ArticleLiterature Review

Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A.. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16: 966-975

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

It is not surprising that the demise of a cell is a complex well-controlled process. Apoptosis, the first genetically programmed death process identified, has been extensively studied and its contribution to the pathogenesis of disease well documented. Yet, apoptosis does not function alone to determine a cell's fate. More recently, autophagy, a process in which de novo-formed membrane-enclosed vesicles engulf and consume cellular components, has been shown to engage in a complex interplay with apoptosis. In some cellular settings, it can serve as a cell survival pathway, suppressing apoptosis, and in others, it can lead to death itself, either in collaboration with apoptosis or as a back-up mechanism when the former is defective. The molecular regulators of both pathways are inter-connected; numerous death stimuli are capable of activating either pathway, and both pathways share several genes that are critical for their respective execution. The cross-talk between apoptosis and autophagy is therefore quite complex, and sometimes contradictory, but surely critical to the overall fate of the cell. Furthermore, the cross-talk is a key factor in the outcome of death-related pathologies such as cancer, its development and treatment.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Nevertheless, whether the Sox17 alterations affect cell apoptosis and autophagy of vascular endothelial cells is unclear. Apoptosis is a process of programmed cell death, and numerous studies have shown a synergistic relationship between apoptosis and autophagy [23]. Autophagy is the lysosomal degradation of cellular components under stress conditions to provide the energy needed for cell survival [24]. ...
... Bcl2 is one of the pleiotropic genes involved in apoptosis and autophagy [34]. Bcl2/BclXL physically interacts with Beclin 1 through the BH3 domain, leading to Bcl2-mediated suppression on autophagy [23,35]. Sox17 knockdown leads to decreased Bcl2 protein expression and increased Beclin1 expression, suggesting an enhancement of autophagy (Fig. 4A&5A). ...
... Autophagy genes are involved in the execution of cell death. The crosstalk between apoptosis and autophagy is complicated [23,35]. Apoptosis and autophagy are not mutually exclusive pathways. ...
Preprint
Full-text available
Intracranial aneurysm (IA), is a localized dilation of the intracranial arteries, the rupture of which is catastrophic. Hypertension is major IA risk factor that mediates endothelial cell damage. Sox17 is highly expressed in intracranial vascular endothelial cells, and GWAS studies indicate that its genetic alteration is one of the major genetic risk factors for IA. Vascular endothelial cell injury plays a vital role in the pathogenesis of IA. The genetic ablation of Sox17 plus hypertension induced by AngII can lead to an increased incidence of intracranial aneurysms had tested in the Previous animal experiments. In order to study the underlying molecular mechanisms, we established stable Sox17-overexpressing and knockdown cell lines in human brain microvascular endothelial cells (HBMECs) first. Then flow cytometry, western blotting, and immunofluorescence were employed. We found that the knockdown of Sox17 could worsen the apoptosis and autophagy of HBMECs caused by AngII, while overexpression of Sox17 had the opposite effect. Transmission electron microscopy displayed increased autophagosomes after the knockdown of Sox17 in HBMECs. The RNA sequencing analysis shown that dysregulation of the Sox17 gene was closely associated with the autophagy-related pathways. Our study suggests that Sox17 could protect HBMECs from AngII-induced injury by regulating autophagy and apoptosis.
... The high metabolic rates necessary to support gametogenesis and environmental stress simultaneously lead to the accumulation of oxidative damage (Abele et al., 2007;Guerra et al., 2012), characterized by the progressive oxidation of lipids and lipoproteins and the subsequent accumulation of the fluorescent aging pigment lipofuscin (Keller et al., 2004). Products of oxidative damage can compromise cellular function and maintenance in bivalves (Abele et al., 2007;Guerra et al., 2012) and could be implicated in apoptosis and the induction of autophagy (Terahara and Takahashi, 2008;Eisenberg-Lerner et al., 2009). Evidence suggests that thermal stress has strong nonlethal effects on the "heat shock response" by means of the expression of proteins from the Hsp70 family, which are capable of acting as molecular chaperones and inducing thermotolerance in Crassostrea spp. ...
... Autophagy consists of degrading and recycling proteins and organelles from the cells through their inclusion into double-membrane vesicles called autophagosomes or autolysosomes, which leads to the degradation of the enclosed cytoplasmic components by lysosomal enzymes, as has been described in hemocytes of C. gigas (Picot et al., 2019). Starvation is the first trigger of autophagy and can be observed in several tissues of C. gigas, including gonads, using mRNA transcripts (Han et al., 2019;Picot et al., 2019), but it can also be induced by metabolic stress, drug treatment, radiation damage, and oxidative damage (Eisenberg-Lerner et al., 2009). Perturbation of autophagy has been associated with several diseases in C. gigas tissues, indicating that this process is involved in the maintenance of cellular homeostasis (Moreau et al., 2015). ...
... Autophagy has a complex interplay with apoptosis. In some cellular settings, it can serve as a cell survival pathway, suppressing apoptosis, and in others, it can lead to death itself, either in collaboration with apoptosis or as a back-up mechanism when the former is defective (Eisenberg-Lerner et al., 2009). Direct relationships have been found between thermal stress and the apoptosis rate of all hemocyte types in C. gigas (Gagnaire et al., 2006;Zhang et al., 2011). ...
... Nevertheless, whether the alterations of Sox17 affect cell apoptosis and autophagy of vascular endothelial cells is unclear. Apoptosis is a process of programmed cell death, and numerous studies have shown a synergistic relationship between apoptosis and autophagy [23]. Autophagy is the lysosomal degradation of cellular components under stress conditions to provide the energy needed for cell survival [24,25]. ...
... Bcl-2 is one of the pleiotropic genes involved in apoptosis and autophagy [43]. Bcl-2/BclXL physically interacts with Beclin 1 through the BH3 domain, leading to Bcl-2-mediated suppression on autophagy [23,44]. Sox17 knockdown leads to decreased Bcl-2 protein expression and increased Beclin1 expression, suggesting an enhancement of autophagy (Figs. ...
Article
Full-text available
Intracranial aneurysm (IA), is a localized dilation of the intracranial arteries, the rupture of which is catastrophic. Hypertension is major IA risk factor that mediates endothelial cell damage. Sox17 is highly expressed in intracranial vascular endothelial cells, and GWAS studies indicate that its genetic alteration is one of the major genetic risk factors for IA. Vascular endothelial cell injury plays a vital role in the pathogenesis of IA. The genetic ablation of Sox17 plus hypertension induced by AngII can lead to an increased incidence of intracranial aneurysms had tested in the previous animal experiments. In order to study the underlying molecular mechanisms, we established stable Sox17-overexpressing and knockdown cell lines in human brain microvascular endothelial cells (HBMECs) first. Then flow cytometry, western blotting, and immunofluorescence were employed. We found that the knockdown of Sox17 could worsen the apoptosis and autophagy of HBMECs caused by AngII, while overexpression of Sox17 had the opposite effect. Transmission electron microscopy displayed increased autophagosomes after the knockdown of Sox17 in HBMECs. The RNA-sequencing analysis shown that dysregulation of the Sox17 gene was closely associated with the autophagy-related pathways. Our study suggests that Sox17 could protect HBMECs from AngII-induced injury by regulating autophagy and apoptosis.
... However, it can result in autophagic cell death as autophagy is excessively induced [28,29]. There is cross-talk between autophagy and apoptosis, and the inhibition of autophagy may enhance apoptosis or autophagy could occur upstream of apoptosis [30]. It is illustrated when cells are under deprivation conditions of nutrients or growth factors, activation of 5 0 adenosine monophosphate-activated protein kinase (AMPK) and/or inhibition of mammalian target of rapamycin (mTOR) could lead to activation of Unc-51 like kinase (ULK), which could phosphorylate beclin-1 to activate VPS34 with phagophore formation [31]. ...
... There are many cross-talks between autophagy and apoptosis, in which the inhibition of autophagy may enhance apoptosis as autophagy occurs upstream of apoptosis [30]. In the present experiment, chloroquine (CQ), a classic inhibitor of autophagy that blocks the binding of autophagosomes to lysosomes [42], was used to treat MA-10 cell for blocking autophagy, and the cell viability under cordycepin and/or FGF9 treatments was detected by PrestoBlue assay. ...
... During the onset of autophagy, ATG5 initiates the formation of autophagosomes. However, during cellular stress, ATG5 cleaved by calcium-activated protease calpain is translocated to the mitochondria and, undergoes binding with Bcl-XL and initiates apoptosis (Eisenberg-Lerner et al., 2009;Yousefi et al., 2006). ...
Article
Full-text available
Despite the advances in the medical field so far, cancer remains a global health priority even now. Considering the drug resistance and the failure of cancer therapies to achieve complete eradication of cancer cells in certain populations, developing molecules that induce programmed cell death or apoptosis has been the focus of cancer research for several decades. Apoptosis evasion is one of the hallmarks of cancer cells, and efforts continue to achieve complete annihilation of cancer cells through selective killing. On the other hand, autophagy, a mode of cell degradation, is considered a double-edged sword. Recent studies show that autophagy also can be manipulated to selectively target cancer cells based on the tumor microenvironment and cellular context. Studies show that autophagy is an evolutionarily conserved process initiated during stress response and has enormous importance in maintaining physiological balance. Most importantly, the dynamic equilibrium between apoptosis and autophagy is crucial in maintaining cellular homeostasis. Although a ‘cell eating’ process, the fate of autophagic cells depends entirely on the nature of stress and the extent of crosstalk between autophagy. This understanding is of immense significance when designing therapeutic interventions targeting apoptosis and autophagy. Currently, several studies are ongoing to gain insights into the role of autophagy in cancer initiation, invasion, progression, angiogenesis, and metastasis. This review focuses on the two major cell death mechanisms, apoptosis and autophagy, in the context of cancer, their crosstalk, and the therapeutic interventions targeting both modes of cell death.
... FAM111B was suggested to influence the apoptotic pathway by upregulating the expression of anti-apoptotic proteins BCL2 and BAG3 (Bcl-2-associated athanogene3) [22]. BCL2 inhibits the release of cytochrome c into the cytoplasm whilst BAG3 simultaneously interacts with and inhibits the pro-apoptotic protein BAX; in this way, programmed cell death is suppressed, resulting in cell survival [28,29]. Furthermore, Sun et al. (2019) showed that FAM111B may bind directly with BAG3 by demonstrating that the expression of FAM111B was decreased with a decreased BAG3 and BCL2 expression [22]. ...
