tumorigenesis, and its dysregulation has been associated with cancer in various organs (11). Research has shown that RAB4 can promote tumor proliferation by controlling protein hydrolysis and mesenchymal invasion processes (12). ...
Article
Full-text available
Background Ras-related protein Rab-4B (RAB4B), a small GTPase in the RAS superfamily, is involved in glucose homeostasis, synaptic homeostasis, adaptive immunity, and other processes. RAB4B has also been implicated in tumorigenesis, and its dysregulation has been linked to cancer in multiple organs. However, the potential role of RAB4B in human pan-cancers remains unknown, and whether RAB4B is a predictive biomarker for cancer immunotherapy is yet to be explored. Methods In order to investigate the potential for RAB4B as a therapeutic agent in human pan-cancers and its predictive properties, firstly, relevant data were downloaded from pan-cancers databases. Using the RAB4B expression as a parameter, an analysis was performed. The next step was to investigate how RAB4B relates to overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). Moreover, we performed an analysis of the relationship between RAB4B and tumor mutational burden (TMB), microsatellite instability (MSI), and tumor microenvironment (TME). Besides, the tumor immune dysfunction and exclusion (TIDE) algorithm was applied to evaluate the efficacy of RAB4B as a potential biomarker for cancer immunotherapy. A final analysis was performed on RAB4B in relation to immune-related genes and pathways. Results Results reflected that RAB4B expression was different between tumors and normal tissues. RAB4B not only positively or negatively correlated with survival indicators, but also with clinical characteristics. In addition, RAB4B positively or negatively correlated with TMB, MSI, and TME. The TIDE algorithm revealed that RAB4B was positively or negatively associated with immune checkpoint blockade. The outcome of gene set enrichment analysis (GSEA) suggested that RAB4B positively regulated biological processes and immune cell-related pathways in most cancers. Conclusions According to the research results, we come to the conclusion that RAB4B as a biomarker for tumor immunotherapy, RAB4B facilitates the prediction of pan-cancers prognosis.
... More than 600 cancer-causing mutated genes (or oncogenes) are known today [1] (cf. the Catalogue of Somatic Mutations In Cancer, https://cancer.sanger.ac.uk/cosmic, accessed on 16 February 2024); from these, numerous entries are connected to the RAS gene, whose mutations are found in approximately 25% of all human tumors [2,3]. Cancers caused by RAS mutations are some of the most difficult to treat and frequently resist chemotherapeutic attacks despite innovative novel approaches [4][5][6]. Mutations in the RAS genes, and, consequently, in the RAS proteins, are connected to the three most lethal cancers in the U.S., namely pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, RAS genes, and, consequently, in the RAS proteins, are connected to the three most l cancers in the U.S., namely pancreatic ductal adenocarcinoma, colorectal adenocarcin and lung adenocarcinoma [1]. In humans, there are three RAS isoforms: KRAS, N and HRAS; among these, the KRAS isoform is the most frequently mutated in ca (>85%) [7]. ...
Article
Full-text available
Mutated genes may lead to cancer development in numerous tissues. While more than 600 cancer-causing genes are known today, some of the most widespread mutations are connected to the RAS gene; RAS mutations are found in approximately 25% of all human tumors. Specifically, KRAS mutations are involved in the three most lethal cancers in the U.S., namely pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and lung adenocarcinoma. These cancers are among the most difficult to treat, and they are frequently excluded from chemotherapeutic attacks as hopeless cases. The mutated KRAS proteins have specific three-dimensional conformations, which perturb functional interaction with the GAP protein on the GAP–RAS complex surface, leading to a signaling cascade and uncontrolled cell growth. Here, we describe a gluing docking method for finding small molecules that bind to both the GAP and the mutated KRAS molecules. These small molecules glue together the GAP and the mutated KRAS molecules and may serve as new cancer drugs for the most lethal, most difficult-to-treat, carcinomas. As a proof of concept, we identify two new, drug-like small molecules with the new method; these compounds specifically inhibit the growth of the PANC-1 cell line with KRAS mutation G12D in vitro and in vivo. Importantly, the two new compounds show significantly lower IC50 and higher specificity against the G12D KRAS mutant human pancreatic cancer cell line PANC-1, as compared to the recently described selective G12D KRAS inhibitor MRTX-1133.
... These include G12D, G12V, G13D and Q61H which together account for the vast majority of KRAS-associated cancers. [7,43] Moreover, acquired resistance is emerging against covalent G12C inhibitors. [44][45][46][47][48] Therefore, development of new inhibitors that work through alternative mechanisms is needed. ...
Article
Full-text available
We describe six compounds as early hits for the development of direct inhibitors of KRAS, an important anticancer drug target. We show that these compounds bind to KRAS with affinities in the low micromolar range and exert different effects on its interactions with binding partners. Some of the compounds exhibit selective binding to the activated form of KRAS and inhibit signal transduction through both the MAPK or the phosphatidylinositide 3‐kinase PI3K‐protein kinase B (AKT) pathway in cells expressing mutant KRAS. Most inhibit intrinsic and/or SOS‐mediated KRAS activation while others inhibit RAS‐effector interaction. We propose these compounds as starting points for the development of non‐covalent allosteric KRAS inhibitors.
... Although there are a few different properties among different subtypes of KRAS mutations, all of these mutations lead to constitutive activation of downstream pathways, such as the MAPK pathway and PI3K pathway [6,7]. Thus, targeting these effector pathways has been considered as a therapeutic alternative [8,9]. ...
Article
Full-text available
Background Lung cancer is the leading cause of cancer-related death worldwide. We previously found that Mediator complex subunit 23 (MED23) is important for the tumourigenicity of lung cancer cells with hyperactive Ras activity in vitro, although the in vivo function of MED23 in lung tumourigenesis remains to be explored. Methods In this study, we utilized well-characterized Kras G12D -driven non-small cell lung cancer mouse model to investigate the role of MED23 in lung cancer. The lung tumour progression was evaluated by H&E and IHC analysis. Western blotting and qRT-PCR assays were performed to detect changes in gene expression. Immune cells were analyzed by FACS technology. RNA-seq and reporter assays were conducted to explore the mechanism. Results We observed that lung epithelial Med23 deletion by adeno-Cre resulted in a significant increase in Kras G12D tumour number and size, which was further verified with another mouse model with Med23 specifically deleted in alveolar type II cells. Mice with lung-specific Med23 deficiency also exhibited accelerated tumourigenesis, and a higher proliferation rate for tumour cells, along with increased ERK phosphorylation. Notably, the numbers of infiltrating CD4 ⁺ T cells and CD8 ⁺ T cells were significantly reduced in the lungs of Med23 -deficient mice, while the numbers of myeloid-derived suppressor cells (MDSCs) and Treg cells were significantly increased, suggesting the enhanced immune escape capability of the Med23 -deficient lung tumours. Transcriptomic analysis revealed that the downregulated genes in Med23-deficient lung tumour tissues were associated with the immune response. Specifically, Med23 deficiency may compromise the MHC-I complex formation, partially through down-regulating B2m expression. Conclusions Collectively, these findings revealed that MED23 may negatively regulate Kras-induced lung tumourigenesis in vivo, which would improve the precise classification of KRAS -mutant lung cancer patients and provide new insights for clinical interventions.
... It should be noted that the high frequency of this mutation makes it an ideal drug target. However, attempts to target mutant RAS proteins have proven challenging 18,19 . One possible reason can be the lack of information of active structures of RAS proteins while the published crystal structures are in general obtained under experimental conditions. ...
Article
Full-text available
One of the most common drivers in human cancer is the peripheral membrane protein KRAS4B, able to promote oncogenic signalling. To signal, oncogenic KRAS4B not only requires a sufficient nucleotide...
... The non-equilibrium intracellular dynamics of both F-actin and MTs, are largely determined by energy derived from ATP or GTP hydrolysis, and polymerizing MTs consist of GTPbound tubulin dimers at their growing ends; hydrolysis follows, and the MT lattice consists of GDP-bound tubulin. Ras-driven cancers have proven very difficult to treat [51][52][53] , and the most common KRAS p.G12C mutation can be targeted via proteins fused to the pVHL E3 ligase 54,55 . Further, Ras is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. ...
Preprint
Full-text available
(See also the 4 PDF files appended below) My objectives have been to understand human diseases better using computer-aided tools and, in doing so, advance the field of personalized medicine. My background is in computing and mathematics. I received undergraduate training in electronics and electrical engineering. I went on to complete postgraduate training in statistical signal processing (EPF Lausanne) and biophysics and optical microscopy (ETH Zürich). During my dissertation work at Scripps Research, I focused on the development of novel algorithms for automated analysis of the motion of cytoskeletal proteins. I apply methods based on scale-space, information and graph theory, clustering algorithms, multi-objective optimization, spatial and Bayesian filtering, template matching, neural networks, deep learning, expectation-maximization, Monte Carlo simulations, stochastic processes, hypothesis testing, texture and wavelet analysis. At Cornell Medicine, I led a team of three computational scientists and developed algorithms for computer vision analyses of images of patient-derived CTCs. I quantified the effects of six chemotherapy drugs on four breast cancer cell lines, which demonstrated a correlation between tumor type, microtubule dynamics, and drug efficacy. I evaluated the ability of NAD+ to restore altered microtubule dynamics in a breast cancer cell line and its effects during axonal degeneration in terms of protecting microtubules in a mouse model. Consulting for industry, I contributed to studies on drug discovery for Alzheimer’s disease based on the analysis of changes in mitochondria morphology and motion in patient-derived iPS cells (iPerian Inc.) and Parkinson’s disease based on motion analysis of lysosomes in mouse astrocytes (Pfizer Inc.). At UCSF, I stained for histology, GFP-transduced live cells, imaged at a high spatial and temporal resolution, treated with cytotoxic drugs and ferroptosis-inducing small molecules, performed cell viability assays and WGS analysis of organoid cultures I derived from metastatic and primary prostate and metastatic colorectal tumor tissues resected from hospital patients. With my startup company DataSet Analysis, I developed software for real-time motion tracking of vesicle movement. I also worked on the establishment of a biobank for body fluids and longitudinal analysis of urinary small RNA sequencing data to detect lung cancer and other degenerative diseases. At Aarhus University, my focus was the classification of circulating cell-free DNA in blood samples from cancer patients participating in clinical trials in Denmark and the UK. I analyzed DNA fragmentation length distributions in healthy individuals without and with comorbidities, patients with low-grade and high-grade adenoma, colon, rectal, lung, breast, gastric, ovarian, pancreatic, duodenal, and bile duct tumors in the context of early disease detection as well as the detection of residual disease and recurrence after curative-intent surgery. At BioSpyder Technologies Inc., I contributed to the development and bioinformatics analysis of a novel single-cell transcriptomics assay as well as to the analysis of templated oligo-sequencing data to identify gene expression profiles for diagnosis of Alzheimer’s and Parkinson’s disease in self-collected finger-stick blood samples spotted on filter paper. At Amydis Inc., I developed computer vision tools and led the efforts to analyze patterns of aberrant protein aggregates in ex vivo images of the patient retina for the detection of Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, frontotemporal dementia, transthyretin amyloidosis, and glaucoma. I designed and prototyped a computer vision algorithm to facilitate medical diagnosis based on bag-of-visual-words and bag-of-bags-of-words image classification and retrieval in a surgically-induced non-human primate in vivo disease model. At Medentum Innovations Inc., I analyzed and classified data for the detection of pediatric ear (acute otitis media, chronic suppurative otitis media, myringosclerosis, otitis externa, otitis media with effusion, earwax plug, etc.) and throat (exudative pharyngitis, non-exudative pharyngitis, and aphthous ulcer) disease in images acquired with an otoscope as well as adventitious lung sounds (wheeze, rhonchi, stridor, and crackle) for respiratory and cardiovascular disease detection acquired with a stethoscope for AI-based telehealth diagnostics. My objective has been to develop resources for functional interrogation of drug response in a physiologically relevant system amenable to molecular manipulations and investigate personalized drug response ex vivo. I have developed image analysis software for automated motion tracking of labeled microtubules and actin - ClusterTrack (for measurements of interphase cells), Instantaneous Flow Tracker (for measurements of interdigitated flows in dividing cells, contractile actin networks in migrating epithelial cells and growth cones), and Dataset Tracker (for real-time optical flow feature tracking), which can serve as the base module of an integrated platform of all existing and future algorithms for real-time cellular analysis. The computational assay I propose could successfully be applied to evaluate treatment strategies for any human organ.
... In the presence of activating signals, GEFs replace GDP with GTP, allowing KRAS to turn "on." A downstream kinase cascade, involving serial phosphorylation of downstream kinases, such as RAF, ERK and MEK, ultimately triggers transcription factor activation, leading to increased cellular proliferation, migration and survival (1)(2)(3). In the normal cellular context, the MAPK pathway is regulated by intrinsic feedback loops and negative regulators, such as Sprouty, RAS-association domain family (RASSF) proteins, and Son of Sevenless homolog 1 (SOS-1) which help to prevent aberrant activation and signaling (4). ...