Article
Full-text available
Proteases are critical enzymes in cellular processes which regulate intricate events like cellular proliferation, differentiation and apoptosis. This review highlights the multifaceted roles of the serine proteases FAM111A and FAM111B, exploring their impact on cellular functions and diseases. FAM111A is implicated in DNA replication and replication fork protection, thereby maintaining genome integrity. Additionally, FAM111A functions as an antiviral factor against DNA and RNA viruses. Apart from being involved in DNA repair, FAM111B, a paralog of FAM111A, participates in cell cycle regulation and apoptosis. It influences the apoptotic pathway by upregulating anti-apoptotic proteins and modulating cell cycle-related proteins. Furthermore, FAM111B’s association with nucleoporins suggests its involvement in nucleo-cytoplasmic trafficking and plays a role in maintaining normal telomere length. FAM111A and FAM111B also exhibit some interconnectedness and functional similarity despite their distinct roles in cellular processes and associated diseases resulting from their dysfunction. FAM111A and FAM111B dysregulation are linked to genetic disorders: Kenny–Caffey Syndrome type 2 and Gracile Bone Dysplasia for FAM111A and POIKTMP, respectively, and cancers. Therefore, the dysregulation of these proteases in diseases emphasizes their potential as diagnostic markers and therapeutic targets. Future research is essential to unravel the intricate mechanisms governing FAM111A and FAM111B and explore their therapeutic implications comprehensively.
... AMPK is an upstream regulator of the MTOR. When energy deficiency, nutrient deprivation, and inflammation occur, the energy sensitive AMPKα1 and AMPKα2 can be activated; While the MTORC1 is activated, autophagy is inhibited in nutrient rich conditions [80] . In the heart, AMPK is activated in ischemia, hypoglycemia, and energy deficiency; glucose absorption and glycolysis increased. ...
Article
Full-text available
OBJECTIVE: The aim of this study is to explore the potential modulatory role of quercetin against Endotoxin or lipopolysaccharide (LPS) induced septic cardiac dysfunction. METHODS: Specific pathogen-free chicken embryos ( n = 120) were allocated untreated control, phosphate buffer solution (PBS) vehicle, PBS with ethanol vehicle, LPS (500 ng/egg), LPS with quercetin treatment (10, 20, or 40 nmol/egg, respectively), Quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity. At embryonic day 19, the hearts of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, immunohistochemical investigations, and Western blotting. RESULTS: They demonstrated that the heart presented inflammatory responses after LPS induction. The LPS-induced higher mRNA expressions of inflammation-related factors (TLR4, TNFalpha, MYD88, NF-kappaB1, IFNgamma, IL-1beta, IL-8, IL-6, IL-10, p38, MMP3, and MMP9) were blocked by quercetin with three dosages. Quercetin significantly decreased immunopositivity to TLR4 and MMP9 in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of TLR4, IFNgamma, MMP3, and MMP9 when compared with the LPS group. Quercetin treatment prevented LPS-induced increase in the mRNA expression of Claudin 1 and ZO-1, and significantly decreased protein expression of claudin 1 when compared with the LPS group. Quercetin significantly downregulated autophagy-related gene expressions (PPARalpha, SGLT1, APOA4, AMPKalpha1, AMPKalpha2, ATG5, ATG7, Beclin-1, and LC3B) and programmed cell death (Fas, Bcl-2, CASP1, CASP12, CASP3, and RIPK1) after LPS induction. Quercetin significantly decreased immunopositivity to APOA4, AMPKalpha2, and LC3-II/LC3-I in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of AMPKalpha1, LC3-I, and LC3-II. Quercetin significantly decreased the protein expression to CASP1 and CASP3 by immunohistochemical investigation or Western blotting in treatment group when compared with LPS group. CONCLUSION: Quercetin alleviates cardiac inflammation induced by LPS through modulating autophagy, programmed cell death, and myocardiocytes permeability.
... The loss of mitochondrial membrane potential can trigger various cellular stress responses, including the release of cytochrome c, which eliminates damaged mitochondria. 37,38 However, this process may ultimately lead to apoptosis, a programmed cell death. 39,40 In our study, we evaluated the efficacy of the HA-SS-Geraniol conjugate in an in vitro model of prostate cancer. ...
Article
Full-text available
Background Targeted delivery systems have been developed to improve cancer treatment by reducing side effects and enhancing drug efficacy. Geraniol, a natural product, has demonstrated promising anti-cancer effects in various cancer types, including prostate cancer, which is the most commonly diagnosed cancer in men. Hyaluronic acid (HA), a natural carrier targeting CD44-positive prostate cancer cells, can be utilized in a targeted delivery system. Purpose This study investigated the efficacy of a conjugate of HA and geraniol linked via a disulfide bond linker (HA-SS-Geraniol) in prostate cancer. Materials and Methods The cytotoxicity of HA-SS-Geraniol was evaluated on human PC-3 prostate cancer cells. Flow cytometry was used to assess its effects on mitochondrial membrane potential, apoptosis, and cell cycle arrest. Additionally, proteomic analysis was conducted to explore the underlying mechanism of action induced by HA-SS-Geraniol treatment. A subcutaneous xenograft tumor model was established in nude mice to evaluate the toxicity and efficacy of HA-SS-Geraniol in vivo. Results The results demonstrated that HA-SS-Geraniol exhibited potent cytotoxicity against PC-3 prostate cancer cells by inducing mitochondrial membrane potential loss and apoptosis in vitro. The proteomic analysis further supported the hypothesis that HA-SS-Geraniol induces cell death through mitochondria-mediated apoptosis, as evidenced by differential protein expression. The in vivo mouse model confirmed the safety of HA-SS-Geraniol and its ability to inhibit tumor growth. Conclusion HA-SS-Geraniol holds promise as a biologically safe and potentially effective therapeutic agent for prostate cancer treatment. Its targeted delivery system utilizing HA as a carrier shows potential for improving the efficacy of geraniol in cancer therapy.
... Our previous study has indicated that trillin induces apoptosis through inhibiting STAT3 nuclear translocation in hepatoma carcinoma cells (Zhan et al. 2020a). Direct and indirect interactions between apoptosis and autophagy have been described, indicating a mechanistic overlap and interaction between apoptosis machinery and autophagy proteins (Eisenberg-Lerner et al. 2009). Since mTOR protein overlapped and the interaction between apoptosis and autophagy was induced by trillin, the research speculated that autophagy inhibition induced by trillin promotes apoptosis in HCC cells via activation of mTOR signaling. ...
Article
Full-text available
Apoptosis and autophagy have been shown to act cooperatively and antagonistically in self-elimination process. On the one side, apoptosis and autophagy can act as partners to induce cell death in a coordinated or cooperative manner; on the flip side, autophagy acts as an antagonist to block apoptotic cell death by promoting cell survival. Our previous research indicated that trillin could induce apoptosis of PLC/PRF/5 cells, but the effects of trillin on autophagy as well as its functional relationship to apoptosis have not been elucidated. Here, the running study aims to investigate the function and molecular mechanism of trillin on autophagy with hepatocellular carcinoma (HCC) cells. The objective of this study is to investigate the molecular mechanism of trillin on autophagy in HCC cells. Protein levels of autophagy markers beclin1, LC3B, and p62 were detected by western blotting. 6-Hydroxyflavone and stattic were used to test the role of trillin regulation of autophagy via serine threonine kinase (AKT)/extracellular-regulated protein kinases (ERK) 1/2/mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Flow cytometry was used to detect caspase 3 activity and apoptosis in PLC/PRF/5 cells treated with trillin for 24 h with or without rapamycin, stattic, and 6-hydroxyflavone. The protein level of autophagy marker beclin1 was decreased, whilst the protein level of p62 was significantly increased by trillin treatment, indicating trillin treatment led to inhibition of autophagy in HCC cells. Trillin treatment could reduce the protein levels of p-AKT and p-ERK1/2, but enhance the protein levels of mTOR and p-mTOR, suggesting that trillin could inhibit AKT/ERK rather than mTOR. The AKT/ERK activator 6-hydroxyflavone could reverse the loss of AKT and ERK1/2 phosphorylation induced by trillin, implying that trillin impairs autophagy through activated mTOR rather than AKT/ERK. STAT3 and p-STAT3 were significantly upregulated by the trillin treatment with an increase in dose from 0 to 50 μM, suggesting that autophagy inhibition is mediated by trillin via activation of STAT3 signaling. The STAT3 inhibitor stattic significantly reversed the increased STAT3 phosphorylation at tyrosine 705 induced by trillin. The mTOR signaling inhibitor rapamycin reversed the trillin-induced mTOR phosphorylation enhancement but exerted no effects on total mTOR levels, suggesting trillin treatment led to inhibition of autophagy in HCC cells through activating mTOR/STAT3 pathway. Furthermore, caspase 3 activities and the total rate of apoptosis were increased by trillin treatment, which was reversed by rapamycin, stattic, and 6-hydroxyflavone, proving that trillin promotes apoptosis via activation of mTOR/STAT3 signaling. Trillin induced autophagy inhibition and promoted apoptosis in PLC/PRF/5 cells via the activation of mTOR/STAT3 signaling. Trillin has the potential to be a viable therapeutic option for HCC treatment.
... The complexity of crosstalk between autophagy and apoptosis has been reported; autophagy and apoptosis can act as partners or as antagonists during the process of cell life and death. In case of acting as partners to induce cell death, autophagy and apoptosis act independently or one pathway is activated upon the failure of the other (Eisenberg-Lerner et al. 2009). Activation of p53 inhibits the activity of mTOR and thus can modulate autophagy (Feng et al. 2005). ...
Article
Full-text available
Doxorubicin (DOX) is a powerful chemotherapeutic agent used in many types of malignancies. However, its use results in testicular damage. DOX-induced testicular damage results in low level of serum testosterone which may affect cognitive function. The current study investigated the protective effect of liraglutide (50, 100 μg/kg/day) in testicular toxicity and the consequent cognitive impairment induced by DOX. DOX treatment reduced sperm count (62%) and sperm motility (53%) and increased sperm abnormalities (786%), as compared to control group. DOX also reduced serum testosterone level (85%) and the gene expression of testicular 3β-HSD (68%) and 17β-HSD (82%). Moreover, it increased testicular oxidative stress (MDA and GSH) by 103% and 59%, respectively, apoptotic (caspase-3 and P53) by 996% and 480%, respectively. In addition, DOX resulted in increasing autophagic markers including PAKT, mTOR, and LC3 by 48%, 56%, and 640%, respectively. Additionally, rats’ behavior in Y-maze (60%) and passive avoidance task (85%) was disrupted. The histopathological results of testis and brain supported the biochemical findings. Treatment with liraglutide (100 μg/kg/day) significantly abrogated DOX-induced testicular damage by restoring testicular architecture, increasing sperm count (136%) and sperm motility (106%), and decreasing sperm abnormalities (84%) as compared to DOX group. Furthermore, liraglutide increased serum testosterone (500%) and steroidogenesis enzymes 3β-HSD (105%) and 17β-HSD (181%) along with suppressing oxidative stress (MDA and GSH) by 23% and 85%, respectively; apoptotic (caspase-3 and P53) by 59% and55%, respectively; and autophagic markers including PAKT, mTOR, and LC3 by 48%, 97%, and 60%, respectively. Moreover, it enhanced the memory functions in passive avoidance and Y-maze tests (132%). In conclusion, liraglutide is a putative agent for protection against DOX-induced testicular toxicity and cognitive impairment through its antioxidant, antiapoptotic, and antiautophagic effects.
... However, autophagy can eventually activate pro-death signal pathways to eliminate cancer cells in cases of extensive damage. 30 Further examination revealed the involvement of the autophagic pathway in the activity of treated cells with the NE-DTX+TQ. Significant induction of AVOs formation was indicated. ...
Article
Full-text available
Introduction: The approach for drug delivery has impressively developed with the emergence of nanosuspension, particularly the targeted nanoemulsions (NEs). It can potentially improve the bioavailability of drugs, enhancing their therapeutic efficiency. This study aims to examine the potential role of NE as a delivery system for the combination of docetaxel (DTX), a microtubule-targeting agent, and thymoquinone (TQ) in the treatment of human ductal carcinoma cells T47D. Methods: NEs were synthesized by ultra-sonication and characterized physically by dynamic light scattering (DLS). A sulforhodamine B assay was performed to evaluate cytotoxicity, and a flow cytometry analysis for cell cycle, apoptosis, autophagy, and cancer stem cell evaluations. A quantitative polymerase chain reaction further assessed the epithelial-mesenchymal transition gene expirations of SNAIL-1, ZEB-1, and TWIST-1. Results: The optimal sizes of blank-NEs and NE-DTX+TQ were found at 117.3 ± 8 nm and 373 ± 6.8 nm, respectively. The synergistic effect of the NE-DTX+TQ formulation significantly inhibited the in vitro proliferation of T47D cells. It caused a significant increase in apoptosis, accompanied by the stimulation of autophagy. Moreover, this formulation arrested T47D cells at the G2/M phase, promoted the reduction of the breast cancer stem cell (BCSC) population, and repressed the expression of TWIST-1 and ZEB-1. Conclusion: Co-delivery of NE-DTX+TQ may probably inhibit the proliferation of T47D via the induction of apoptosis and autophagy pathways and impede the migration by reducing the BCSC population and downregulating TWIST-1 expression to decrease the epithelial-to-mesenchymal transition (EMT) of breast cancer cells. Therefore, the study suggests the NE-DTX+TQ formula as a potential approach to inhibit breast cancer growth and metastasis.
... The present data clearly support our hypothesis that compound 275# primarily initiates autophagy rather than the late stage of autophagy, such as the fusion between autophagosome and lysosome, and autophagy activation is triggered by ROS accumulation. Considerable evidence has indicated that apoptosis and autophagy were thought to be two mutually cross-regulated cellular events because they share several critical molecular regulators, such as JNK1, Bcl-2, and Beclin 1 [44][45][46][47]. Hence, future exper-iments will be undertaken to clarify the complex mutual regulatory mechanism between autophagy and apoptosis induced by compound 275#. ...
Article
Full-text available
Colorectal cancer (CRC) is the most common intestinal malignancy, and nearly 70% of patients with this cancer develop metastatic disease. In the present study, we synthesized a novel compound, termed N-(3-(5,7-dimethylbenzo [d]oxazol-2-yl)phenyl)-5-nitrofuran-2-carboxamide (compound 275#), and found that it exhibits antiproliferative capability in suppressing the proliferation and growth of CRC cell lines. Furthermore, compound 275# triggered caspase 3-mediated intrinsic apoptosis of mitochondria and autophagy initiation. An investigation of the molecular mechanisms demonstrated that compound 275# induced intrinsic apoptosis, and autophagy initiation was largely mediated by increasing the levels of the intracellular accumulation of reactive oxygen species (ROS) in CRC cells. Taken together, these data suggest that ROS accumulation after treatment with compound 275# leads to mitochondria-mediated apoptosis and autophagy activation, highlighting the potential of compound 275# as a novel therapeutic agent for the treatment of CRC.
... Consistent with this finding, there was a remarkable increase in the expression levels of the ER stress marker GRP78 after surgery and anesthesia. Autophagy is an important molecular mechanism to resolve ER stress to maintain intracellular environment homeostasis [39]. It remains unclear whether autophagy functions as a does not affect the extremities whose normal functions are needed for behavioral tests and do not interference in major organ functions that are important for the general health of the animals. ...
Article
Full-text available
Surgery and anesthesia in neonates may lead to cognitive impairment or abnormal behaviors. It has been shown that autophagy plays a critical role in neuropsychiatric disorders, while the role of autophagy in postoperative cognitive impairment in neonates is not known. Here, we determined this role and the involvement of endoplasmic reticulum (ER) stress in regulating brain cell autophagy after surgery. Seven-day old neonatal rats (P7) had right common carotid artery exposure under anesthesia with 3% sevoflurane for 2 h. Learning and memory were tested using Barnes maze (BM) and fear conditioning (FC) on P31–42 and P42–44, respectively. In another experiment, rat brains were harvested for biochemical studies. The ratio of microtubule-associated protein 1 light chain 3 (LC3) BII/I was increased and sequestosome 1 (P62/SQSTM1) levels were decreased in the brain 24 h after surgery and anesthesia in neonatal rats. Immunofluorescent staining of LC3B was co-localized with a neuronal or a microglial marker but was not co-localized with a marker for astrocytes in rats with surgery. These rats had a poorer performance in the BM and FC tests than control rats when they were adolescent. Pretreatment with an autophagy inhibitor, 3-methyladenine, attenuated the poor performance. Surgery and anesthesia increased the expression of 78 kDa glucose-regulated protein (BIP/GRP78), an indicator of ER stress, 6 h after surgery and anesthesia. The ER stress activator tunicamycin and inhibitor tauroursodeoxycholic acid increased the markers for autophagy in control rats and decreased the autophagy markers in rats with surgery, respectively. Our results suggest that surgery in neonatal rats induces ER stress that then activates neuronal and microglial autophagy, which contributes to learning and memory impairment later in life.
... Apoptosis-induced cell death is decisive; however, the impact of autophagy on cell death varies 29 . Autophagy and apoptosis share multiple regulatory proteins 30,31 . The complex interplay between them is significant for pathophysiology 32,33 . ...
Article
Full-text available
Oligoasthenospermia is the primary cause of infertility. However, there are still enormous challenges in the screening of critical candidates and targets of oligoasthenospermia owing to its complex mechanism. In this study, stem cell factor (SCF), c-kit, and transient receptor potential vanilloid 1 (TRPV1) biosensors were successfully established and applied to studying apoptosis and autophagy mechanisms. Interestingly, the detection limit reached 2.787×10–15 g/L, and the quantitative limit reached 1.0×10–13 g/L. Furthermore, biosensors were used to investigate the interplay between autophagy and apoptosis. Schisandrin A is an excellent candidate to form a system with c-kit similar to SCF/c-kit with a detection constant (KD) of 5.701×10–11 mol/L, whereas it had no affinity for SCF. In addition, it also inhibited autophagy in oligoasthenospermia through antagonizing TRPV1 with a KD of up to 4.181×10–10 mol/L. In addition, in vivo and in vitro experiments were highly consistent with the biosensor. In summary, high-potency Schisandrin A and two potential targets were identified, through which Schisandrin A could reverse the apoptosis caused by excessive autophagy during oligoasthenospermia. Our study provides promising insights into the discovery of effective compounds and potential targets via a well-established in vitro-in vivo strategy.
... It has been recently shown that the induction of autophagy has a proapoptotic effect on normal human endometrial cells [93]. While the overactivation of autophagy and apoptosis has been identified as damaging in many pathologies, during endometriosis they extern cytoprotective properties [94,95]. Indeed, they are tightly regulated by common signals [96][97][98]. ...
Article
Full-text available
Endometriosis (Endo) is a chronic gynecological disease. This paper aimed to evaluate the modulation of autophagy, oxidative stress and apoptosis with Açai Berries in a rat model of endometriosis. Endometriosis was induced with an intraperitoneal injection of minced uterus tissue from a donor rat into a recipient one. The abdominal high-frequency ultrasound (hfUS) analysis was performed at 7 and 14 days from the endometriosis induction to evaluate the growth of the lesion during the experiment. Seven days from the induction, once the lesions were implanted, an Açai Berry was administered daily by gavage for the next seven days. At the end of the experiment, the hfUS analysis showed a reduced lesion diameter in animals given the Açai Berry. A macroscopical and histological analysis confirmed this result. From the molecular point of view, Western blot analyses were conducted to evaluate the autophagy induction. Samples collected from the Endo group showed impaired autophagy, while the Açai Berry administration inhibited PI3K and AKT and ERK1/2 phosphorylation and promoted autophagy by inactivating mTOR. Additionally, Açai Berry administration dephosphorylated ATG1, promoting the activity of the ATG1/ULK1 complex that recruited Ambra1/Beclin1 and Atg9 to promote autophagosome nucleation and LC3II expression. Açai Berry administration also restored mitophagy, which increased Parkin cytosolic expression. The Açai Berry increased the expression of NRF2 in the nucleus and the expression of its downstream antioxidant proteins as NQO-1 and HO-1, thereby restoring the oxidative imbalance. It also restored the impaired apoptotic pathway by reducing BCL-2 and increasing BAX expression. This result was also confirmed by the TUNEL assay. Overall, our results displayed that Açai Berry administration was able to modulate autophagy, oxidative stress and apoptosis during endometriosis.