Article
Full-text available
KRAS G12C mutations are critical in the pathogenesis of multiple cancer types, including non-small cell lung (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and colorectal (CRC) cancers. As such, they have increasingly become a target of novel therapies in the management of these malignancies. However, the therapeutic success of KRAS G12C inhibitors to date has been far more limited in CRC and PDAC than NSCLC. In this review, we briefly summarize the biochemistry of KRAS targeting and treatment resistance, highlight differences in the epidemiology of various G12C-mutated cancers, and provide an overview of the published data on KRAS G12C inhibitors for various indications. We conclude with a summary of ongoing clinical trials in G12C-mutant CRC and a discussion of future directions in the management of this disease. KRAS G12C mutation, targeted therapies, colorectal cancer, non-small cell lung cancer, pancreatic cancer, drug development.
... Furthermore, KRAS has high homology with NRAS and HRAS, and its currently known active functional domains of KRAS are mainly pocket-shaped, combining KRAS with either GDP or GTP. 44 Unlike protein kinase, which has a weak affinity with ATP, KRAS has a binding affinity with GTP and GDP at the pM level, making it difficult to compete as effectively as protein kinase inhibitors. In summary, KRAS protein is a featureless, nearly spherical structure with no obvious binding sites, making it difficult to synthesize compounds that can effectively target and inhibit its activity. ...
Article
Full-text available
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting “undruggable” proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein–protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
... The absence of a drug-binding groove on the smooth surface of the RAS poses a challenge for targeted inhibitors. Multiple upstream and downstream regulators of RAS pathways contribute to drug resistance mechanisms and bypass signals, further limiting the effectiveness of combination strategies (41). ...
Article
Full-text available
Three rat sarcoma (RAS) gene isoforms, KRAS, NRAS, and HRAS, constitute the most mutated family of small GTPases in cancer. While the development of targeted immunotherapies has led to a substantial improvement in the overall survival of patients with non-KRAS-mutant cancer, patients with RAS-mutant cancers have an overall poorer prognosis owing to the high aggressiveness of RAS-mutant tumors. KRAS mutations are strongly implicated in lung, pancreatic, and colorectal cancers. However, RAS mutations exhibit diverse patterns of isoforms, substitutions, and positions in different types of cancers. Despite being considered “undruggable”, recent advances in the use of allele-specific covalent inhibitors against the most common mutant form of RAS in non-small-cell lung cancer have led to the development of effective pharmacological interventions against RAS-mutant cancer. Sotorasib (AMG510) has been approved by the FDA as a second-line treatment for patients with KRAS-G12C mutant NSCLC who have received at least one prior systemic therapy. Other KRAS inhibitors are on the way to block KRAS-mutant cancers. In this review, we summarize the progress and promise of small-molecule inhibitors in clinical trials, including direct inhibitors of KRAS, pan-RAS inhibitors, inhibitors of RAS effector signaling, and immune checkpoint inhibitors or combinations with RAS inhibitors, to improve the prognosis of tumors with RAS mutations.
... For example, P-glycoprotein (P-gp), encoded by the multidrug resistance (MDR) gene, serves as an efflux pump to export drugs and related ions from the cells, thus resulting in an attenuation of drug sensitivity in AML cells [83]. ATP-binding cassette subfamily C member 1 (ABCC1) and lung resistance protein (LRP), as MDR-related proteins, also play a role in inhibiting drug translocation into the nucleus and/or exporting the drug out of AML cells [84,85]. Protein kinase C (PKC) can also induce drug resistance, primarily through the upregulation of P-gp, which serves to enhance its capacity for facilitating drug-efflux [86]. ...
Article
Full-text available
Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
... KRAS mutations are present in 22% of cancers, predominantly the most clinically refractory (137,800 annual cases of KRAS-driven pancreatic, lung and colorectal cancers in the US alone. [11] ) A lack of therapeutics targeting RAS has made downstream phosphatidylinositol 3-kinases (PI3K) and serine/threonine RAF kinases foremost drug targets, [12][13][14] but patient acquired resistance has significantly hindered this approach. There has been little focus to date on RAS-related GTPases or alternative effector pathways. ...
Article
Full-text available
RAS GTPases play essential roles in normal development and are direct drivers of human cancers. Three decades of study have failed to wholly characterize pathways stimulated by activated RAS, driven by engagement with 'effector' proteins that have RAS binding domains (RBDs). Bone fide effectors must bind directly to RAS GTPases in a nucleotide-dependent manner, and this interaction must impart a clear change in effector activity. Despite this, for most proteins currently deemed effectors there is little mechanistic understanding of how binding to the GTPase alters protein function. There has also been limited effort to comprehensively resolve the specificity of effector binding to the full array of RAS superfamily GTPase proteins. This review will summarize what is known about RAS-driven activation for an array of potential effector proteins, focusing on structural and mechanistic effects and highlighting how little is still known regarding this key paradigm of cellular signal transduction.
... The guanylate exchange cycle plays a decisive role in the activation of RAS proteins. GTP-bound RAS protein is activated whereas GDP-bound RAS protein is inactivated (Pylayeva-Gupta et al., 2011;Stephen et al., 2014). RAS proteins have GTPase activity, which is enhanced by RAS GTPase activating protein (RAS GAP), turning the RAS protein from the activated (GTP-bound) form back to the inactivated state (GDP-bound) (Lito et al., 2016). ...
Article
Full-text available
The term “undruggable” is to describe molecules that are not targetable or at least hard to target pharmacologically. Unfortunately, some targets with potent oncogenic activity fall into this category, and currently little is known about how to solve this problem, which largely hampered drug research on human cancers. Ras, as one of the most common oncogenes, was previously considered “undruggable”, but in recent years, a few small molecules like Sotorasib (AMG-510) have emerged and proved their targeted anti-cancer effects. Further, myc, as one of the most studied oncogenes, and tp53, being the most common tumor suppressor genes, are both considered “undruggable”. Many attempts have been made to target these “undruggable” targets, but little progress has been made yet. This article summarizes the current progress of direct and indirect targeting approaches for ras, myc, two oncogenes, and tp53, a tumor suppressor gene. These are potential therapeutic targets but are considered “undruggable”. We conclude with some emerging research approaches like proteolysis targeting chimeras (PROTACs), cancer vaccines, and artificial intelligence (AI)-based drug discovery, which might provide new cues for cancer intervention. Therefore, this review sets out to clarify the current status of targeted anti-cancer drug research, and the insights gained from this review may be of assistance to learn from experience and find new ideas in developing new chemicals that directly target such “undruggable” molecules.
... Codon 12 of KRAS, such as G12V, G12D, G12C, etc, has the highest mutation frequency in pancreatic cancer, colorectal cancer and non-small cell lung cancer, accounting for about 90% of all KRAS mutations (35). Among them, KRAS G12V and G12D mutations are the most common, accounting for about 60% of pancreatic cancer, 20% of colorectal cancer, and 8% of non-small cell lung cancer (36,37). Therefore, KRAS G12V and G12D mutations are ideal targets for PDAC (38)(39)(40). ...
Article
Full-text available
KRAS mutation is a significant driving factor of tumor, and KRAS G12V mutation has the highest incidence in solid tumors such as pancreatic cancer and colorectal cancer. Thus, KRAS G12V neoantigen-specific TCR-engineered T cells could be a promising cancer treatment approach for pancreatic cancer. Previous studies had reported that KRAS G12V -reactive TCRs originated from patients’ TILs could recognized KRAS G12V neoantigen presented by specific HLA subtypes and remove tumor persistently in vitro and in vivo . However, TCR drugs are different from antibody drugs in that they are HLA-restricted. The different ethnic distribution of HLA greatly limits the applicability of TCR drugs in Chinese population. In this study, we have identified a KRAS G12V -specific TCR which recognized classII MHC from a colorectal cancer patient. Interestingly, we observed that KRAS G12V -specific TCR-engineered CD4 ⁺ T cells, not CD8 ⁺ T cells, demonstrated significant efficacy in vitro and in xenograft mouse model, exhibiting stable expression and targeting specificity of TCR when co-cultured with APCs presenting KRAS G12V peptides. TCR-engineered CD4 ⁺ T cells were co-cultured with APCs loaded with neoantigen, and then HLA subtypes were identified by the secretion of IFN-γ. Collectively, our data suggest that TCR-engineered CD4 ⁺ T cells can be used to target KRAS G12V mutation presented by HLA-DPB1*03:01 and DPB1*14:01, which provide a high population coverage and are more suitable for the clinical transformation for Chinese, and mediate tumor killing effect like CD8 ⁺ T cells. This TCR hold promise for precision therapy in immunotherapy of solid tumors as an attractive candidate.
... RAS proteins are guanosine triphosphatases (GTPases) that function as binary switches cycling between inactive (guanosine diphosphate-bound) and active [guanosine-5'-triphosphate (GTP)-bound] states (18,19). Activated RAS proteins can bind to numerous downstream effectors, such as RAF and PI3K, which regulate critical cellular processes, including metabolism, proliferation and survival (20). RAS proteins are subject to a number of regulatory factors and this regulation is often tightly controlled in cells; however, oncogenic mutations in RAS proteins alter this tightly regulated process, leading to the constitutive activation of RAS proteins. ...
Article
Full-text available
The aim of the present study was to examine the effects of alisertib (ALS) on RAS signaling pathways against a panel of colorectal cancer (CRC) cell lines and engineered Flp-In stable cell lines expressing different Kirsten rat sarcoma virus (KRAS) mutants. The viability of Caco-2KRAS wild-type, Colo-678KRAS G12D, SK-CO-1KRAS G12V, HCT116KRAS G13D, CCCL-18KRAS A146T and HT29BRAF V600E cells was examined by Cell Titer-Glo assay, and that of stable cell lines was monitored by IncuCyte. The expression levels of phosphorylated (p-)Akt and p-Erk as RAS signal outputs were measured by western blotting. The results suggested that ALS exhibited different inhibitory effects on cell viability and different regulatory effects on guanosine triphosphate (GTP)-bound RAS in CRC cell lines. ALS also exhibited various regulatory effects on the PI3K/Akt and mitogen-activated protein kinase (MAPK) pathways, the two dominant RAS signaling pathways, and induced apoptosis and autophagy in a RAS allele-specific manner. Combined treatment with ALS and selumetinib enhanced the regulatory effects of ALS on apoptosis and autophagy in CRC cell lines in a RAS allele-specific manner. Notably, combined treatment exhibited a synergistic inhibitory effect on cell proliferation in Flp-In stable cell lines. The results of the present study suggested that ALS differentially regulates RAS signaling pathways. The combined approach of ALS and a MEK inhibitor may represent a new therapeutic strategy for precision therapy for CRC in a KRAS allele-specific manner; however, this effect requires further study in vivo.
... In addition, we also detected significant enrichment of genes related to RAS pathway (P = 2.2 E-02; FDR = 0.26) and MAPK pathway (P = 2.9 E-03; FDR = 0.1) ( Figure 5B). These findings corroborated our previous results ( Figure 2A-C and S4-S5), as Ras family proteins are known to be activated by signaling through EGFR [46]. (mutITGB2) or Galectin-3-specific small interfering RNA (siGAL3) were analyzed by WB using the indicated antibodies. ...
Article
Full-text available
Background: Small cell lung cancer (SCLC) is an extremely aggressive cancer type with a patient median survival of 6-12 months. Epidermal growth factor (EGF) signaling plays an important role in triggering SCLC. In addition, growth factor-dependent signals and alpha-, beta-integrin (ITGA, ITGB) heterodimer receptors functionally cooperate and integrate their signaling pathways. However, the precise role of integrins in EGF receptor (EGFR) activation in SCLC remains elusive. Methods: We analyzed human precision-cut lung slices (hPCLS), retrospectively collected human lung tissue samples and cell lines by classical methods of molecular biology and biochemistry. In addition, we performed RNA-sequencing-based transcriptomic analysis in human lung cancer cells and human lung tissue samples, as well as high-resolution mass spectrometric analysis of the protein cargo from extracellular vesicles (EVs) that were isolated from human lung cancer cells. Results: Our results demonstrate that non-canonical ITGB2 signaling activates EGFR and RAS/MAPK/ERK signaling in SCLC. Further, we identified a novel SCLC gene expression signature consisting of 93 transcripts that were induced by ITGB2, which may be used for stratification of SCLC patients and prognosis prediction of LC patients. We also found a cell-cell communication mechanism based on EVs containing ITGB2, which were secreted by SCLC cells and induced in control human lung tissue RAS/MAPK/ERK signaling and SCLC markers. Conclusions: We uncovered a mechanism of ITGB2-mediated EGFR activation in SCLC that explains EGFR-inhibitor resistance independently of EGFR mutations, suggesting the development of therapies targeting ITGB2 for patients with this extremely aggressive lung cancer type.