... Calpaindependent Atg5 cleavage produced a truncated product translocated from the cytoplasm to the mitochondria to inhibit Bcl-2 protein and promote apoptosis [39]. mTOR, as a negative regulatory factor of autophagy, inhibits autophagy activation, and is regulated by the upstream signal of PI3K/Akt pathway [40]. In our experiments, we found that psoralidin and psoralen inhibited autophagy by up-regulating mTOR, p-mTOR, Raptor and PI3K. ...
Article
Full-text available
Background Drug-induced mitochondrial toxicity is thought to be a common mechanism of drug hepatotoxicity. Xian-Ling-Gu-Bao (XLGB) oral preparation is a commonly used drug for osteoporosis in China. Classical safety evaluation studies have shown that the entire preparation and six Chinese herbal medicines have high safety, but the incidence of drug-induced liver damage due to XLGB remains high, the mechanism and toxic substances causing liver injury are still unclear. The purpose of this study is to identify compounds with potential mitochondrial liabilities in XLGB, and to clarify their underlying mechanisms and related pathways. Methods The mitochondrial function analysis was performed using an extracellular flux assay, which simultaneously monitored both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Through network pharmacology and in vitro experimental verification, the potential protein targets, signaling pathways and molecular mechanism of mitochondrial toxicity have been studied. Results We observed a significant decrease in mitochondrial respiration of Psoraleae Fructus and its five compounds in fundamental bioenergetics parameters such as basal respiration, ATP-linked production and maximal respiration, indicating mitochondrial dysfunction. The network pharmacology results showed that the influence of XLGB on mitochondrial dysfunction was closely related to PI3K-Akt signaling pathway, mTOR signaling pathway and Apoptosis. Western blot showed that the levels of mTOR, p-mTOR (Ser2448), Raptor, PI3K (p110α), Beclin 1, ATG5 and Caspase-9 were up-regulated after treatment with psoralidin, psoralen and bavachin, and the expression of Bcl-2 was down-regulated after bavachinin treatment. Conclusions The hepatotoxicity of XLGB is associated with mitochondrial dysfunction. Five compounds in Psoraleae Fructus showed mitochondrial damage, they are psoralidin, isobavachalcone, bavachinin, bavachin and psoralen, especially psoralidin showed significant reduction in reserve capacity and respiratory control ratios. The molecular mechanism is related to the activation of PI3K/mTOR signaling pathway to inhibit autophagy and induce mitochondrial apoptosis.
... Natural compounds use different mechanisms to affect the autophagy pathway and the distinction between the survival-supporting and/or death-promoting roles of them on autophagy process need more deep study for therapeutic response. For example, magnolol (35) that can induce autophagy can affect the morphological and cellular events such as ATP level, cell blebbing and DNA fragmentation without leading to cell death in itself [425]. Most of the natural compounds mentioned here for clinical trials are alkaloids. ...
Article
Full-text available
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
... Natural compounds use different mechanisms to affect the autophagy pathway and the distinction between the survival-supporting and/or death-promoting roles of them on autophagy process need more deep study for therapeutic response. For example, magnolol (35) that can induce autophagy can affect the morphological and cellular events such as ATP level, cell blebbing and DNA fragmentation without leading to cell death in itself [425]. Most of the natural compounds mentioned here for clinical trials are alkaloids. ...
Article
Full-text available
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
... Importantly, numerous studies show that TRAIL can also induce autophagy [66]. Autophagy and apoptosis are both important cellular processes controlled by distinct groups of regulatory mechanisms [67]. They also have a crosstalk to regulate each other [68][69][70]. ...
Article
Full-text available
The tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells via death receptor (DR) activation with little toxicity to normal cells or tissues. The selectivity for activating apoptosis in cancer cells confers an ideal therapeutic characteristic to TRAIL, which has led to the development and clinical testing of many DR agonists. However, TRAIL/DR targeting therapies have been widely ineffective in clinical trials of various malignancies for reasons that remain poorly understood. Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers. Targeting the TRAIL DR pathway has shown notable efficacy in a subset of TNBC in preclinical models but again has not shown appreciable activity in clinical trials. In this review, we will discuss the signaling components and mechanisms governing TRAIL pathway activation and clinical trial findings discussed with a focus on TNBC. Challenges and potential solutions for using DR agonists in the clinic are also discussed, including consideration of the pharmacokinetic and pharmacodynamic properties of DR agonists, patient selection by predictive biomarkers, and potential combination therapies. Moreover, recent findings on the impact of TRAIL treatment on the immune response, as well as novel strategies to address those challenges, are discussed.
... Several studies have demonstrated that apoptosis and autophagy can promote or inhibit each other (25). Further experimental research is needed to study the molecular mechanism between apoptosis and autophagy during the effect of nanoparticles. ...
Article
Full-text available
Nanosized copper particles (nano Cu) have been incorporated into products in multiple industries, although studies have demonstrated that these particles are nephrotoxic. We investigated the cytotoxicity of nanosized copper particles on rat mesangial cells and measured rates of apoptosis, the expression of caspase-3, and generation of reactive oxygen species. We also measured autophagy through the acridine orange (AO) staining and expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62 to screen the underlying mechanism of toxicity. Nanosized copper particles inhibited mesangial cell viability, up-regulated the activity of caspase-3, and increased the rates of apoptosis and the generation of reactive oxygen species in a concentration-dependent manner. Exposure to nano Cu increased the formation of acidic vesicular organelles and the expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62, and treatment with an autophagy inhibitor reduced nephrotoxicity. This indicated that the autophagy pathway is involved in the toxicity induced by nanosized copper particles to mesangial cells. This finding can contribute to the development of safety guidelines for the evaluation of nanomaterials in the future.
... The most characteristic feature of the action of TMT was the development of autophagy, as evidenced by the appearance of numerous AFs in dendrites, axons, and cell soma. Autophagy is a regulated cellular process in which internal unnecessary or dysfunctional components are delivered into lysosomes or vacuoles and degraded there [8,10]. We observed the appearance of AP after the action of TMT both in the prefrontal cortex and in the hippocampus, however, in the cortex 30 days after intoxication, autophagy was already completed, while in the hippocampus, it remained quite active. ...
Article
Full-text available
Ultrastructural studies of the hippocampus and the prefrontal cortex of rats were performed 7, 30, and 50 days after their damage by neurotoxicant trimethyltin chloride (TMT). Significant damage to neurons was observed in both brain structures. In the hippocampus, a large number of autophagosomes (0.9±0.1 per μm2) appeared in the soma of neurons, dendrites, and axons in 7 days after intoxication. In addition, we observed the appearance of hyperchromic neurons with abnormal structure of mitochondria. In the prefrontal cortex, damaged neurons also contained autophagosomes, but their number was significantly lower (0.3±0.1 per μm2). The number of autophagosomes decreased with increasing the time after TMT administration: 30 days after injection, the content of autophagosomes in the hippocampus was 0.10±0.01 per μm2, while in the prefrontal cortex, autophagosomes were no longer found. We hypothesized that autophagy in the hippocampus was not effective enough to prevent neuronal death caused by the neurotoxicant.
Article
Full-text available
In terms of primary brain tumors, glioblastoma is one of the most aggressive and common brain tumors. The high resistance of glioblastoma to chemotherapy has made it vital to find alternative treatments and biological mechanisms to reduce the survival of cancer cells. Given that, the objective of the present research was to explore the potential of let-7a-3p when used in combination with carmustine in human glioblastoma cancer cells. Based on previous studies, the expression of let-7a is downregulated in the U87MG cell line. Let-7a-3p transfected into U87MG glioblastoma cells. Cell viability of the cells was assessed by MTT assay. The apoptotic induction in U87MG cancerous cells was determined through the utilization of DAPI and Annexin V/PI staining techniques. Moreover, the induction of autophagy and cell cycle arrest was evaluated by flow cytometry. Furthermore, cell migration was evaluated by the wound healing assay while colony formation assay was conducted to evaluate colony formation. Also, the expression of the relevant genes was evaluated using qRT-PCR. Transfection of let-7a-3p mimic in U87MG cells increased the expression of the miRNA and also increased the sensitivity of U87MG cells to carmustine. Let-7a-3p and carmustine induced sub-G1 and S phase cell cycle arrest, respectively. Combination treatment of let-7a-3p and carmustine synergistically increased arrested cells and induced apoptosis through regulating involved genes including P53, caspase-3, Bcl-2, and Bax. Combined treatment with let-7a-3p and carmustine also induced autophagy and increased the expression of the ATG5 and Beclin 1 (ATG6). Furthermore, let-7a-3p combined with carmustine inhibited cell migration via decreasing the expression of MMP-2. Moreover, the combination therapy decreased the ability of U87MG to form colonies through downregulating CD-44. In conclusion, our work suggests that combining let-7a-3p replacement therapy with carmustine treatment could be considered a promising strategy in treatment and can increase efficiency of glioblastoma chemotherapy. Graphical Abstract Summary of conducted assays in this research. After selection of let-7a-3p, this miRNA transfected into U87MG cells via electroporation. Optimum dose and time of the miRNA were evaluated by the qRT-PCR. In order to find IC50 of the carmustine, U87MG cells were treated with different doses of this chemotherapy drug and MTT assay conducted. Then cells were transfected with optimum doses of let-7a-3p and treated with IC50 of carmustine. In order to assess the combined effect of these two methods, apoptosis induction, cell cycle arrest, autophagy induction, cell migration, colony formation, and expression of the involved genes were evaluated.
Article
Full-text available
Coronary microembolization (CME) occurs in patients with acute coronary syndrome and is caused primarily by atherosclerotic plaque rupture associated with surgery. CME can lead to arrhythmias, decreased coronary blood flow reserve, and cardiac systolic dysfunction. The clinical efficacy of conventional coronary artery dilation, antiplatelet agents, and direct thrombus aspiration after CME is not satisfactory. Studies have indicated that microRNAs (miRNAs) specifically bind the 3′ untranslated regions (UTRs) of inflammatory response-, apoptosis-, and autophagy-related mRNAs, and ultimately affect CME prognosis. In-depth studies of the roles of miRNAs in CME occurrence and development would not only advance understanding of the mechanisms underlying poor prognosis after CME but also aid in identifying new targets for drug treatment. Here, we review the regulatory effects of miRNAs on myocardial cell injury after CME in terms of the inflammatory response, apoptosis, and autophagy. Overall, changes in miRNA levels after CME decrease myocardial autophagy and worsen cardiac prognosis. Current evidence suggests a potential strategic pathway for therapeutic intervention in CME management.
Article
Full-text available
Background: As lung cancer is the leading cause of cancer death worldwide, the development of new medicines is a crucial endeavor. Naringenin, a flavanone derivative, possesses anti-cancer and anti-inflammatory properties and has been reported to have cytotoxic effects on various cancer cells. The current study investigated the underlying molecular mechanism by which naringenin induces cell death in lung cancer. Methods: The expression of apoptosis, cell cycle arrest, and autophagy markers in H1299 and A459 lung cancer cells was evaluated using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL), Western blot, Annexin V/PI stain, PI stain, acridine orange staining, and transmission electron microscopy (TEM). Using fluorescence microscopy, DALGreen was used to observe the degradation of p62, a GFP-LC3 plasmid was used to evaluate puncta formation, and a pcDNA3-GFP-LC3-RFP-LC3ΔG plasmid was used to evaluate autophagy flux. Furthermore, the anti-cancer effect of naringenin was evaluated in a subcutaneous H1299 cell xenograft model. Results: Naringenin treatment of lung cancer cells (H1299 and A459) reduced cell viability and induced cell cycle arrest. Pretreatment of cells with ROS scavengers (N-acetylcysteine or catalase) suppressed the naringenin-induced cleavage of apoptotic protein and restored cyclin-dependent kinase activity. Naringenin also triggered autophagy by mediating ROS generation, thereby activating AMP-activated protein kinase (AMPK) signaling. ROS inhibition not only inhibited naringenin-induced autophagic puncta formation but also decreased the ratio of microtubule-associated proteins 1A/1B light chain 3 II (LC3II)/LC3I and activity of the AMPK signaling pathway. Furthermore, naringenin suppressed tumor growth and promoted apoptosis in the xenograft mouse model. Conclusion: This study demonstrated the potent anti-cancer effects of naringenin on lung cancer cells, thereby providing valuable insights for developing small-molecule drugs that can induce cell cycle arrest, apoptosis, and autophagic cell death.
Article
Aim: In this study, we looked at the connection between apoptosis and autophagy after our prior research indicated that melatonin could cause both MCF-7 and MDA-MB-231 cells. Material and methods: To examine the impact of melatonin, 3-methyladenine (3-MA), an autophagy inhibitor, or their combination on apoptotic cell death, two breast cancer cell lines, MCF-7 and MDA-MB-231, have been used. MCF-7 and MDA-MB-231 cells were exposed with melatonin after 5 mM 3-MA pre-culture. Then, apoptosis was detected by TUNEL method. Adouble immunofluorescence staining method assay was used to investigate the molecular changes of Bax/Bcl-2 expression that occurred in the course of treatment. Cell viability was measured by MTT assay. Results: When an autophagy inhibitor, 3-MA, and melatonin treatment were co-administered in MCF-7 cells, apoptosis was decreased, compared to melatonin treatment alone, but it was not significant. In addition, 3-MA application downregulated Bax expression compared with melatonin alone treatment. In MDA-MB-231 cells, the combination treatment of 3-MA and melatonin significantly increased the apoptotic cell death. Moreover, the pro-apoptotic protein, Bax, was significantly up-regulated by 3-MA. Conclusion: Taken together, in MCF-7 cells, inhibition of autophagy contributes to downregulation of apoptosis, whereas increased apoptosis is seen in MDA-MB-231 breast cancer cells. Inhibiting autophagy in MDA-MB-231 cells treated with melatonin could serve as a self-defense mechanism, and this may be a promising approach for adjuvant treatment for breast cancer.
Article
Aim: Mitochondrial homeostasis is essential for maintaining redox balance. Besides canonical autophagy, Rab9-dependent alternative mitophagy is a crucial mechanism in metabolic cardiomyopathy. Here, we aim to investigate the role of alternative mitophagy and Beclin 1 haploinsufficiency (Beclin 1+/-) in high-fat diet (HFD)-induced metabolic cardiomyopathy. Results: 24-week HFD impaired glucose tolerance and cardiomyocyte contraction in WT mice, both of which were rescued in Beclin 1+/- mice. Beclin 1 haploinsufficiency had little effect on the conventional autophagy mediators (ATG5, LC3II/LC3I) but further upregulated Rab9 expression, a marker of alternative autophagy, in response to HFD challenge. Furthermore, either the inhibition of alternative autophagy or Beclin 1 haploinsufficiency abolished palmitic acid-induced cardiomyocyte contractile anomalies. In vitro, palmitic acid over-activated mitophagy, resulting in decreased mitochondrial content in H9C2 cells. These aberrations were alleviated in cells deficient in alternative autophagy but not in cells deficient in conventional autophagy. Mechanistically, HFD promoted ROS production, activated Rab9-dependent alternative mitophagy, and inhibited mitochondrial biosynthesis. Beclin 1+/- rescued HFD-induced ROS overflow, mitochondrial biogenesis impairment, and prevented Rab9 translocation from the cytoplasm to the mitochondria, thereby inhibiting Rab9-mediated mitophagy over-activation. Innovation: For the first time, this study suggests that prolonged alternative mitophagy exacerbates chronic HFD-induced cardiac dysfunction and supports the protective role of Beclin 1 haploinsufficiency in metabolic cardiomyopathy. This provides additional evidence for a target-based pharmacological intervention. Conclusions: Beclin 1 haploinsufficiency protects against HFD-induced cardiac dysfunction by inhibiting Rab9-dependent alternative mitophagy and ROS production, while promoting mitochondrial biogenesis. Modulating Beclin 1 expression holds promise in preventing chronic HFD-related cardiomyopathy.
Article
Full-text available
Several commercially available triorganotin compounds were previously found to function as agonist ligands for nuclear retinoid X receptor (RXR) molecules. Triphenyltin isoselenocyanate (TPT-NCSe), a novel selenium atom containing a derivative of triorganotin origin, was found to represent a new cognate bioactive ligand for RXRs. TPT-NCSe displayed a concentration- and time-dependent decrease in the cell viability in both human breast carcinoma MCF-7 (estrogen receptor positive) and MDA‑MB‑231 (triple negative) cell lines. Reactive oxygen species levels generated in response to TPT-NCSe were significantly higher in both carcinoma cell lines treated with TPT-NCSe when compared to mock-treated samples. Treatment with 500 nM TPT-NCSe caused a decrease in SOD1 and increased SOD2 mRNA in MCF-7 cells. The levels of SOD2 mRNA were more increased following the treatment with TPT-NCSe along with 1 μM all-trans retinoic acid (AtRA) in MCF-7 cells. An increased superoxide dismutase SOD1 and SOD2 mRNA levels were also detected in combination treatment of 500 nM TPT-NCSe and 1 μM AtRA in TPT-NCSe-treated MDA-MB-231 cells. The data have also shown that TPT-NCSe induces apoptosis via a caspase cascade triggered by the mitochondrial apoptotic pathway. TPT-NCSe modulates the expression levels of apoptosis‑related proteins, Annexin A5, Bcl‑2 and BAX family proteins, and finally, it enhances the expression levels of its cognate nuclear receptor subtypes RXRalpha and RXRbeta.
Article
Background Myocardial infarction (MI) is a leading cardiovascular disease worldwide, with high mortality. Purpose The study aimed to observe the mechanism of catalpol inhibiting apoptosis and autophagy in H9c2 cells after ischemia/reperfusion (I/R) injury. Materials and Methods We grouped H9c2 cells into 4 groups: control, I/R injury, catalpol (I/R injury +1 ug/mL catalpol treatment), and wortmannin (I/R injury + 1 ug/mL catalpol +150 nM wortmannin treatment) groups. Both catalpol and wortmannin group cells were given drug treatment 30 min before I/R injury. At 2h post-I/R insult, we used flow cytometry for detecting cellular apoptosis and reactive oxygen species (ROS) levels. We identified p-PI3K, p-Akt, PI3K, Akt, p53, Bcl-2, Caspase-3, Bax, beclin1, LC3II, and LC3I protein expression levels. Results I/R significantly increased the apoptosis rate and ROS level of H9c2 cells, increased expression levels of p53, LC3II/LC3I, and Caspase-3, and decreased p-Akt/Akt, beclin1, Bcl-2/Bax, and p-PI3K/PI3K expression levels. Catalpol can reduce the expressions of p53, Caspase-3, and LC3II/LC3I ( p < .5). Catalpol can increase the expression levels of Akt/ p-Akt, Bax/ Bcl-2, and beclin1. Also, it can inhibit apoptosis and autophagy levels of H9c2 cells ( p< .5). Wortmannin, a PI3 K-specific inhibitor, was able partially to block the catalpol’s and anti-autophagic and anti-apoptotic effects. Conclusion Catalpol can inhibit apoptosis, reduces excessive autophagy, and alleviates the effects of myocardial ischemia-reperfusion through PI3K/Akt/p53 pathway.
Article
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Article
Full-text available
Currently, therapies for treating oral cancer have various side effects; therefore, research on treatment methods employing natural substances is being conducted. This study aimed to investigate piperine-induced apoptosis and autophagy in HSC-3 human oral cancer cells and their effects on tumor growth in vivo. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that piperine reduced the viability of HSC-3 cells and 4′,6-diamidino-2-phenylindole staining, annexin-V/propidium iodide staining, and analysis of apoptosis-related protein expression confirmed that piperine induces apoptosis in HSC-3 cells. Additionally, piperine-induced autophagy was confirmed by the observation of increased acidic vesicular organelles and autophagy marker proteins, demonstrating that autophagy in HSC-3 cells induces apoptosis. Mechanistically, piperine induced apoptosis and autophagy by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in HSC-3 cells. We also confirmed that piperine inhibits oral cancer tumor growth in vivo via antitumor effects related to apoptosis and PI3K signaling pathway inhibition. Therefore, we suggest that piperine can be considered a natural anticancer agent for human oral cancer.