... Despite KRAS displaying a central role in CRC tumorigenesis and possibly metastasis, direct inhibition of KRAS is exceptionally challenging as it is not receptive to inhibitor docking (14)(15)(16). Approximately 50% of CRC harbors KRAS oncogenic mutations and our unpublished findings show that KRAS mutations is associated with metastasis (17). ...
Article
Full-text available
Colorectal cancer (CRC) is the third highest incidence cancer and a leading cause of cancer mortality worldwide. To date, chemotherapeutic treatment of advanced CRC that has metastasized has a dismayed success rate of less than 30%. Further, most (80%) sporadic CRCs are microsatellite-stable and are refractory to immune checkpoint blockade therapy. KRAS is a gatekeeper gene in colorectal tumorigenesis. Nevertheless, KRAS is ‘undruggable’ due to its structure. Thus, focus has been diverted to develop small molecule inhibitors for its downstream effector such as ERK/MAPK. Despite intense research efforts for the past few decades, no small molecule inhibitor has been in clinical use for CRC. Antibody targeting KRAS itself is an attractive alternative. We developed a transient ex vivo patient-derived matched mucosa-tumor primary culture to assess whether anti-KRAS antibody can be internalized to bind and inactivate KRAS. We showed that anti-KRAS antibody can enter live mucosa-tumor cells and specifically aggregate KRAS in the cytoplasm, thus hindering its translocation to the inner plasma membrane. The mis-localization of KRAS reduces KRAS dwelling time at the site where it tethers to activate downstream effectors. We previously showed that expression of SOX9 was KRAS-mutation-dependent and possibly a better effector than ERK in CRC. Herein, we showed that anti-KRAS antibody treated tumor cells have less intense SOX9 cytoplasmic and nuclear staining compared to untreated cells. Our results demonstrated that internalized anti-KRAS antibody inhibits KRAS function in tumor. With an efficient intracellular antibody delivery system, this can be further developed as combinatorial therapeutics for CRC and other KRAS-driven cancers.
... Although sotorasib was recently approved in the U.S. against KRAS G12C -mutant NSCLC [62], KRAS-mutant cancers from multiple sites of origin remain notoriously aggressive and undruggable [63] and direct KRAS inhibition is associated with some toxicity that likely renders such treatments unsuitable for chemoprevention [64]. On the contrary, anti-IL-1β-directed therapies hold promise for chemoprevention, as shown by the CANTOS trial, (where tri-monthly administration of the IL-1β-neutralizing antibody canakinumab over 3.7 years of observation decreased overall and lung cancer mortality by 51% and 77%, respectively) based on their excellent safety profile [2]. ...
Article
Full-text available
Simple Summary Kirsten rat sarcoma virus (KRAS)-mutant cancers are frequent, metastatic, lethal, and largely undruggable. The aim of this study was to investigate the pathways through which KRAS-mutant cancers foster their growth, thereby unravelling novel therapeutic targets. We show that KRAS-mutant tumors secrete the protein versican, which then drives the activation of NF-κB kinase (IKK) β in a type of host immune cells called macrophages. Following this activation, macrophages fuel the tumor with interleukin (IL)-1β, to close an inflammatory loop through which KRAS-mutant cancers attract host immune cells to the tumor site to accelerate tumor growth and aggressiveness. Importantly, we show that targeting IL-1β and/or versican can be an effective treatment for KRAS-mutant cancers, holding great promise for cancer patients. Abstract Kirsten rat sarcoma virus (KRAS)-mutant cancers are frequent, metastatic, lethal, and largely undruggable. While interleukin (IL)-1β and nuclear factor (NF)-κB inhibition hold promise against cancer, untargeted treatments are not effective. Here, we show that human KRAS-mutant cancers are addicted to IL-1β via inflammatory versican signaling to macrophage inhibitor of NF-κB kinase (IKK) β. Human pan-cancer and experimental NF-κB reporter, transcriptome, and proteome screens reveal that KRAS-mutant tumors trigger macrophage IKKβ activation and IL-1β release via secretory versican. Tumor-specific versican silencing and macrophage-restricted IKKβ deletion prevents myeloid NF-κB activation and metastasis. Versican and IKKβ are mutually addicted and/or overexpressed in human cancers and possess diagnostic and prognostic power. Non-oncogene KRAS/IL-1β addiction is abolished by IL-1β and TLR1/2 inhibition, indicating cardinal and actionable roles for versican and IKKβ in metastasis.
... The Ras group of proteins plays a significant role in cell growth, proliferation, and survival [33][34][35][36]. Two major Ras-driven signaling cascades are the MAPK (Raf/MEK/ ERK) and PI3K/Akt/mTOR pathways, both of which regulate cellular proliferation and differentiation [34,[37][38][39][40]. ...
Article
Full-text available
In addition to their lipid-lowering functions, statins elicit additional pleiotropic effects on apoptosis, angiogenesis, inflammation, senescence, and oxidative stress. Many of these effects have been reported in cancerous and noncancerous cells like endothelial cells (ECs), endothelial progenitor cells (EPCs) and human umbilical vein cells (HUVCs). Not surprisingly, statins' effects appear to vary largely depending on the cell context, especially as pertains to modulation of cell cycle, senescence, and apoptotic processes. Perhaps the most critical reason for this discordance is the bias in selecting the applied doses in various cells. While lower (nanomolar) concentrations of statins impose anti-senescence, and antiapoptotic effects, higher concentrations (micromolar) appear to precipitate opposite effects. Indeed, most studies performed in cancer cells utilized high concentrations, where statin-induced cytotoxic and cytostatic effects were noted. Some studies report that even at low concentrations, statins induce senescence or cytostatic impacts but not cytotoxic effects. However, the literature appears to be relatively consistent that in cancer cells, statins, in both low or higher concentrations, induce apoptosis or cell cycle arrest, anti-proliferative effects, and cause senescence. However, statins’ effects on ECs depend on the concentrations; at micromolar concentrations statins cause cell senescence and apoptosis, while at nonomolar concentrations statins act reversely.
... By covalently binding to KRAS G12C , both marketed Sotorasib and the upcoming Adagrasib (MRTX849) [22,23] stabilize KRAS G12C in its GDP-bound state (which is also named as an inactive state). The G12D is a more common mutation than G12C [5,24], especially in pancreatic cancer, colon and lung cancers [25][26][27]. Due to the lack of the mutated cysteine, it is of great challenge to target KRAS G12D [28]. However, the MRTX1133 (Fig. 1) broke the deadlock by binding to KRAS G12D and demonstrated promising antitumor activity in preclinical trials [29]. ...
Article
Full-text available
The mutant KRAS was considered as an "undruggable" target for decades, especially KRASG12D. It is a great challenge to develop the inhibitors for KRASG12D which lacks the thiol group for covalently binding ligands. The discovery of MRTX1133 solved the dilemma. Interestingly, MRTX1133 can bind to both the inactive and active states of KRASG12D. The binding mechanism of MRTX1133 with KRASG12D, especially how MRTX1133 could bind the active state KRASG12D without triggering the active function of KRASG12D, has not been fully understood. Here, we used a combination of all-atom molecular dynamics simulations and Markov state model (MSM) to understand the inhibition mechanism of MRTX1133 and its analogs. The stationary probabilities derived from MSM show that MRTX1133 and its analogs can stabilize the inactive or active states of KRASG12D into different conformations. More remarkably, by scrutinizing the conformational differences, MRTX1133 and its analogs were hydrogen bonded to Gly60 to stabilize the switch II region and left switch I region in a dynamically inactive conformation, thus achieving an inhibitory effect. Our simulation and analysis provide detailed inhibition mechanism of KRASG12D induced by MRTX1133 and its analogs. This study will provide guidance for future design of novel small molecule inhibitors of KRASG12D.
... 30,31 Most activating KRAS mutations result in impairment of the protein's GTPase, causing KRAS to be locked in its GTP-bound active form and continued activation of major downstream pathways. 32 While activating KRAS mutations are often one of the earliest mutations and promote PDAC initiation, research has suggested that KRAS mutations alone are incapable of promoting PDAC progression. 25,33 Located on chromosome 9, CDKN2A encodes the p16 INK4A protein, which negatively regulates cell cycle progression from G1-phase to S-phase by disrupting complex formation between CDK4/6 and cyclin D. 34,35 Loss of CDKN2A is key in the progression of PDAC as it allows cells with activating KRAS mutations to escape cell senescence. ...
Article
Full-text available
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5‐year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5‐year survival rate. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm with an emphasis on the use of NAT.
... The structure of the KRAS molecule is not easily amenable to inhibitor docking [16][17][18]. Efforts are diverted to downstream effectors such as the RAFMEK/ERK (also known as MAPK) and PI3K/AKT pathways [19,20]. Nevertheless, despite intense efforts for the past few decades, none of the inhibitors targeting ERK, BRAF, MEK or AKT have been translated into the clinic for CRC treatment. ...
Article
Full-text available
This review summarizes recent development in synthetic drugs and biologics targeting intracellular driver genes in epithelial cancers, focusing on KRAS, and provides a current perspective and potential leads for the field. Compared to biologics, small molecule inhibitors (SMIs) readily penetrate cells, thus being able to target intracellular proteins. However, SMIs frequently suffer from pleiotropic effects, off-target cytotoxicity and invariably elicit resistance. In contrast, biologics are much larger molecules limited by cellular entry, but if this is surmounted, they may have more specific effects and less therapy-induced resistance. Exciting breakthroughs in the past two years include engineering of non-covalent KRAS G12D-specific inhibitor, probody bispecific antibodies, drug–peptide conjugate as MHC-restricted neoantigen to prompt immune response by T-cells, and success in the adoptive cell therapy front in both breast and pancreatic cancers.
... To model this system of interest, we take KRAS4b proteins (a frequently mutated RAS isoform in human cancers [48,49]) inserted on the inner leaflet of a PM mimic. In particular, this lipid bilayer consists of an asymmetric seven-lipid mixture tuned to represent average PM bulk lipid properties, based on the eight-component mixture defined in [50] without the inner leaflet PIP2 lipid. ...
Article
Full-text available
We present a continuum model trained on molecular dynamics (MD) simulations for cellular membranes composed of an arbitrary number of lipid types. The model is constructed within the formalism of dynamic density functional theory and can be extended to include features such as the presence of proteins and membrane deformations. This framework represents a paradigm shift by enabling simulations that can access length scales on the order of microns and time scales on the order of seconds, all while maintaining near fidelity to the underlying MD models. These length and time scales are significant for accessing biological processes associated with signaling pathways within cells. Membrane interactions with RAS, a protein implicated in roughly 30% of human cancers, are considered as an application. Simulation results are presented and verified with MD simulations, and implications of this new capability are discussed.
... RAS proteins are members of the classical small-molecule GTPase family and function as molecular switches by alternating between the inactive GDP-bound state and active GTP-bound state [1][2][3]. The activation of RAS is regulated by guanine nucleotide exchange factors such as son of sevenless 1 (SOS1), which catalyzes the exchange of GDP for GTP [4,5]. ...
Article
The KRASG12C mutant has emerged as an important therapeutic target in recent years. Covalent inhibitors have shown promising antitumor activity against KRASG12C-mutant cancers in the clinic. In this study, a structure-based and focused chemical library analysis was performed, which led to the identification of 143D as a novel, highly potent and selective KRASG12C inhibitor. The antitumor efficacy of 143D in vitro and in vivo was comparable with that of AMG510 and of MRTX849, two well-characterized KRASG12C inhibitors. At low nanomolar concentrations, 143D showed biochemical and cellular potency for inhibiting the effects of the KRASG12C mutation. 143D selectively inhibited cell proliferation and induced G1-phase cell cycle arrest and apoptosis by downregulating KRASG12C-dependent signal transduction. Compared with MRTX849, 143D exhibited a longer half-life and higher maximum concentration (Cmax) and area under the curve (AUC) values in mouse models, as determined by tissue distribution assays. Additionally, 143D crossed the blood‒brain barrier. Treatment with 143D led to the sustained inhibition of KRAS signaling and tumor regression in KRASG12C-mutant tumors. Moreover, 143D combined with EGFR/MEK/ERK signaling inhibitors showed enhanced antitumor activity both in vitro and in vivo. Taken together, our findings indicate that 143D may be a promising drug candidate with favorable pharmaceutical properties for the treatment of cancers harboring the KRASG12C mutation.