Article
Full-text available
Biogenic volatile organic compounds have promising applications in controlling fungal spoilage of postharvest agro-products and perishable foods. In a previous study, we discovered that the plant volatile 1-octanol showed considerable potential for controlling Aspergillus flavus growth. In this study, the inhibitory effects of 1-octanol on the germination of A. flavus spores were investigated. A. flavus spores did not germinate when exposed to 1.5 µL/mL 1-octanol, and 3.5 µL/mL 1-octanol caused spore death. Biochemical analysis showed that 1-octanol caused a decrease in ergosterol and ATP content, and an increase in hydrogen peroxide and superoxide anion content in a dose-dependent manner. Transcriptomic analysis demonstrated that there were 4117 differentially-expressed genes in A. flavus spores exposed to 1.5 µL/mL 1-octanol, mainly enriched in metabolic pathways, steroid biosynthesis, secondary metabolite biosynthesis, ribosomes, glutathione metabolism, the mitogen-activated protein kinases signaling pathway, and pyruvate metabolism. Flow cytometry results showed that 1-octanol treatment resulted in hyperpolarization of the mitochondrial membrane potential, accumulation of reactive oxygen species, and apoptosis. TdT-mediated dUTP nick end labeling/4′,6-diamidino-2-phenylindole double staining and monodansylcadaverine staining results indicated that 1-octanol treatment resulted in DNA fragmentation and induced autophagy, respectively. These results provide new insights into the inhibitory mechanism of 1-octanol on A. flavus spore gemination and would facilitate the application of 1-octanol for the protection of postharvest agricultural products.
Article
Full-text available
Cell death is the irreversible stop of life. It is also the basic physiological process of all organisms which involved in the embryonic development, organ maintenance and autoimmunity of the body. In recent years, we have gained more comprehension of the mechanism in cell death and have basically clarified the different types of "programmed cell death", such as apoptosis, necroptosis, autophagy, and pyroptosis, and identified some key genes in these processes. However, in these previous studies, the conversion between different cell death modes and their application in diseases are rarely explored. To sum up, although many valued discoveries have been discovered in the field of cell death in recent years, there are still many unknown problems to be solved in this field. Facts have proved that cell death is a very complex game, and a series of core players have the ability to destroy the delicate balance of the cell environment, from survival to death, from anti-inflammatory to pro-inflammatory. With the thorough research of the complex regulatory mechanism of cell death, there will certainly be exciting new research in this field in the next few years. The sake of this paper is to emphasize the complex mechanism of overturning the balance between different cell fates and provide relevant theoretical basis for the connection between cell death transformation and disease treatment in the future.
Article
Full-text available
Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium–treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium–treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium–treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy. Graphical abstract
Preprint
Full-text available
Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salynomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 µg L − 1 ), MPs (1 mg L − 1 , 2 µm size), and both at 18°C (Mix) and 25°C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD ⁺ /NADH and Zn/Cu ratios and lysosomal integrity, and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18°C. However, under heating, the levels of NAD ⁺ , NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.
Article
Diallyl sulfide (DAS), as a major component of garlic extracts, has been shown to inhibit growth of hepatocellular carcinoma cells (HCC), but the underlying mechanism is still elusive. In this study, we aimed to explore the involvement of autophagy in DAS-induced growth inhibition of HepG2 and Huh7 hepatocellular carcinoma cells. We studied growth of DAS-treated HepG2 and Huh7 cells using the MTS and clonogenic assays. Autophagic flux was examined by immunofluorescence and confocal microscopy. The expression levels of autophagy-related proteins AMPK, mTOR, p62, LC3-II, LAMP1, and cathepsin D in the HepG2 and Huh7 cells treated with DAS as well as the tumors formed by HepG2 cells in the nude mice in the presence or absence of DAS were examined using western blotting and immunohistochemistry analysis. We found that DAS treatment induced activation of AMPK/mTOR, and accumulation of LC3-II and p62 both in vivo and in vitro. DAS inhibited autophagic flux through blocking the fusion of autophagosomes with lysosomes. Furthermore, DAS induced an increase in lysosomal pH and inhibition of Cathepsin D maturation. Co-treatment with an autophagy inhibitor (Chloroquine, CQ) further enhanced the growth inhibitory activity of DAS in HCC cells. Thus, our findings indicate that autophagy is involved in DAS-mediated growth inhibition of HCC cells both in vitro and in vivo.
Article
Objective: To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism. Methods: The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed. Results: The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01). Conclusion: Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.
Article
Lentinan, a natural drug with wide-ranging pharmacological activities, can regulate autophagy-the process through which Schwann cells (SCs) eliminate myelin fragments after peripheral nerve injury (PNI). However, the effect of lentinan after PNI and the role of accelerated myelin debris removal via autophagy in this process are unclear. This study examined the effect of lentinan on rat sciatic nerve repair following crush injury and the underlying mechanisms. After the successful establishment of the sciatic nerve compression injury model, group-specific treatments were performed. The treatment group received 20 mg/kg lentinan via intraperitoneal injection, while the model group was treated with normal saline. The recovery in each group was then evaluated. Further, a rat SC line (RSC96) was cultured in medium with/without lentinan after supplementation with homogenous myelin fractions to evaluate the removal of myelin particles. Our results showed that lentinan promotes autophagic flux in vivo via the AMPK/mTOR signaling pathway, accelerates the clearance of myelin debris by SCs, and inhibits neuronal apoptosis, thereby promoting neurological recovery. Similarly, in vitro experiments showed that lentinan promotes the phagocytosis of myelin debris by SCs. In conclusion, our results suggest that lentinan primarily promotes nerve regeneration by accelerating the autophagic clearance of myelin debris in SCs, and this process is likely regulated by the AMPK/mTOR signaling pathway. Therefore, this study provides compelling evidence that lentinan may be a cost-effective and natural treatment agent for PNI.
Article
Aim: Apoptosis and autophagy are the two fundamental processes involved in maintaining homeostasis, and a common stimulus may initiate the processes. Autophagy has been implicated in various diseases, including viral infections. Genetic manipulations leading to altered gene expression might be a strategy to check virus infection. Introduction: Determination of molecular patterns, relative synonymous codon usage, codon preference, codon bias, codon pair bias, and rare codons so that genetic manipulation of autophagy genes may be done to curb viral infection. Method: Using various software, algorithms, and statistical analysis, insights into codon patterns were obtained. A total of 41 autophagy genes were envisaged as they are involved in virus infection. Result: The A/T and G/C ending codons are preferred by different genes. AAA-GAA and CAG-CTG codon pairs are the most abundant codon pairs. CGA, TCG, CCG, and GCG are rarely used codons. Conclusion: The information generated in the present study helps manipulate the gene expression level of virus infection-associated autophagy genes through gene modification tools like CRISPR. Codon deoptimization for reducing while codon pair optimization for enhancing is efficacious for HO-1 gene expression.
Article
Background and aims: Human hepatocellular carcinoma (HCC) is an aggressive malignancy with poor clinical outcomes. There are limited therapeutic options for those diagnosed with terminal HCC and therefore incorporating novel agents into standard-of-care regimens is urgently needed. In contrast to de novo drug discovery, the strategy of repurposing compounds initially designed to treat animals might yield substantial advantages in terms of efficacy and safety. Given the evidence for clinical efficacy of toceranib phosphate (TOC) against canine carcinomas, we aimed to investigate its therapeutic effects on human HCC. Methods: The antitumor effects of TOC were evaluated using human HCC cell-line and cell line-derived xenograft models. Changes in autophagic response upon TOC exposure were quantified through immunoblotting and immunofluorescence analysis. The role of TOC-triggered autophagy was addressed via pharmacological and genetic inhibition. Results: We demonstrated TOC exhibited potent antitumor activity against human HCC cells by stimulating apoptosis in vitro and in vivo by a concomitant increase in autophagic flux. Blocking the TOC-triggered autophagy inhibited cellular proliferation and decreased tumor burden, indicating a protective role of autophagy against TOC-mediated HCC cell death. This role played by TOC-induced autophagy was further linked to the inactivation of Akt/mTOR pathway that could be attributed to the upregulation of Cyr61. Moreover, treatment with sorafenib plus TOC resulted in pronounced synergistic effects on HCC cells. Conclusion: Our results elucidate a newly identified therapeutic potential of TOC in treating HCC, sparking a growing interest in repurposing such canine drugs for human use.
Article
Full-text available
Background: Synovial sarcoma (SS) has limited treatment options and there is an urgent need to develop a novel therapeutic strategy to treat SS. Blue light (BL) has been shown to inhibit the growth of several cancer cells. However, the efficacy of BL in soft tissue sarcomas such as SS has not been demonstrated, and the detailed mechanism underlying the antitumor activity of BL is not fully understood. In this study, we investigated the antitumor effect of BL on SS. Methods: Human SS cell lines were continuously irradiated with BL using light-emitting diodes (LEDs) in an incubator for in vitro analysis. The chicken chorioallantoic membrane (CAM) tumors and xenograft tumors in mice were subjected to daily BL irradiation with LEDs. Results: BL caused growth inhibition of SS cells and histological changes in CAM tumors. BL also suppressed the migration and invasion abilities of SS cells. The type of cell death in SS cells was revealed to be apoptosis. Furthermore, BL induced excessive production of reactive oxygen species (ROS) in mitochondria, resulting in oxidative stress and malfunctioned mitochondria. Reducing the production of ROS using N-acetylcysteine (NAC), a ROS scavenger, attenuated the inhibitory effect of BL on SS cells and mitochondrial dysfunction. In addition, BL induced autophagy, which was suppressed by the administration of NAC. The autophagy inhibitor of 3-methyladenine and small interfering RNA against the autophagy marker light chain 3B facilitated apoptotic cell death. Moreover, BL suppressed tumor growth in a mouse xenograft model. Conclusion: Taken together, our results revealed that BL induced apoptosis via the ROS-mitochondrial signaling pathway, and autophagy was activated in response to the production of ROS, which protected SS cells from apoptosis. Therefore, BL is a promising candidate for the development of an antitumor therapeutic strategy targeting SS.