Article
Full-text available
Therapeutic options for managing Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of aggressive malignancies, are limited and disappointing. Therefore, despite suboptimal clinical effects, gemcitabine (GEM) remains the first-line chemotherapeutic drug in the clinic for PDAC treatment. The therapeutic limitations of GEM are primarily due to poor bioavailability and the development of chemoresistance resulting from the addiction of mutant-K-RAS/AKT/ERK signaling-mediated desmoplastic barriers with a hypoxic microenvironment. Several new therapeutic approaches, including nanoparticle-assisted drug delivery, are being investigated by us and others. This study used pH-responsive nanoparticles encapsulated ERK inhibitor (SCH772984) and surface functionalized with tumor-penetrating peptide, iRGD, to target PDAC tumors. We used a small molecule, SCH772984, to target ERK1 and ERK2 in PDAC and other cancer cells. This nanocarrier efficiently released ERKi in hypoxic and low-pH environments. We also found that the free-GEM, which is functionally weak when combined with nanoencapsulated ERKi, led to significant synergistic treatment outcomes in vitro and in vivo . In particular, the combination approaches significantly enhanced the GEM effect in PDAC growth inhibition and prolonged survival of the animals in a genetically engineered KPC (LSL-KrasG12D/+/LSL-Trp53R172H/+/Pdx-1-Cre) pancreatic cancer mouse model, which is not observed in a single therapy. Mechanistically, we anticipate that the GEM efficacy was increased as ERKi blocks desmoplasia by impairing the production of desmoplastic regulatory factors in PDAC cells and KPC mouse tumors. Therefore, 2 nd generation ERKi (SCH 772984)- iRGD-pH NPs are vital for the cellular response to GEM and denote a promising therapeutic target in PDAC with mutant K-RAS.
Chapter
Biochemical and biophysical assays using recombinant RAS require the protein to be in either the active or inactive state. Here we describe methods to exchange the nucleotide present in the purified RAS protein with either GDPβS, GppNHp, or GTP depending on the assay requirement. In addition, we also describe the HPLC method used to validate the exchange process and provide information on the efficiency of the nucleotide exchange.
Chapter
Bioluminescence resonance energy transfer (BRET) is a valuable technique for studying protein-protein interactions (PPIs) within live cells (Pfleger and Eidne, Nat Methods 3:165–174, 2006). Among the various BRET methodologies, a recent addition called NanoBRET has emerged, leveraging advancements in donor and acceptor technologies (Machleidt and Woodroofe, ACS Chem Biol 10:1797–1804, 2015). In this study, we present a developed methodology designed to measure PPIs involving the RAS protein family and their effectors and interactors at the plasma membrane. By utilizing the NanoLuc and HaloTag BRET pair, we provide evidence of a saturable interaction between KRAS4b-G12D and full-length RAF1. Conversely, the RAF1 R89L mutant, known to impede RAF1 binding to active RAS, exhibits nonspecific interactions. The assay exhibits remarkable signal-to-background ratios and is highly suitable for investigating the interactions of RAS with effectors, as well as for high-throughput screening assays.
Chapter
Surface plasmon resonance (SPR) is an optical effect at an electron-rich surface that enables affinity measurements of biomolecules in real time. It is label free and versatile, not limited to proteins, nucleic acids, and small molecules. SPR is a widely accepted method to measure not only affinity of molecular interactions but also association and dissociation rates of such interactions. In this chapter, we describe a general method to measure the affinity of a small molecule drug, MRTX849, to GDP bound HRAS, KRAS, and NRAS.
Chapter
Historically, KRAS has been considered ‘undruggable’ inspite of being one of the most frequently altered oncogenic proteins in solid tumors, primarily due to the paucity of pharmacologically ‘druggable’ pockets within the mutant isoforms. However, pioneering developments in drug design capable of targeting the mutant KRAS isoforms especially KRASG12C-mutant cancers, have opened the doors for emergence of combination therapies comprising of a plethora of inhibitors targeting different signaling pathways. SHP2 signaling pathway, primarily known for activation of intracellular signaling pathways such as KRAS has come up as a potential target for such combination therapies as it emerged to be the signaling protein connecting KRAS and the immune signaling pathways and providing the link for understanding the overlapping regions of RAS/ERK/MAPK signaling cascade. Thus, SHP2 inhibitors having potent tumoricidal activity as well as role in immunomodulation have generated keen interest in researchers to explore its potential as combination therapy in KRAS mutant solid tumors. However, the excitement with these combination therapies need to overcome challenges thrown up by drug resistance and enhanced toxicity. In this review, we will discuss KRAS and SHP2 signaling pathways and their roles in immunomodulation and regulation of tumor microenvironment and also analyze the positive effects and drawbacks of the different combination therapies targeted at these signaling pathways along with their present and future potential to treat solid tumors.
Preprint
Full-text available
With the advent of approved subtype-specific RAS inhibitors targeting KRASG12C mutation, the development of RAS inhibitors effective regardless of RAS mutation status is the next major challenge to address clinically prevalent RAS mutations and further overcome RAS-driven acquired resistance to currently available drugs. Here our multi-module drug screening for compounds capable of RAS/RAF-binding inhibition, and subsequent structural study discovered small-molecule compounds which covalently bind to a unique site in the regulatory domain of RAF, and disrupt RAF conformation allosterically, thereby preventing RAS/RAF-interaction and downstream signals. The compounds exhibit anti-tumor efficacy to multiple cancer types with broad-spectrum RAS mutations including clinically predominant G12D and G12V KRAS, NRAS and HRAS in pre-clinical models. Furthermore, the compounds effectively suppress tumor growth of BRAFV600E-melanoma with acquired resistance to RAF kinase inhibitor. Collectively, our study provides effectiveness for designing RAF-targeting drugs, and potentially therapeutic RAS/RAF-signaling inhibitors with novel mechanism to overcome broad-range RAS-driven cancers.
Article
Full-text available
Individual oncogenic KRAS mutants confer distinct differences in biochemical properties and signaling for reasons that are not well understood. KRAS activity is closely coupled to protein dynamics and is regulated through two interconverting conformations: state 1 (inactive, effector binding deficient) and state 2 (active, effector binding enabled). Here, we use ³¹P NMR to delineate the differences in state 1 and state 2 populations present in WT and common KRAS oncogenic mutants (G12C, G12D, G12V, G13D, and Q61L) bound to its natural substrate GTP or a commonly used nonhydrolyzable analog GppNHp (guanosine-5'-[(β,γ)-imido] triphosphate). Our results show that GppNHp-bound proteins exhibit significant state 1 population, whereas GTP-bound KRAS is primarily (90% or more) in state 2 conformation. This observation suggests that the predominance of state 1 shown here and in other studies is related to GppNHp and is most likely nonexistent in cells. We characterize the impact of this differential conformational equilibrium of oncogenic KRAS on RAF1 kinase effector RAS-binding domain and intrinsic hydrolysis. Through a KRAS G12C drug discovery, we have identified a novel small-molecule inhibitor, BBO-8956, which is effective against both GDP- and GTP-bound KRAS G12C. We show that binding of this inhibitor significantly perturbs state 1–state 2 equilibrium and induces an inactive state 1 conformation in GTP-bound KRAS G12C. In the presence of BBO-8956, RAF1–RAS-binding domain is unable to induce a signaling competent state 2 conformation within the ternary complex, demonstrating the mechanism of action for this novel and active-conformation inhibitor.
Article
This study focuses on investigating the effects of an oncogenic mutation (G12V) on the stability and interactions within the KRAS‐RGL1 protein complex. The KRAS‐RGL1 complex is of particular interest due to its relevance to KRAS‐associated cancers and the potential for developing targeted drugs against the KRAS system. The stability of the complex and the allosteric effects of specific residues are examined to understand their roles as modulators of complex stability and function. Using molecular dynamics simulations, we calculate the mutual information, MI, between two neighboring residues at the interface of the KRAS‐RGL1 complex, and employ the concept of interaction information, II, to measure the contribution of a third residue to the interaction between interface residue pairs. Negative II indicates synergy, where the presence of the third residue strengthens the interaction, while positive II suggests anti‐cooperativity. Our findings reveal that MI serves as a dominant factor in determining the results, with the G12V mutation increasing the MI between interface residues, indicating enhanced correlations due to the formation of a more compact structure in the complex. Interestingly, although II plays a role in understanding three‐body interactions and the impact of distant residues, it is not significant enough to outweigh the influence of MI in determining the overall stability of the complex. Nevertheless, II may nonetheless be a relevant factor to consider in future drug design efforts. This study provides valuable insights into the mechanisms of complex stability and function, highlighting the significance of three‐body interactions and the impact of distant residues on the binding stability of the complex. Additionally, our findings demonstrate that constraining the fluctuations of a third residue consistently increases the stability of the G12V variant, making it challenging to weaken complex formation of the mutated species through allosteric manipulation. The novel perspective offered by this approach on protein dynamics, function, and allostery has potential implications for understanding and targeting other protein complexes involved in vital cellular processes. The results contribute to our understanding of the effects of oncogenic mutations on protein–protein interactions and provide a foundation for future therapeutic interventions in the context of KRAS‐associated cancers and beyond.
Article
Cancer is the second-most lethal global disease, as per health reports, and is responsible for around 70% of deaths in low- and middle-income countries. Endometrial cancer is one of the emerging malignancies and has been predicted as a public health challenge for the future. Insulin resistance, obesity, and diabetes mellitus are the key metabolic factors that promote risks for the development of endometrial cancer. Various signaling pathways and associated genes are involved in the genesis of endometrial cancer, and any mutation or deletion in such related factors leads to the induction of endometrial cancer. The conventional way of drug delivery has been used for ages but is associated with poor management of cancer due to non-targeting of the endometrial cancer cells, low efficacy of the therapy, and toxicity issues as well. In this context, nanocarrier-based therapy for the management of endometrial cancer is an effective alternate choice that overcomes the problems associated with conventional therapy. In this review article, we highlighted the nanocarrier-based targeting of endometrial cancer, with a special focus on targeting various metabolic signaling pathways. Furthermore, the future perspectives of nanocarrier-based targeting of metabolic pathways in endometrial cancer were also underpinned. It is concluded that targeting metabolic signaling pathways in endometrial cancer via nanocarrier scaffolds is the future of pharmaceutical design for the significant management and treatment of endometrial cancer.
Article
Ras proteins in the mitogen-activated protein kinase (MAPK) signaling pathway represent one of the most frequently mutated oncogenes in cancer. Ras binds guanosine nucleotides and cycles between active (GTP) and inactive (GDP) conformations to regulate the MAPK signaling pathway. Guanosine and other nucleotides exist in cells as either 2'-hydroxy or 2'-deoxy forms, and imbalances in the deoxyribonucleotide triphosphate pool have been associated with different diseases, such as diabetes, obesity, and cancer. However, the biochemical properties of Ras bound to dGNP are not well understood. Herein, we use native mass spectrometry to monitor the intrinsic GTPase activity of H-Ras and N-Ras oncogenic mutants, revealing that the rate of 2'-deoxy guanosine triphosphate (dGTP) hydrolysis differs compared to the hydroxylated form, in some cases by seven-fold. Moreover, K-Ras expressed from HEK293 cells exhibited a higher than anticipated abundance of dGNP, despite the low abundance of dGNP in cells. Additionally, the GTPase and dGTPase activity of K-RasG12C was found to be accelerated by 10.2- and 3.8-fold in the presence of small molecule covalent inhibitors, which may open opportunities for the development of Pan-Ras inhibitors. The molecular assemblies formed between H-Ras and N-Ras, including mutant forms, with the catalytic domain of SOS (SOScat) were also investigated. The results show that the different mutants of H-Ras and N-Ras not only engage SOScat differently, but these assemblies are also dependent on the form of guanosine triphosphate bound to Ras. These findings bring to the forefront a new perspective on the nucleotide-dependent biochemical properties of Ras that may have implications for the activation of the MAPK signaling pathway and Ras-driven cancers.
Article
RAS proteins are small GTPases that transduce signals from membrane receptors to signaling pathways that regulate growth and differentiation. Four RAS proteins are encoded by three genes - HRAS, KRAS, NRAS. Among them, KRAS is mutated in human cancer more frequently than any other oncogene. The KRAS pre-mRNA is alternatively spliced to generate two transcripts, KRAS4A and KRAS4B, that encode distinct proto-oncoproteins that differ almost exclusively in their C-terminal hypervariable regions (HVRs) that controls subcellular trafficking and membrane association. The KRAS4A isoform arose 475 million years ago in jawed vertebrates and has persisted in all vertebrates ever since, strongly suggesting non-overlapping functions of the splice variants. Because KRAS4B is expressed at higher levels in most tissues, it has been considered the principal KRAS isoform. However, emerging evidence for KRAS4A expression in tumors and splice variant-specific interactions and functions have sparked interest in this gene product. Among these findings, the KRAS4A-specific regulation of hexokinase I is a stark example. The aim of this mini-review is to provide an overview of the origin and differential functions of the two splice variants of KRAS.