Article
Objective: We planned to search the effects of p-coumaric acid on ovary and lung injuries formed via bilateral adnexal torsion detorsion (T/D) in experimental rat model. Methods: 24 female, Sprague-Dawley rats were sorted out as 3 groups. Design of the groups was performed as sham (group I) and T/D (group II), p-coumaric acid+T/D (group III) groups. Sham group; abdomen area was applied incision and repaired with no T/D model application. T/D group; 3 h of torsion phase completed and then 3 h of detorsion stage was established. P-coumaric acid+T/D group; p-coumaric acid was administered at the dose of 100 mg/kg for 15 days by oral gavage and then, T/D model was performed. Following detorsion phase, rats were sacrificed, lung and ovarian tissues were excised for biochemical and immunohistochemical evaluations. Results: When it is compared to group I, oxidant parameters elevated significantly in group II (p<0.05) while the activity of antioxidant enzymes and TAS level decreased. On the other side, antioxidant enzyme activity raised and oxidant parameter levels diminished in group III compared to group II (p<0.05). Moreover, NF-kB, caspase 3 and LC3B protein expression levels increased in ovary and lung tissues of the group II. But NF-kB, caspase 3 and LC3B protein expression levels decreased in group III. Conclusion: As a consequence, p-coumaric acid acted a protective performance against ovary and lung injuries arising from adnexal T/D model in rats.
Article
Full-text available
Excessive fluoride affects ameloblast differentiation and tooth development. The fate of fluorinated ameloblasts is determined by multiple signaling pathways in response to a range of stimuli. Both autophagy and apoptosis are involved in the regulation of dental fluorosis as well as in protein synthesis and enamel mineralization. Emerging evidence suggests that autophagy and apoptosis are interconnected and that their interaction greatly influences cell death. However, the effect of autophagy on apoptosis in fluoride‐treated ameloblasts is unclear. Here, we employed an in vitro cellular model of fluorosis in mouse ameloblast‐like LS8 cells and induced autophagy using sodium fluoride (NaF). Our findings suggest that NaF treatment induces autophagy in LS8 cells, and ATG5 and ATG7 are important molecules involved in this process. We also showed that NaF treatment reduced cell viability in Atg5/7 siRNA and autophagy inhibitor‐treated LS8 cells. More importantly, NaF‐induced apoptosis can be reversed by inhibiting early stage of autophagy. In conclusion, our study shows that autophagy is closely related to dental fluorosis, and inhibition of autophagy, especially ATG5/7, reduces fluoride‐induced cell death and apoptosis. Graphic Abstract of autophagy and apoptosis crosstalk. The effect of NaF on LS8 cells can cause autophagy reaction and apoptosis of LS8 cells. Atg5/7 plays an important role in the autophagy formation of fluorine‐infected ameloblast cells, and inhibition of autophagy can reduce fluorine‐induced apoptosis of LS8 cells.
Article
Full-text available
4-O-methylascochlorin (MAC) is a 4-fourth carbon-substituted derivative of ascochlorin, a compound extracted from a phytopathogenic fungus Ascochyta viciae. MAC induces apoptosis and autophagy in various cancer cells, but the effects of MAC on apoptosis and autophagy in cervical cancer cells, as well as how the interaction between apoptosis and autophagy mediates the cellular anticancer effects are not known. Here, we investigated that MAC induced apoptotic cell death of cervical cancer cells without regulating the cell cycle and promoted autophagy by inhibiting the phosphorylation of serine-threonine kinase B (Akt), mammalian target of rapamycin (mTOR), and 70-kDa ribosomal protein S6 kinase (p70S6K). Additional investigations suggested that Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP-3), but not Hypoxia-inducible factor 1 alpha (HIF-1α), is a key regulator of MAC-induced apoptosis and autophagy. BNIP-3 siRNA suppressed MAC-induced increases in cleaved- poly (ADP-ribose) polymerase (PARP) and LC3Ⅱ expression. The pan-caspase inhibitor Z-VAD-FMK suppressed MAC-induced cell death and enhanced MAC-induced autophagy. The autophagy inhibitor chloroquine (CQ) enhanced MAC-mediated cell death by increasing BNIP-3 expression. These results indicate that MAC induces apoptosis to promote cell death and stimulates autophagy to promote cell survival by increasing BNIP-3 expression. This study also showed that co-treatment of cells with MAC and CQ further enhanced the death of cervical cancer cells.
Article
Full-text available
Objectives: In this study, we aimed to evaluate the association between grape seed proanthocyanidin extract (GSPE) and rheumatoid arthritis-fibroblast-like synoviocytes (RA-FLSs) and to investigate whether GSPE induces cell death in RA-FLSs. Materials and methods: The FLSs were isolated from RA synovial tissues. Cell viability and cell cycle staging were analyzed using a hemocytometer and flow cytometry. Caspase 3 and poly (ADP-ribose) polymerase (PARP) proteins were analyzed using Western blotting with z-VAD-fmk. Protein LC3 and polyubiquitin-binding protein p62 that were degraded by autophagy were evaluated using Western blotting with 3-methyladenine and chloroquine. Reactive oxygen species (ROS) were also evaluated. Results: When RA-FLSs were treated with GSPE, cell viability decreased, the number of cells in sub-G1 and G2/M phases increased, and the expression of pro-PARP and pro-caspase 3 proteins decreased in a concentration-dependent manner. This result was offset, when the cells were co-treated with the pan-caspase inhibitor z-VAD-fmk. The reduced cell viability, increased expression of LC3-II protein, and reduced expression of p62 protein with GSPE treatment were offset, when RA-FLSs were co-treated with GSPE and autophagy inhibitors 3-methyladenine and chloroquine. The level of ROS in RA-FLSs treated with GSPE was significantly lower than treatment with N-acetyl-cysteine, a ROS inhibitor. Conclusion: Our study results show that GSPE induces apoptotic and autophagic cell death and inhibites reactive oxygen species in RA-FLSs.
Article
Several processes including oxidative stress, apoptosis, inflammation and autophagy are related to testicular function. Recent studies indicate that a crosstalk between apoptosis and autophagy is essential in regulating testicular function. Autophagy and apoptosis communicate with each other in a complex way, allowing them to work for or against each other in testicular cell survival and death. Several xenobiotics especially endocrine‐disrupting chemicals (EDCs) have caused reproductive toxicity because of their potential to modify the rate of autophagy and trigger apoptosis. Therefore, the purpose of the present review was to shed light on how autophagy and apoptosis interact together in the testis.
Article
Full-text available
Activation of NF-kappaB and autophagy are two processes involved in the regulation of cell death, but the possible cross-talk between these two signaling pathways is largely unknown. Here, we show that NF-kappaB activation mediates repression of autophagy in tumor necrosis factor-alpha (TNFalpha)-treated Ewing sarcoma cells. This repression is associated with an NF-kappaB-dependent activation of the autophagy inhibitor mTOR. In contrast, in cells lacking NF-kappaB activation, TNFalpha treatment up-regulates the expression of the autophagy-promoting protein Beclin 1 and subsequently induces the accumulation of autophagic vacuoles. Both of these responses are dependent on reactive oxygen species (ROS) production and can be mimicked in NF-kappaB-competent cells by the addition of H2O2. Small interfering RNA-mediated knockdown of beclin 1 and atg7 expression, two autophagy-related genes, reduced TNFalpha- and reactive oxygen species-induced apoptosis in cells lacking NF-kappaB activation and in NF-kappaB-competent cells, respectively. These findings demonstrate that autophagy may amplify apoptosis when associated with a death signaling pathway. They are also evidence that inhibition of autophagy is a novel mechanism of the antiapoptotic function of NF-kappaB activation. We suggest that stimulation of autophagy may be a potential way bypassing the resistance of cancer cells to anti-cancer agents that activate NF-kappaB.
Article
Full-text available
HIV-1 envelope glycoproteins (Env), expressed at the cell surface, induce apoptosis of uninfected CD4+ T cells, contributing to the development of AIDS. Here we demonstrate that, independently of HIV replication, transfected or HIV-infected cells that express Env induced autophagy and accumulation of Beclin 1 in uninfected CD4+ T lymphocytes via CXCR4. The same phenomena occurred in a T cell line and in transfected HEK.293 cells that expressed both wild-type CXCR4 and a truncated form of CD4 that is unable to bind the lymphocyte-specific protein kinase Lck. Env-mediated autophagy is required to trigger CD4+ T cell apoptosis since blockade of autophagy at different steps, by either drugs (3-methyladenine and bafilomycin A1) or siRNAs specific for Beclin 1/Atg6 and Atg7 genes, totally inhibited the apoptotic process. Furthermore, CD4+ T cells still underwent Env-mediated cell death with autophagic features when apoptosis was inhibited. These results suggest that HIV-infected cells can induce autophagy in bystander CD4+ T lymphocytes through contact of Env with CXCR4, leading to apoptotic cell death, a mechanism most likely contributing to immunodeficiency.
Article
Full-text available
Beclin1 has a key regulatory role in the initiation of autophagy and is a tumor suppressor. We have examined the interplay between viral or human Bcl-2-like proteins and UVRAG and their opposite effects on Beclin1. We show that Beclin1 forms a dimer in solution via its coiled-coil domain both in vivo and in vitro. Viral Bcl-2 binds independently to two sites on the Beclin1 dimer, one with high affinity and one with lower affinity, whereas human Bcl-xL binds both sites equally with relatively low affinity. UVRAG disrupts the Beclin1-dimer interface, forming a heterodimer with Beclin1, suggesting that this is how UVRAG causes its effects on Beclin1 to activate autophagy. Both Bcl-2-like proteins reduce the affinity of UVRAG for Beclin1 ∼4-fold, suggesting that they stabilize the Beclin1 dimer. Moreover, coimmunoprecipitation assays show that UVRAG substantially reduces Beclin1 dimerization in vivo. These data explain the concentration-dependent interplay between Bcl-2, UVRAG, and Beclin1, as both tumor suppressors, UVRAG and Beclin1, have single-copy mutations in human cancers. Furthermore, our data suggest that an alternative strategy for developing anti-cancer compounds would be to disrupt the Beclin1-dimer interface.
Article
Full-text available
Amplification of loci present on band q13 of human chromosome 11 is a feature of a subset of estrogen receptor positive breast carcinomas prone to metastasis. As many as five distinct amplification units have been described on 11q13. They include particularly a genomic area encompassing the GARP gene at 11q13.5-->q14.1. We have reassessed our current knowledge of this region, located telomeric to CCND1 and EMS1, which is amplified in 7-10% of mammary tumors. The loose definition of the driving forces of these amplification events led us to map accurately the boundaries of the amplifiable region, and thus to contribute a physical and transcriptional map of a 3-Mb region of chromosome 11. Four new genes were placed on the regional map, namely CBP2, CLNS1A, UVRAG, and PAK1. We have narrowed the core of the 11q13-->q14 amplicon to a 350-kb area encompassing D11S533, mostly on its telomeric side. The map reported here represents an indispensable step toward sequencing the entire region, and thus toward uncovering gene(s) which play(s) a critical role in breast cancer progression.