Article
Full-text available
Next generation sequencing of human cancer mutations has identified novel therapeutic targets. Activating Ras oncogene mutations play a central role in oncogenesis, and Ras-driven tumorigenesis upregulates an array of genes and signaling cascades that can transform normal cells into tumor cells. In this study, we investigated the role of altered localization of epithelial cell adhesion molecule (EpCAM) in Ras-expressing cells. Analysis of microarray data demonstrated that Ras expression induced EpCAM expression in normal breast epithelial cells. Fluorescent and confocal microscopy showed that H-Ras mediated transformation also promoted epithelial-to-mesenchymal transition (EMT) together with EpCAM. To consistently localize EpCAM in the cytosol, we generated a cancer-associated EpCAM mutant (EpCAM-L240A) that is retained in the cytosol compartment. Normal MCF-10A cells were transduced with H-Ras together with EpCAM wild-type (WT) or EpCAM-L240A. WT-EpCAM marginally effected invasion, proliferation, and soft agar growth. EpCAM-L240A, however, markedly altered cells and transformed to mesenchymal phenotype. Ras-EpCAM-L240A expression also promoted expression of EMT factors FRA1, ZEB1 with inflammatory cytokines IL-6, IL-8, and IL1. This altered morphology was reversed using MEK-specific inhibitors and to some extent JNK inhibition. Furthermore, these transformed cells were sensitized to apoptosis using paclitaxel and quercetin, but not other therapies. For the first time, we have demonstrated that EpCAM mutations can cooperate with H-Ras and promote EMT. Collectively, our results highlight future therapeutic opportunities in EpCAM and Ras mutated cancers.
Preprint
Full-text available
Therapeutic options for managing Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of aggressive malignancies, are limited and disappointing. Therefore, despite suboptimal clinical effects, Gemcitabine (GEM) remains the first-line chemotherapeutic drug in the clinic for PDAC treatment. The therapeutic limitations of GEM are primarily due to poor bioavailability and the development of chemoresistance resulting from the addiction of mutant-K-RAS/AKT/ERK signaling-mediated desmoplastic barriers with a hypoxic microenvironment. Several new therapeutic approaches, including nanoparticle-assisted drug delivery, are being investigated. In this study, we designed pH-responsive nanoparticles composed of PEG-b-poly (carbonate) block copolymer encapsulated ERK inhibitor (SCH772984). Nanoparticles surface functionalized with tumor-penetrating peptide, iRGD, to target PDAC tumor tissue specifically. We used these nanoparticles to perform a combination drug treatment of GEM and ERKi. We found that the pH-responsive targeted nanocarrier efficiently released ERKi in hypoxic and low-pH environments. We also found that the free GEM, combined with nanoencapsulated ERKi, demonstrated significant synergistic outcomes in vitro and in vivo and impaired desmoplastic regulatory factors production in PDAC cells. In particular, the combination approaches significantly enhanced the GEM effect in PDAC growth inhibition and prolonged survival of the animals in the KPC mouse model.
Article
Ras is a central cellular hub protein controlling multiple cell fates. How Ras interacts with a variety of potential effector proteins is relatively unexplored, with only some key effectors characterized in great detail. Here, we have used homology modeling based on X-ray and AlphaFold2 templates to build structural models for 54 Ras-effector complexes. These models were used to estimate binding affinities using a supervised learning regressor. Furthermore, we systematically introduced Ras "branch-pruning" (or branchegetic) mutations to identify 200 interface mutations that affect the binding energy with at least one of the model structures. The impacts of these branchegetic mutants were integrated into a mathematical model to assess the potential for rewiring interactions at the Ras hub on a systems level. These findings have provided a quantitative understanding of Ras-effector interfaces and their impact on systems properties of a key cellular hub.
Article
Full-text available
Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 μm2 membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.
Article
The most frequent ERK2 (MAPK1) mutation in cancers, E322K, lies in the common docking (CD) site, which binds short motifs made up of basic and hydrophobic residues present in the activators MEK1 (MAP2K1) and MEK2 (MAP2K2), in dual specificity phosphatases (DUSPs) that inactivate the kinases, and in many of their substrates. Also, part of the CD site, but mutated less often in cancers, is the preceding aspartate (D321N). These mutants were categorized as gain of function in a sensitized melanoma system. In Drosophila developmental assays, we found that the aspartate but not the glutamate mutant caused gain-of-function phenotypes. Here, we catalogued additional properties of these mutants to accrue greater insight into their functions. A modest increase in nuclear retention of E322K was noted. Binding of ERK2 E322K and D321N to a small group of substrates and regulatory proteins was similar, in spite of differences in CD site integrity. Interactions with a second docking site, the F site, which should be more accessible in E322K, were modestly reduced rather than increased. The crystal structure of ERK2 E322K also indicated a disturbed dimer interface, and reduced dimerization was detected by a two-hybrid test; yet, it was detected in dimers in EGF-treated cells, although to a lesser extent than D321N or wt ERK2. These findings indicate a range of small differences in behaviors that may contribute to increased function of E322K in certain cancers.
Article
Son of sevenless homologue 1 (SOS1) protein is universally expressed in cells and plays an important role in the RAS signaling pathway. Specifically, this protein interacts with RAS in response to upstream stimuli to promote guanine nucleotide exchange in RAS and activates the downstream signaling pathways. Thus, targeting SOS1 is a new approach for treating RAS-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of SOS1 and focus on recent advances in the discovery of activators, inhibitors, and PROTACs that target SOS1. This review aims to provide a timely and updated overview on the strategies for targeting SOS1 in cancer therapy.
Article
Full-text available
P110α is a member of the phosphoinositide 3-kinase (PI3K) enzyme family that functions downstream of RAS. RAS proteins contribute to the activation of p110α by interacting directly with its RAS binding domain (RBD), resulting in the promotion of many cellular functions such as cell growth, proliferation and survival. Previous work from our lab has highlighted the importance of the p110α/RAS interaction in tumour initiation and growth. Here we report the discovery and characterisation of a cyclic peptide inhibitor (cyclo-CRVLIR) that interacts with the p110α-RBD and blocks its interaction with KRAS. cyclo-CRVLIR was discovered by screening a “split-intein cyclisation of peptides and proteins” (SICLOPPS) cyclic peptide library. The primary cyclic peptide hit from the screen initially showed a weak affinity for the p110α-RBD (Kd about 360 µM). However, two rounds of amino acid substitution led to cyclo-CRVLIR, with an improved affinity for p110α-RBD in the low µM (Kd 3 µM). We show that cyclo-CRVLIR binds selectively to the p110α-RBD but not to KRAS or the structurally-related RAF-RBD. Further, using biophysical, biochemical and cellular assays, we show that cyclo-CRVLIR effectively blocks the p110α/KRAS interaction in a dose dependent manner and reduces phospho-AKT levels in several oncogenic KRAS cell lines.
Technical Report
Full-text available
We examine prostate cancer cells for a stem cell target and on that cell specific surface markers that are targetable. We then consider two general mechanisms to attack those malignant cells, CAR methods focusing on NK cells and antibody methods using an amalgam of surface targets
Article
Full-text available
RAF kinase inhibitors have substantial therapeutic effects in patients with BRAF-mutant melanoma. However, only rarely do tumors regress completely, and the therapeutic effects are often temporary. Several mechanisms of resistance to RAF inhibitors have been proposed. The majority of these cause ERK signaling to become insensitive to treatment with RAF inhibitors by increasing the amount of RAF dimers in cells, whereas others bypass the dependence of the tumor on mutant RAF. One motivation for studying mechanisms of drug resistance is that such efforts may suggest new therapeutic targets or rational combination strategies that delay or prevent the emergence of drug-resistant clones. Here, we review the current model of RAF inhibitor resistance with a focus on the implications of this model on ongoing laboratory and clinical efforts to develop more effective therapeutic strategies for patients with BRAF-mutant tumors.
Article
Full-text available
The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEδ, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm. Here we report that interfering with binding of mammalian PDEδ to KRAS by means of small molecules provides a novel opportunity to suppress oncogenic RAS signalling by altering its localization to endomembranes. Biochemical screening and subsequent structure-based hit optimization yielded inhibitors of the KRAS-PDEδ interaction that selectively bind to the prenyl-binding pocket of PDEδ with nanomolar affinity, inhibit oncogenic RAS signalling and suppress in vitro and in vivo proliferation of human pancreatic ductal adenocarcinoma cells that are dependent on oncogenic KRAS. Our findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic RAS.
Article
Full-text available
A combinatorial library of 6 × 10(6) cyclic peptides was synthesized in the one bead-two compound format, with each bead displaying a unique cyclic peptide on its surface and a linear peptide encoding tag in its interior. Screening of the library against K-Ras identified compounds that bound K-Ras with submicromolar affinity and disrupted its interaction with effector proteins.
Article
Full-text available
The Ras/mitogen-activated protein kinase (MAPK) pathway plays a critical role in transducing mitogenic signals from receptor tyrosine kinases. Loss-of-function mutations in one feedback regulator of Ras/MAPK signaling, SPRED1 (Sprouty-related protein with an EVH1 domain), cause Legius syndrome, an autosomal dominant human disorder that resembles Neurofibromatosis-1 (NF1). Spred1 functions as a negative regulator of the Ras/MAPK pathway; however, the underlying molecular mechanism is poorly understood. Here we show that neurofibromin, the NF1 gene product, is a Spred1-interacting protein that is necessary for Spred1's inhibitory function. We show that Spred1 binding induces the plasma membrane localization of NF1, which subsequently down-regulates Ras-GTP levels. This novel mechanism for the regulation of neurofibromin provides a molecular bridge for understanding the overlapping pathophysiology of NF1 and Legius syndrome.
Article
Full-text available
All mammalian cells express 3 closely related Ras proteins, termed H-Ras, K-Ras, and N-Ras, that promote oncogenesis when they are mutationally activated at codon 12, 13, or 61. Although there is a high degree of similarity among the isoforms, K-Ras mutations are far more frequently observed in cancer, and each isoform displays preferential coupling to particular cancer types. We examined the mutational spectra of Ras isoforms curated from large-scale tumor profiling and found that each isoform exhibits surprisingly distinctive codon mutation and amino-acid substitution biases. These findings were unexpected given that these mutations occur in regions that share 100% amino-acid sequence identity among the 3 isoforms. Of importance, many of these mutational biases were not due to differences in exposure to mutagens, because the patterns were still evident when compared within specific cancer types. We discuss potential genetic and epigenetic mechanisms, as well as isoform-specific differences in protein structure and signaling, that may promote these distinct mutation patterns and differential coupling to specific cancers.
Article
Full-text available
The phosphoinositide 3-kinase (PI3K)/AKT and RAF/MEK/ERK signaling pathways are activated in a wide range of human cancers. In many cases, concomitant inhibition of both pathways is necessary to block proliferation and induce cell death and tumor shrinkage. Several feedback systems have been described in which inhibition of one intracellular pathway leads to activation of a parallel signaling pathway, thereby decreasing the effectiveness of single-agent targeted therapies. In this study, we describe a feedback mechanism in which MEK inhibition leads to activation of PI3K/AKT signaling in EGFR and HER2-driven cancers. We found that MEK inhibitor-induced activation of PI3K/AKT resulted from hyperactivation of ERBB3 as a result of the loss of an inhibitory threonine phosphorylation in the conserved juxtamembrane domains of EGFR and HER2. Mutation of this amino acid led to increased ERBB receptor activation and upregulation of the ERBB3/PI3K/AKT signaling pathway, which was no longer responsive to MEK inhibition. Taken together, these results elucidate an important, dominant feedback network regulating central oncogenic pathways in human cancer.
Article
Full-text available
Unlabelled: BRAF mutations occur in 10-15% of colorectal cancers (CRCs) and confer adverse outcome. While RAF inhibitors such as vemurafenib (PLX4032) have proven effective in BRAF mutant melanoma, they are surprisingly ineffective in BRAF mutant CRCs, and the reason for this disparity remains unclear. Compared to BRAF mutant melanoma cells, BRAF mutant CRC cells were less sensitive to vemurafenib, and P-ERK suppression was not sustained in response to treatment. Although transient inhibition of phospho-ERK by vemurafenib was observed in CRC, rapid ERK re-activation occurred through EGFR-mediated activation of RAS and CRAF. BRAF mutant CRCs expressed higher levels of phospho-EGFR than BRAF mutant melanomas, suggesting that CRCs are specifically poised for EGFR-mediated resistance. Combined RAF and EGFR inhibition blocked reactivation of MAPK signaling in BRAF mutant CRC cells and markedly improved efficacy in vitro and in vivo. These findings support evaluation of combined RAF and EGFR inhibition in BRAF mutant CRC patients. Significance: BRAF valine 600 (V600) mutations occur in 10% to 15% of colorectal cancers, yet these tumors show a surprisingly low clinical response rate (~5%) to selective RAF inhibitors such as vemurafenib, which have produced dramatic response rates (60%–80%) in melanomas harboring the identical BRAF V600 mutation. We found that EGFR-mediated MAPK pathway reactivation leads to resistance to vemurafenib in BRAF-mutant colorectal cancers and that combined RAF and EGFR inhibition can lead to sustained MAPK pathway suppression and improved efficacy in vitro and in tumor xenografts.
Article
Full-text available
Mutations in the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) play a critical role in cancer cell growth and resistance to therapy. Most mutations occur at codons 12 and 13. In colorectal cancer, the presence of any mutant KRas amino acid substitution is a negative predictor of patient response to targeted therapy. However, in non-small cell lung cancer (NSCLC), the evidence that KRAS mutation is a predictive factor is conflicting. We used data from a molecularly targeted clinical trial for 215 patients with tissues available out of 268 evaluable patients with refractory NSCLC to examine associations between specific mutant KRas proteins and progression-free survival and tumor gene expression. Transcriptome microarray studies of patient tumor samples and reverse-phase protein array studies of a panel of 67 NSCLC cell lines with known substitutions in KRas and in immortalized human bronchial epithelial cells stably expressing different mutant KRas proteins were used to investigate signaling pathway activation. Molecular modeling was used to study the conformations of wild-type and mutant KRas proteins. Kaplan-Meier curves and Cox regression were used to analyze survival data. All statistical tests were two-sided. Patients whose tumors had either mutant KRas-Gly12Cys or mutant KRas-Gly12Val had worse progression-free survival compared with patients whose tumors had other mutant KRas proteins or wild-type KRas (P = .046, median survival = 1.84 months) compared with all other mutant KRas (median survival = 3.35 months) or wild-type KRas (median survival = 1.95 months). NSCLC cell lines with mutant KRas-Gly12Asp had activated phosphatidylinositol 3-kinase (PI-3-K) and mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) signaling, whereas those with mutant KRas-Gly12Cys or mutant KRas-Gly12Val had activated Ral signaling and decreased growth factor-dependent Akt activation. Molecular modeling studies showed that different conformations imposed by mutant KRas may lead to altered association with downstream signaling transducers. Not all mutant KRas proteins affect patient survival or downstream signaling in a similar way. The heterogeneous behavior of mutant KRas proteins implies that therapeutic interventions may need to take into account the specific mutant KRas expressed by the tumor.
Article
Full-text available
The Ras gene is frequently mutated in cancer, and mutant Ras drives tumorigenesis. Although Ras is a central oncogene, small molecules that bind to Ras in a well-defined manner and exert inhibitory effects have not been uncovered to date. Through an NMR-based fragment screen, we identified a group of small molecules that all bind to a common site on Ras. High-resolution cocrystal structures delineated a unique ligand-binding pocket on the Ras protein that is adjacent to the switch I/II regions and can be expanded upon compound binding. Structure analysis predicts that compound-binding interferes with the Ras/SOS interactions. Indeed, selected compounds inhibit SOS-mediated nucleotide exchange and prevent Ras activation by blocking the formation of intermediates of the exchange reaction. The discovery of a small-molecule binding pocket on Ras with functional significance provides a new direction in the search of therapeutically effective inhibitors of the Ras oncoprotein.
Article
Full-text available
The palmitoylation/depalmitoylation cycle of posttranslational processing is a potential therapeutic target for selectively inhibiting the growth of hematologic cancers with somatic NRAS mutations. To investigate this question at the single-cell level, we constructed murine stem cell virus vectors and assayed the growth of myeloid progenitors. Whereas cells expressing oncogenic N-Ras(G12D) formed cytokine-independent colonies and were hypersensitive to GM-CSF, mutations within the N-Ras hypervariable region induced N-Ras mislocalization and attenuated aberrant progenitor growth. Exposing transduced hematopoietic cells and bone marrow from Nras and Kras mutant mice to the acyl protein thioesterase inhibitor palmostatin B had similar effects on protein localization and colony growth. Importantly, palmostatin B-mediated inhibition was selective for Nras mutant cells, and we mapped this activity to the hypervariable region. These data support the clinical development of depalmitoylation inhibitors as a novel class of rational therapeutics in hematologic malignancies with NRAS mutations.
Article
Full-text available
Ras genes are frequently activated in cancer. Attempts to develop drugs that target mutant Ras proteins have, so far, been unsuccessful. Tumors bearing these mutations, therefore, remain among the most difficult to treat. Most efforts to block activated Ras have focused on pathways downstream. Drugs that inhibit Raf kinase have shown clinical benefit in the treatment of malignant melanoma. However, these drugs have failed to show clinical benefit in Ras mutant tumors. It remains unclear to what extent Ras depends on Raf kinase for transforming activity, even though Raf proteins bind directly to Ras and are certainly major effectors of Ras action in normal cells and in development. Furthermore, Raf kinase inhibitors can lead to paradoxical activation of the MAPK pathway. MEK inhibitors block the Ras-MAPK pathway, but often activate the PI3'-kinase, and have shown little clinical benefit as single agents. This activation is mediated by EGF-R and other receptor tyrosine kinases through relief of a negative feedback loop from ERK. Drug combinations that target multiple points within the Ras signaling network are likely to be necessary to achieve substantial clinical benefit. Other effectors may also contribute to Ras signaling and provide a source of targets. In addition, unbiased screens for genes necessary for Ras transformation have revealed new potential targets and have added to our understanding of Ras cancer biology.
Article
Full-text available
The high frequency of RAS mutations in human cancers (33%) has stimulated intense interest in the development of anti-Ras inhibitors for cancer therapy. Currently, the major focus of these efforts is centered on inhibitors of components involved in Ras downstream effector signaling. In particular, more than 40 inhibitors of the Raf-MEK-ERK mitogen-activated protein kinase cascade and phosphoinositide 3-kinase-AKT-mTOR effector signaling networks are currently under clinical evaluation. However, these efforts are complicated by the fact that Ras can utilize at least 9 additional functionally distinct effectors, with at least 3 additional effectors with validated roles in Ras-mediated oncogenesis. Of these, the guanine nucleotide exchange factors of the Ras-like (Ral) small GTPases (RalGEFs) have emerged as important effectors of mutant Ras in pancreatic, colon, and other cancers. In this review, we summarize the evidence for the importance of this effector pathway in cancer and discuss possible directions for therapeutic inhibition of aberrant Ral activation and signaling.
Article
Full-text available
The guanosine triphosphate (GTP)--loaded form of the guanosine triphosphatase (GTPase) Ras initiates multiple signaling pathways by binding to various effectors, such as the kinase Raf and phosphatidylinositol 3-kinase (PI3K). Ras activity is increased by guanine nucleotide exchange factors that stimulate guanosine diphosphate release and GTP loading and is inhibited by GTPase-activating proteins that stimulate GTP hydrolysis. KRAS is the most frequently mutated RAS gene in cancer. Here, we report that monoubiquitination of lysine-147 in the guanine nucleotide-binding motif of wild-type K-Ras could lead to enhanced GTP loading. Furthermore, ubiquitination increased the binding of the oncogenic Gly12Val mutant of K-Ras to the downstream effectors PI3K and Raf. Thus, monoubiquitination could enhance GTP loading on K-Ras and increase its affinity for specific downstream effectors, providing a previously unidentified mechanism for Ras activation.
Article
Full-text available
Current approaches to block KRAS oncogene function focus on inhibition of K-Ras downstream effector signaling. We evaluated the antitumor activity of selumetinib (AZD6244, ARRY-142886), a potent and selective MEK1/2 inhibitor, on a panel of colorectal carcinoma (CRC) cells and found no inhibition of KRAS mutant CRC cell anchorage-independent growth. Although AKT activity was elevated in KRAS mutant cells, and PI3K inhibition did impair the growth of MEK inhibitor-insensitive CRC cell lines, concurrent treatment with selumetinib did not provide additional antitumor activity. Therefore, we speculated that inhibition of the Ral guanine exchange factor (RalGEF) effector pathway may be a more effective approach for blocking CRC growth. RalGEFs are activators of the related RalA and RalB small GTPases and we found activation of both in CRC cell lines and patient tumors. Interfering RNA stable suppression of RalA expression reduced CRC tumor cell anchorage-independent growth, but surprisingly, stable suppression of RalB greatly enhanced soft agar colony size and formation frequency. Despite their opposing activities, both RalA and RalB regulation of anchorage-independent growth required interaction with RalBP1/RLIP76 and components of the exocyst complex. Interestingly, RalA interaction with the Exo84 but not Sec5 exocyst component was necessary for supporting anchorage-independent growth, whereas RalB interaction with Sec5 but not Exo84 was necessary for inhibition of anchorage-independent growth. We suggest that anti-RalA-selective therapies may provide an effective approach for KRAS mutant CRC.
Article
Full-text available
Patients with metastatic colorectal cancer who have KRAS codon 12- or KRAS codon 13-mutated tumors are presently excluded from treatment with the anti-epidermal growth factor receptor monoclonal antibody cetuximab. To test the hypothesis that KRAS codon 13 mutations are associated with a better outcome after treatment with cetuximab than observed with other KRAS mutations. We studied the association between KRAS mutation status (p.G13D vs other KRAS mutations) and response and survival in a pooled data set of 579 patients with chemotherapy-refractory colorectal cancer treated with cetuximab between 2001 and 2008. Patients were included in the CO.17, BOND, MABEL, EMR202600, EVEREST, BABEL, or SALVAGE clinical trials or received off-study treatment. Univariate and multivariate analyses, adjusting for possible prognostic factors and data set, were performed. The effect of the different mutations was studied in vitro by constructing isogenic cell lines with wild-type KRAS, p.G12V, or p.G13D mutant alleles and treating them with cetuximab. The main efficacy end point was overall survival. Secondary efficacy end points were response rate and progression-free survival. In comparison with patients with other KRAS-mutated tumors, patients with p.G13D-mutated tumors (n = 32) treated with cetuximab had longer overall survival (median, 7.6 [95% confidence interval {CI}, 5.7-20.5] months vs 5.7 [95% CI, 4.9-6.8] months; adjusted hazard ratio [HR], 0.50; 95% CI, 0.31-0.81; P = .005) and longer progression-free survival (median, 4.0 [95% CI, 1.9-6.2] months vs 1.9 [95% CI, 1.8-2.8] months; adjusted HR, 0.51; 95% CI, 0.32-0.81; P = .004). There was a significant interaction between KRAS mutation status (p.G13D vs other KRAS mutations) and overall survival benefit with cetuximab treatment (adjusted HR, 0.30; 95% CI, 0.14-0.67; P = .003). In vitro and mouse model analysis showed that although p.G12V-mutated colorectal cells were insensitive to cetuximab, p.G13D-mutated cells were sensitive, as were KRAS wild-type cells. In this analysis, use of cetuximab was associated with longer overall and progression-free survival among patients with chemotherapy-refractory colorectal cancer with p.G13D-mutated tumors than with other KRAS-mutated tumors. Evaluation of cetuximab therapy in these tumors in prospective randomized trials may be warranted.
Article
Full-text available
Therapeutics that are designed to engage RNA interference (RNAi) pathways have the potential to provide new, major ways of imparting therapy to patients. Long, double-stranded RNAs were first shown to mediate RNAi in Caenorhabditis elegans, and the potential use of RNAi for human therapy has been demonstrated by the finding that small interfering RNAs (siRNAs; approximately 21-base-pair double-stranded RNA) can elicit RNAi in mammalian cells without producing an interferon response. We are at present conducting the first in-human phase I clinical trial involving the systemic administration of siRNA to patients with solid cancers using a targeted, nanoparticle delivery system. Here we provide evidence of inducing an RNAi mechanism of action in a human from the delivered siRNA. Tumour biopsies from melanoma patients obtained after treatment show the presence of intracellularly localized nanoparticles in amounts that correlate with dose levels of the nanoparticles administered (this is, to our knowledge, a first for systemically delivered nanoparticles of any kind). Furthermore, a reduction was found in both the specific messenger RNA (M2 subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) levels when compared to pre-dosing tissue. Most notably, we detect the presence of an mRNA fragment that demonstrates that siRNA-mediated mRNA cleavage occurs specifically at the site predicted for an RNAi mechanism from a patient who received the highest dose of the nanoparticles. Together, these data demonstrate that siRNA administered systemically to a human can produce a specific gene inhibition (reduction in mRNA and protein) by an RNAi mechanism of action.
Article
Full-text available
Ras and its effector Raf are key mediators of the Ras/Raf/MEK/ERK signal transduction pathway. Mutants of residue Q61 impair the GTPase activity of Ras and are found prominently in human cancers. Yet the mechanism through which Q61 contributes to catalysis has been elusive. It is thought to position the catalytic water molecule for nucleophilic attack on the gamma-phosphate of GTP. However, we previously solved the structure of Ras from crystals with symmetry of the space group R32 in which switch II is disordered and found that the catalytic water molecule is present. Here we present a structure of wild-type Ras with calcium acetate from the crystallization mother liquor bound at a site remote from the active site and likely near the membrane. This results in a shift in helix 3/loop 7 and a network of H-bonding interactions that propagates across the molecule, culminating in the ordering of switch II and placement of Q61 in the active site in a previously unobserved conformation. This structure suggests a direct catalytic role for Q61 where it interacts with a water molecule that bridges one of the gamma-phosphate oxygen atoms to the hydroxyl group of Y32 to stabilize the transition state of the hydrolysis reaction. We propose that Raf together with the binding of Ca(2+) and a negatively charged group mimicked in our structure by the acetate molecule induces the ordering of switch I and switch II to complete the active site of Ras.
Article
Full-text available
K-ras mutations occur frequently in epithelial cancers. Using short hairpin RNAs to deplete K-Ras in lung and pancreatic cancer cell lines harboring K-ras mutations, two classes were identified-lines that do or do not require K-Ras to maintain viability. Comparing these two classes of cancer cells revealed a gene expression signature in K-Ras-dependent cells, associated with a well-differentiated epithelial phenotype, which was also seen in primary tumors. Several of these genes encode pharmacologically tractable proteins, such as Syk and Ron kinases and integrin beta6, depletion of which induces epithelial-mesenchymal transformation (EMT) and apoptosis specifically in K-Ras-dependent cells. These findings indicate that epithelial differentiation and tumor cell viability are associated, and that EMT regulators in "K-Ras-addicted" cancers represent candidate therapeutic targets.
Article
Full-text available
Specific inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) have been developed that efficiently inhibit the oncogenic RAF-MEK-ERK pathway. We used a systems-based approach to identify breast cancer subtypes particularly susceptible to MEK inhibitors and to understand molecular mechanisms conferring resistance to such compounds. Basal-type breast cancer cells were found to be particularly susceptible to growth inhibition by small-molecule MEK inhibitors. Activation of the phosphatidylinositol 3-kinase (PI3K) pathway in response to MEK inhibition through a negative MEK-epidermal growth factor receptor-PI3K feedback loop was found to limit efficacy. Interruption of this feedback mechanism by targeting MEK and PI3K produced synergistic effects, including induction of apoptosis and, in some cell lines, cell cycle arrest and protection from apoptosis induced by proapoptotic agents. These findings enhance our understanding of the interconnectivity of oncogenic signal transduction circuits and have implications for the design of future clinical trials of MEK inhibitors in breast cancer by guiding patient selection and suggesting rational combination therapies.
Article
Full-text available
Kras is the most frequently mutated ras family member in lung carcinomas, whereas Hras mutations are common in tumors from stratified epithelia such as the skin. Using a Hras knock-in mouse model, we demonstrate that specificity for Kras mutations in lung and Hras mutations in skin tumors is determined by local regulatory elements in the target ras genes. Although the Kras 4A isoform is dispensable for mouse development, it is the most important isoform for lung carcinogenesis in vivo and for the inhibitory effect of wild-type (WT) Kras on the mutant allele. Kras 4A expression is detected in a subpopulation of normal lung epithelial cells, but at very low levels in lung tumors, suggesting that it may not be required for tumor progression. The two Kras isoforms undergo different post-translational modifications; therefore, these findings can have implications for the design of therapeutic strategies for inhibiting oncogenic Kras activity in human cancers.
Article
Full-text available
We have recently described an intracellular protein, p21, in nonproducer cells transformed by either the Kirsten (Ki-MSV) or Harvey (Ha-MSV) strain of murine sarcoma virus (Shih et al., Virology, in press). The p21 is phosphorylated and has been shown to be coded for by either Ki-MSV or Ha-MSV. In this report, we compare the thermal stability of the newly synthesized [35S]methionine-labeled p21 in cells transformed by the wild-type Ki-MSV or by a mutant of Ki-MSV (ts 371) which is temperature sensitive in a viral function required for the maintenance of several properties of the transformed phenotype. The immunoprecipitability of the p21 coded for by the ts 371 Ki-MSV was markedly more thermolabile than the p21 of the wild-type Ki-MSV when the cell extracts are heated in vitro. The present finding suggests that the p21 is required for the maintenance of transformation induced by Ki-MSV.
Article
Full-text available
A transforming gene isolated from T24 human bladder carcinoma cells is closely related to the BALB murine sarcoma virus (MSV) onc gene (v-bas). This transforming gene is localized to a 4.6 kilobase pair (kbp) region and is expressed as a 1.2-kbp polyadenylated transcript, which contains v-bas related sequences. Moreover, antisera known to detect the immunologically related onc gene products of BALB- and Harvey-MSVs recognized elevated levels of a related protein in T24 cells. The normal human homologue of v-bas was found to be indistinguishable from the T24 oncogene by heteroduplex and restriction enzyme analysis. These results imply that rather subtle genetic alterations have led to the activation of the normal human homologue of v-bas as a human transforming gene.
Article
Background: Mutations in ras genes are commonly found in human cancers and in animal models. Although mutations at codons 12, 13, and 61 of H-, N- and K-ras genes can activate their oncogenic function, mutations at codon 12 of K-ras are the most common mutations found among the three ras genes in human cancers. To investigate whether codon 12 of human K-ras is especially susceptible to carcinogens and/or whether carcinogen–DNA adducts at this codon are repaired less efficiently, we examined tobacco smoke carcinogen-induced DNA damage in normal human bronchial epithelial and fibroblast cells. Methods: We used the UvrABC nuclease incision method in combination with ligation-mediated polymerase chain reaction to map the distribution of DNA adducts induced by benzo[a]pyrene diol epoxide (BPDE) and other bulky carcinogens within exons 1 and 2 in H-ras, N-ras, and K-ras. We also analyzed BPDE–DNA adduct repair efficiency in these three genes using the same method. Results: Codons 12 and 14 of the K-ras gene were hotspots for carcinogen–DNA adduct formation, with little and no adduct formation at codons 13 and 61, respectively. The BPDE–DNA adducts formed at codon 14 were repaired almost twice as quickly as those formed at codon 12. There was some BPDE–DNA adduct formation at codons 12 of H-ras and N-ras, but this codon was not a hotspot. Furthermore, no substantial difference in repair rates between codon 12 and the other codons analyzed (codons 3 and 18) was observed in either the H-ras or N-ras genes. Conclusion: These findings link the human cancer mutational hotspot at codon 12 of K-ras to preferential DNA damage and poor repair.
Article
We report the synthesis of a GDP analogue, SML-8-73-1, and a prodrug derivative, SML-10-70-1, which are selective, direct-acting covalent inhibitors of the K-Ras G12C mutant relative to wild-type Ras. Biochemical and biophysical measurements suggest that modification of K-Ras with SML-8-73-1 renders the protein in an inactive state. These first-in-class covalent K-Ras inhibitors demonstrate that irreversible targeting of the K-Ras guanine-nucleotide binding site is potentially a viable therapeutic strategy for inhibition of Ras signaling.
Article
Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner.
Article
RAS is the most frequently mutated oncogene in human cancers. Despite decades of effort, anti-RAS therapies have remained elusive. Isoprenylcysteine carboxylmethyltransferase (ICMT) methylates RAS and other CaaX-containing proteins, but its potential as a target for cancer therapy has not been fully evaluated. We crossed a Pdx1-Cre;LSL-KrasG12D mouse, which is a model of pancreatic ductal adenocarcinoma (PDA), with a mouse harboring a floxed allele of Icmt. Surprisingly, we found that ICMT deficiency dramatically accelerated the development and progression of neoplasia. ICMT-deficient pancreatic ductal epithelial cells had a slight growth advantage and were resistant to premature senescence by a mechanism that involved suppression of cyclin-dependent kinase inhibitor 2A (p16INK4A) expression. ICMT deficiency precisely phenocopied Notch1 deficiency in the Pdx1-Cre;LSL-KrasG12D model by exacerbating pancreatic intraepithelial neoplasias, promoting facial papillomas, and derepressing Wnt signaling. Silencing ICMT in human osteosarcoma cells decreased Notch1 signaling in response to stimulation with cell-surface ligands. Additionally, targeted silencing of Ste14, the Drosophila homolog of Icmt, resulted in defects in wing development, consistent with Notch loss of function. Our data suggest that ICMT behaves like a tumor suppressor in PDA because it is required for Notch1 signaling.
Article
The RASopathies are a clinically defined group of medical genetic syndromes caused by germline mutations in genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) pathway. These disorders include neurofibromatosis type 1, Noonan syndrome, Noonan syndrome with multiple lentigines, capillary malformation-arteriovenous malformation syndrome, Costello syndrome, cardio-facio-cutaneous syndrome, and Legius syndrome. Because of the common underlying Ras/MAPK pathway dysregulation, the RASopathies exhibit numerous overlapping phenotypic features. The Ras/MAPK pathway plays an essential role in regulating the cell cycle and cellular growth, differentiation, and senescence, all of which are critical to normal development. Therefore, it is not surprising that Ras/MAPK pathway dysregulation has profound deleterious effects on both embryonic and later stages of development. The Ras/MAPK pathway has been well studied in cancer and is an attractive target for small-molecule inhibition to treat various malignancies. The use of these molecules to ameliorate developmental defects in the RASopathies is under consideration. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 14 is August 31, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Article
Oncogenic Ras proteins rely on a series of key effector pathways to drive the physiological changes that lead to tumorigenic growth. Of these effector pathways, the RalGEF pathway, which activates the two Ras-related GTPases RalA and RalB, remains the most poorly understood. This review will focus on key developments in our understanding of Ral biology, and will speculate on how aberrant activation of the multiple diverse Ral effector proteins might collectively contribute to oncogenic transformation and other aspects of tumor progression.
Article
Unlabelled: Activating point mutations in K-RAS are extremely common in cancers of the lung, colon, and pancreas and are highly predictive of poor therapeutic response. One potential strategy for overcoming the deleterious effects of mutant K-RAS is to alter its posttranslational modification. Although therapies targeting farnesylation have been explored, and have ultimately failed, the therapeutic potential of targeting other modifications remains to be seen. Recently, it was shown that acetylation of lysine 104 attenuates K-RAS transforming activity by interfering with GEF-induced nucleotide exchange. Here, the deacetylases HDAC6 and SIRT2 were shown to regulate the acetylation state of K-RAS in cancer cells. By extension, inhibition of either of these enzymes has a dramatic impact on the growth properties of cancer cells expressing activation mutants of K-RAS. These results suggest that therapeutic targeting of HDAC6 and/or SIRT2 may represent a new way to treat cancers expressing mutant forms of K-RAS. Implications: This study suggests that altering K-RAS acetylation is a feasible approach to limiting tumorigenic potential.
Article
ATP competitive inhibitors of the BRAF(V600E) oncogene paradoxically activate downstream signaling in cells bearing wild-type BRAF (BRAF(WT)). In this study, we investigate the biochemical mechanism of wild-type RAF (RAF(WT)) activation by multiple catalytic inhibitors using kinetic analysis of purified BRAF(V600E) and RAF(WT) enzymes. We show that activation of RAF(WT) is ATP dependent and directly linked to RAF kinase activity. These data support a mechanism involving inhibitory autophosphorylation of RAF's phosphate-binding loop that, when disrupted either through pharmacologic or genetic alterations, results in activation of RAF and the mitogen-activated protein kinase (MAPK) pathway. This mechanism accounts not only for compound-mediated activation of the MAPK pathway in BRAF(WT) cells but also offers a biochemical mechanism for BRAF oncogenesis.
Article
Extracellular signal-regulated kinase 1 (Erk1) and Erk2 play crucial roles in cell survival, proliferation, cell adhesion, migration, and differentiation in many tissues. Here, we report that the absence of Erk1 and Erk2 in murine hematopoietic cells leads to bone marrow aplasia, leukopenia, anemia, and early lethality. Mice doubly-deficient in Erk1 and Erk2 show rapid attrition of hematopoietic stem cells and immature progenitors in a cell-autonomous manner. Reconstitution studies show that Erk1 and Erk2 play redundant and kinase-dependent functions in hematopoietic progenitor cells. Moreover, in cells transformed by the oncogenic KRas(G12D) allele, the presence of either Erk1 or Erk2 with intact kinase activity is sufficient to promote cytokine-independent proliferation.
Article
The RAF inhibitor vemurafenib (PLX4032) increases survival in patients with BRAF-mutant metastatic melanoma, but has limited efficacy in patients with colorectal cancers. Thyroid cancer cells are also comparatively refractory to RAF inhibitors. In contrast to melanomas, inhibition of mitogen-activated protein kinase (MAPK) signaling by PLX4032 is transient in thyroid and colorectal cancer cells. The rebound in extracellular signal-regulated kinase (ERK) in thyroid cells is accompanied by increased HER3 signaling caused by induction of ERBB3 (HER3) transcription through decreased promoter occupancy by the transcriptional repressors C-terminal binding protein 1 and 2 and by autocrine secretion of neuregulin-1 (NRG1). The HER kinase inhibitor lapatinib prevents MAPK rebound and sensitizes BRAF-mutant thyroid cancer cells to RAF or MAP-ERK kinase inhibitors. This provides a rationale for combining ERK pathway antagonists with inhibitors of feedback-reactivated HER signaling in this disease. The determinants of primary resistance to MAPK inhibitors vary between cancer types, due to preferential upregulation of specific receptor tyrosine kinases, and the abundance of their respective ligands. Significance: Thyroid cancer cell lines with mutant BRAF are resistant to PLX4032. RAF inhibitors transiently inhibit the ERK pathway and de-repress HER3 transcription. In the context of constitutive NRG1 secretion, this results in an ERK and AKT rebound that diminishes the antitumor effects of RAF inhibitors, which is overcome by combination with lapatinib. Cancer Discov; 3(5); 520–33. ©2013 AACR. See related commentary by Girotti and Marais, p. 487 This article is highlighted in the In This Issue feature, p. 471
Article
The KRAS oncogene is found in up to 30% of all human tumors. In 2009, RNAi experiments revealed that lowering mRNA levels of a transcript encoding the serine/threonine kinase STK33 was selectively toxic to KRAS-dependent cancer cell lines, suggesting that small-molecule inhibitors of STK33 might selectively target KRAS-dependent cancers. To test this hypothesis, we initiated a high-throughput screen using compounds in the Molecular Libraries Small Molecule Repository (MLSMR). Several hits were identified, and one of these, a quinoxalinone derivative, was optimized. Extensive SAR studies were performed and led to the chemical probe ML281 that showed low nanomolar inhibition of purified recombinant STK33 and a distinct selectivity profile as compared to other STK33 inhibitors that were reported in the course of these studies. Even at the highest concentration tested (10 μM), ML281 had no effect on the viability of KRAS-dependent cancer cells. These results are consistent with other recent reports using small-molecule STK33 inhibitors. Small molecules having different chemical structures and kinase-selectivity profiles are needed to fully understand the role of STK33 in KRAS-dependent cancers. In this regard, ML281 is a valuable addition to small-molecule probes of STK33.
Article
Oncogenic mutations in the small Ras GTPases KRas, HRas, and NRas render the proteins constitutively GTP bound and active, a state that promotes cancer [1]. Ras proteins share ∼85% amino acid identity [2], are activated by [3] and signal through [4] the same proteins, and can exhibit functional redundancy [5, 6]. Nevertheless, manipulating expression or activation of each isoform yields different cellular responses [7-10] and tumorigenic phenotypes [11-13], even when different ras genes are expressed from the same locus [6]. We now report a novel regulatory mechanism hardwired into the very sequence of RAS genes that underlies how such similar proteins impact tumorigenesis differently. Specifically, despite their high sequence similarity, KRAS is poorly translated compared to HRAS due to enrichment in genomically underrepresented or rare codons. Converting rare to common codons increases KRas expression and tumorigenicity to mirror that of HRas. Furthermore, in a genome-wide survey, similar gene pairs with opposing codon bias were identified that not only manifest dichotomous protein expression but also are enriched in key signaling protein classes and pathways. Thus, synonymous nucleotide differences affecting codon usage account for differences between HRas and KRas expression and function and may represent a broader regulation strategy in cell signaling.
Article
Unlabelled: H-Ras, K-Ras, and N-Ras regulate cellular growth and survival and are often activated by somatic mutation in human tumors. Although oncogenic lesions occur in a single Ras isoform within individual tumors, it is unclear whether the remaining wild-type isoforms play supporting roles in tumor growth. Here, we show that oncogenic and wild-type Ras isoforms play independent and nonredundant roles within the cell. Oncogenic Ras regulates basal effector pathway signaling, whereas wild-type Ras mediates signaling downstream of activated receptor tyrosine kinases (RTK). We show that both are necessary for exponential growth of Ras-mutant cell lines. Furthermore, we show that oncogenic Ras desensitizes signaling from EGF receptor (EGFR). Depletion of oncogenic Ras with siRNA oligonucleotides relieves this negative feedback, leading to the hyperactivation of EGFR and wild-type Ras signaling. Consistent with this model, combining oncogenic Ras depletion with EGFR inhibition potently increases cell death. Significance: The results of this study highlight a novel role for wild-type Ras signaling in cancer cells harboring oncogenic RAS mutations. Furthermore, these findings reveal that therapeutically targeting oncogenic Ras signaling alone may be ineffective owing to feedback activation of RTKs, and suggest that blocking upstream RTKs in combination with downstream effector pathways may be beneficial in the treatment of Ras-mutant tumors.
Article
Retroviruses are the original source of oncogenes. The discovery and characterization of these genes was made possible by the introduction of quantitative cell biological and molecular techniques for the study of tumour viruses. Key features of all retroviral oncogenes were first identified in src, the oncogene of Rous sarcoma virus. These include non-involvement in viral replication, coding for a single protein and cellular origin. The MYC, RAS and ERBB oncogenes quickly followed SRC, and these together with PI3K are now recognized as crucial driving forces in human cancer.
Article
Looking for fragments: A fragment-based screen using NMR spectroscopy was applied to discover ligands that bind to the GTPase K-Ras and modulate the activity of the nucleotide exchange factor Sos. Structural data on how these fragment-derived hits bind to the guanosine diphosphate-K-Ras complex provides a starting point for the future discovery of drugs that target K-Ras activation and signaling.
Article
Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC.
Article
Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer deaths worldwide; nearly half contain mutations in the receptor tyrosine kinase/RAS pathway. Here we show that RAS-pathway mutant NSCLC cells depend on the transcription factor GATA2. Loss of GATA2 reduced the viability of NSCLC cells with RAS-pathway mutations, whereas wild-type cells were unaffected. Integrated gene expression and genome occupancy analyses revealed GATA2 regulation of the proteasome, and IL-1-signaling, and Rho-signaling pathways. These pathways were functionally significant, as reactivation rescued viability after GATA2 depletion. In a Kras-driven NSCLC mouse model, Gata2 loss dramatically reduced tumor development. Furthermore, Gata2 deletion in established Kras mutant tumors induced striking regression. Although GATA2 itself is likely undruggable, combined suppression of GATA2-regulated pathways with clinically approved inhibitors caused marked tumor clearance. Discovery of the nononcogene addiction of KRAS mutant lung cancers to GATA2 presents a network of druggable pathways for therapeutic exploitation.
Article
The transforming activities of p21 ras proteins have been determined by micro-injection of these proteins into NIH3T3 cells. In order to facilitate functional studies on the effect of ras proteins on malignant transformation and normal cellular growth, analysis has been made with three monoclonal antibodies (YA6-172, Y13-238 and Y13-259) as originally reported by Furth et al. (J virol 43 (1982) 294) [2]. Purified immunoglobulin of Y13-259 has the highest titer of binding to bacterially synthesized p21 ras proteins. Experimental analyses indicate that only Y13-259 antibody will neutralize the transforming activity of the co-injected bacterially synthesized ras protein and the neutralization effect was blocked by co-injection of excess ras protein. In addition, micro-injection of Y13-259 immunoglobulin into transformed NIH3T3 cells (obtained by DNA transfection of NIH3T3 cells with molecularly cloned ras gene) reversed their transformed phenotypes. These results indicate that both bacterially synthesized p21 ras proteins and the natural ras proteins produced in NIH3T3 cells were neutralized by Y13-259 antibody.
Article
We have investigated the role of individual members of the Raf/Mek/Erk cascade in the onset of K-Ras oncogene-driven non-small cell lung carcinoma (NSCLC). Ablation of Erk1 or Erk2 in K-Ras oncogene-expressing lung cells had no significant effect due to compensatory activities. Yet, elimination of both Erk kinases completely blocked tumor development. Similar results were obtained with Mek kinases. Ablation of B-Raf had no significant effect on tumor development. However, c-Raf expression was absolutely essential for the onset of NSCLC. Interestingly, concomitant elimination of c-Raf and B-Raf in adult mice had no deleterious consequences for normal homeostasis. These results indicate that c-Raf plays a unique role in mediating K-Ras signaling and makes it a suitable target for therapeutic intervention.
Article
The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.
Article
We have unveiled a synthetic lethal interaction between K-Ras oncogenes and Cdk4 in a mouse tumor model that closely recapitulates human non-small cell lung carcinoma (NSCLC). Ablation of Cdk4, but not Cdk2 or Cdk6, induces an immediate senescence response only in lung cells that express an endogenous K-Ras oncogene. No such response occurs in lungs expressing a single Cdk4 allele or in other K-Ras-expressing tissues. More importantly, targeting Cdk4 alleles in advanced tumors detectable by computed tomography scanning also induces senescence and prevents tumor progression. These observations suggest that robust and selective pharmacological inhibition of Cdk4 may provide therapeutic benefit for NSCLC patients carrying K-RAS oncogenes.
Article
The three closely related mammalian ras genes, Hras, Nras and Kras, have each been implicated in human tumorigenesis by virtue of mutational activation. However, while these genes encode proteins with very similar biochemical properties, activating ras alleles corresponding to the various isoforms have been linked to particular malignancies. Accumulating evidence suggests that these proteins exert distinct activities in a tissue-specific context, apparently reflecting developmental lineage-specific roles for the various ras isoforms. Some of these distinct functions appear to reflect differences in their C-termini, which determine distinct subcellular localization, thereby suggesting a role for compartmentalized signaling. In this review, we discuss the biological functions of the ras isoforms in the context of tissue-specific function as it relates to ras function in development and human cancer.
Article
Polyoma T antigen immunoprecipitates contain a protein kinase-like activity which preferentially phosphorylates material of 50-60,000 daltons molecular weight. Phosphorylation is not diminished in extracts of polyoma tsA mutant-infected cells shifted to the nonpermissive temperature late in infection, conditions which inactivate the large T antigen. Phosphorylation is reduced or absent in cells infected with polyoma host range nontransforming (hr-t) mutants, which have defective small and medium T antigens. The major acceptor of phosphate is not the heavy chain of immunoglobulin, but appears to be the polyoma medium T antigen. The large T antigen is also phosphorylated, but usually to a lower specific activity. In terms of acid and alkali sensitivity and electrophoretic and chromatographic mobility in one and two dimensions, the phosphorylated residue behaves identically to phosphotyrosine and differently than phosphorylated serine, threonine, lysine and histidine.
Article
The proteins encoded by the ras oncogene are thought to trigger expression of the transformed phenotype in some types of cancer cells. In human cells, the ras protein family consists of several members including normal (proto-oncogene) and mutant (oncogene) forms. In general, the proto-oncogene forms are thought to be involved in the normal growth control of cells, while the mutant forms (which apparently result from somatic mutation of the normal ras genes) appear to be responsible, in part, for the loss of normal growth control. On microinjection into living normal cells, the purified ras oncogene protein (p21) induces a characteristic loss of growth control in cells within several hours. The mutant forms of the different ras proteins typically contain a single amino-acid change, usually at position 12 or less frequently at position 61. Here we report that microinjection of antibodies specific for amino acid 12 of the oncogenic v-Ki-ras protein into cells transformed by this protein causes a transient reversion of the cells to a normal phenotype. The fact that this antibody inhibits binding of GTP to the v-Ki-ras protein supports the notion that GTP binding is essential to the transforming function of this oncogene product.
Article
The role of guanine nucleotides in ras p21 function was determined by using the ability of p21 protein to induce maturation of Xenopus oocytes as a quantitative assay for biological activity. Two oncogenic mutant human N-ras p21 proteins, Asp12 and Val12, actively induced maturation, whereas normal Gly12 p21 was relatively inactive in this assay. Both mutant proteins were found to be associated with guanosine triphosphate (GTP) in vivo. In contrast, Gly12 p21 was predominantly guanosine diphosphate (GDP)-bound because of a dramatic stimulation of Gly12 p21-associated guanosine triphosphatase (GTPase) activity. A cytoplasmic protein was shown to be responsible for this increase in activity. This protein stimulated GTP hydrolysis by purified Gly12 p21 more than 200-fold in vitro, but had no effect on Asp12 or Val12 mutants. A similar factor could be detected in extracts from mammalian cells. It thus appears that, in Xenopus oocytes, this protein maintains normal p21 in a biologically inactive, GDP-bound state through its effect on GTPase activity. Furthermore, it appears that the major effect of position 12 mutations is to prevent this protein from stimulating p21 GTPase activity, thereby allowing these mutants to remain in the active GTP-bound state.
Article
An antibody (anti-p21ser) was raised against a ras p21-related synthetic peptide and was able to recognize specifically the substitution of serine for glycine at amino acid 12 of p21. This substitution causes oncogenic activation of p21. Anti-p21ser was found to immunoprecipitate v-Ki-ras p21 and to strongly inhibit its ability to autophosphorylate and to bind GTP in an immunoabsorption assay. Furthermore, binding of the antibody to p21 was specifically inhibited by GTP or GDP, suggesting that amino acids around position 12 are part of the GTP/GDP binding site. These results, taken together with the observation that the microinjection of anti-p21ser into cells transformed by v-Ki-ras p21 causes a transient reversion of the cells to a normal phenotype [Feramisco, J. R., Clark, R., Wong, G., Arnheim, N., Milley, R. & McCormick, F. (1985) Nature (London) 314, 639-642], support the idea that interaction of p21 with guanine nucleotides is crucial to the transforming function of this protein.