Article
Full-text available
Autophagy, an evolutionarily conserved process, has functions both in cytoprotective and programmed cell death mechanisms. Beclin 1, an essential autophagic protein, was recently identified as a BH3-domain-only protein that binds to Bcl-2 anti-apoptotic family members. The dissociation of beclin 1 from its Bcl-2 inhibitors is essential for its autophagic activity, and therefore should be tightly controlled. Here, we show that death-associated protein kinase (DAPK) regulates this process. The activated form of DAPK triggers autophagy in a beclin-1-dependent manner. DAPK phosphorylates beclin 1 on Thr 119 located at a crucial position within its BH3 domain, and thus promotes the dissociation of beclin 1 from Bcl-XL and the induction of autophagy. These results reveal a substrate for DAPK that acts as one of the core proteins of the autophagic machinery, and they provide a new phosphorylation-based mechanism that reduces the interaction of beclin 1 with its inhibitors to activate the autophagic machinery.
Article
Full-text available
The ARF tumor suppressor controls a well-described p53/Mdm2-dependent oncogenic stress checkpoint. In addition, ARF has recently been shown to localize to mitochondria, and to induce autophagy; however, this has never before been demonstrated for endogenous ARF, and the molecular basis for this activity of ARF has not been elucidated. Using an unbiased mass spectrometry-based approach, we show that mitochondrial ARF interacts with the Bcl2 family member Bcl-xl, which normally protects cells from autophagy by inhibiting the Beclin-1/Vps34 complex, which is essential for autophagy. We find that increased expression of ARF decreases Beclin-1/Bcl-xl complexes in cells, thereby providing a basis for ARF-induced autophagy. Our data also indicate that silencing p53 leads to high levels of ARF and increased autophagy, thereby providing a possible basis for the finding by others that p53 inhibits autophagy. The combined data support the premise that ARF induces autophagy in a p53-independent manner in part by virtue of its interaction with Bcl-xl.
Article
Full-text available
Macroautophagy is a vacuolar lysosomal catabolic pathway that is stimulated during periods of nutrient starvation to preserve cell integrity. Ceramide is a bioactive sphingolipid associated with a large range of cell processes. Here we show that short-chain ceramides (C(2)-ceramide and C(6)-ceramide) and stimulation of the de novo ceramide synthesis by tamoxifen induce the dissociation of the complex formed between the autophagy protein Beclin 1 and the anti-apoptotic protein Bcl-2. This dissociation is required for macroautophagy to be induced either in response to ceramide or to starvation. Three potential phosphorylation sites, Thr(69), Ser(70), and Ser(87), located in the non-structural N-terminal loop of Bcl-2, play major roles in the dissociation of Bcl-2 from Beclin 1. We further show that activation of c-Jun N-terminal protein kinase 1 by ceramide is required both to phosphorylate Bcl-2 and to stimulate macroautophagy. These findings reveal a new aspect of sphingolipid signaling in up-regulating a major cell process involved in cell adaptation to stress.
Article
Full-text available
Dying cells often display a large-scale accumulation of autophagosomes and hence adopt a morphology called autophagic cell death. In many cases, it is agreed that this autophagic cell death is cell death with autophagy rather than cell death by autophagy. Here, we evaluate the accumulating body of literature that argues that cell death occurs by autophagy. We also list the caveats that must be considered when deciding whether or not autophagy is an important effector mechanism of cell death.
Article
Full-text available
Hypoxia occurs in the majority of tumours, promoting angiogenesis, metastasis and resistance to therapy. Responses to hypoxia are orchestrated in part through activation of the hypoxia-inducible factor family of transcription factors (HIFs). Recently, two additional O(2)-sensitive signalling pathways have also been implicated: signalling through the mammalian target of rapamycin (mTOR) kinase and signalling through activation of the unfolded protein response (UPR). Although they are activated independently, growing evidence suggests that HIF-, mTOR- and UPR-dependent responses to hypoxia act in an integrated way, influencing each other and common downstream pathways that affect gene expression, metabolism, cell survival, tumorigenesis and tumour growth.
Article
Full-text available
Class III phosphatidylinositol 3-kinase (PI3-kinase) regulates multiple membrane trafficking. In yeast, two distinct PI3-kinase complexes are known: complex I (Vps34, Vps15, Vps30/Atg6, and Atg14) is involved in autophagy, and complex II (Vps34, Vps15, Vps30/Atg6, and Vps38) functions in the vacuolar protein sorting pathway. Atg14 and Vps38 are important in inducing both complexes to exert distinct functions. In mammals, the counterparts of Vps34, Vps15, and Vps30/Atg6 have been identified as Vps34, p150, and Beclin 1, respectively. However, orthologues of Atg14 and Vps38 remain unknown. We identified putative mammalian homologues of Atg14 and Vps38. The Vps38 candidate is identical to UV irradiation resistance-associated gene (UVRAG), which has been reported as a Beclin 1-interacting protein. Although both human Atg14 and UVRAG interact with Beclin 1 and Vps34, Atg14, and UVRAG are not present in the same complex. Although Atg14 is present on autophagic isolation membranes, UVRAG primarily associates with Rab9-positive endosomes. Silencing of human Atg14 in HeLa cells suppresses autophagosome formation. The coiled-coil region of Atg14 required for binding with Vps34 and Beclin 1 is essential for autophagy. These results suggest that mammalian cells have at least two distinct class III PI3-kinase complexes, which may function in different membrane trafficking pathways.
Article
Full-text available
Damage to endoplasmic reticulum (ER) homeostasis that cannot be corrected by the unfolded protein response activates cell death. Here, we identified death-associated protein kinase (DAPk) as an important component in the ER stress-induced cell death pathway. DAPk-/- mice are protected from kidney damage caused by injection of the ER stress-inducer tunicamycin. Likewise, the cell death response to ER stress-inducers is reduced in DAPk-/- primary fibroblasts. Both caspase activation and autophagy induction, events that are activated by ER stress and precede cell death, are significantly attenuated in the DAPk null cells. Notably, in this cellular setting, autophagy serves as a second cell killing mechanism that acts in concert with apoptosis, as the depletion of Atg5 or Beclin1 from fibroblasts significantly protected from ER stress-induced death when combined with caspase-3 depletion. We further show that ER stress promotes the catalytic activity of DAPk by causing dephosphorylation of an inhibitory autophosphorylation on Ser(308) by a PP2A-like phosphatase. Thus, DAPk constitutes a critical integration point in ER stress signaling, transmitting these signals into two distinct directions, caspase activation and autophagy, leading to cell death.
Article
Full-text available
The neuropilins-1 and -2 (NRP1 and NRP2) function as receptors for both the semaphorins and vascular endothelial growth factor. In addition to their contribution to the development of the nervous system, NRP1 and NRP2 have been implicated in angiogenesis and tumor progression. Given their importance to cancer and endothelial biology and their potential as therapeutic targets, an important issue that has not been addressed is the impact of metabolic stress conditions characteristic of the tumor microenvironment on their expression and function. Here, we demonstrate that hypoxia and nutrient deprivation stimulate the rapid loss of NRP1 expression in both endothelial and carcinoma cells. NRP2 expression, in contrast, is maintained under these conditions. The lysosomal inhibitors chloroquine and bafilomycin A1 prevented the loss of NRP1 expression, but proteasomal inhibitors had no effect. The hypothesis that NRP1 is degraded by autophagy is supported by the findings that its expression is lost rapidly in response to metabolic stress, prevented with 3-methyladenine and induced by rapamycin. Targeted depletion of NRP2 using small hairpin RNA revealed that NRP2 can function in the absence of NRP1 to mediate endothelial tube formation in hypoxia. Studies aimed at assessing NRP function and targeted therapy in cancer and angiogenesis should consider the impact of metabolic stress.
Article
Full-text available
Death-associated protein kinase (DAPk) and DAPk-related protein kinase (DRP)-1 proteins are Ca+2/calmodulin-regulated Ser/Thr death kinases whose precise roles in programmed cell death are still mostly unknown. In this study, we dissected the subcellular events in which these kinases are involved during cell death. Expression of each of these DAPk subfamily members in their activated forms triggered two major cytoplasmic events: membrane blebbing, characteristic of several types of cell death, and extensive autophagy, which is typical of autophagic (type II) programmed cell death. These two different cellular outcomes were totally independent of caspase activity. It was also found that dominant negative mutants of DAPk or DRP-1 reduced membrane blebbing during the p55/tumor necrosis factor receptor 1-induced type I apoptosis but did not prevent nuclear fragmentation. In addition, expression of the dominant negative mutant of DRP-1 or of DAPk antisense mRNA reduced autophagy induced by antiestrogens, amino acid starvation, or administration of interferon-gamma. Thus, both endogenous DAPk and DRP-1 possess rate-limiting functions in these two distinct cytoplasmic events. Finally, immunogold staining showed that DRP-1 is localized inside the autophagic vesicles, suggesting a direct involvement of this kinase in the process of autophagy.
Article
Full-text available
Death-associated protein kinase (DAP-kinase) is a calcium/calmodulin-dependent serine/threonine kinase, and participates in various apoptosis systems. However, its apoptosis-promoting mechanism is poorly understood. Here, we demonstrate that DAP-kinase suppresses integrin-mediated cell adhesion and signal transduction, whereas dominant-negative interference of this kinase promotes adhesion. This effect of DAP-kinase is neither a consequence of apoptosis nor a result of decreased expression of integrins. Rather, DAP-kinase downregulates integrin activity through an inside-out mechanism. We present evidence indicating that this adhesion-inhibitory effect accounts for a major mechanism of the apoptosis induced by DAP-kinase. First, in growth-arrested fibroblasts, DAP-kinase triggers apoptosis in cells plated on fibronectin, but does not affect the death of cells on poly-l-lysine. Second, in epithelial cells, DAP-kinase induces apoptosis in the anoikis-sensitive MCF10A cells, but not in the anoikis-resistant BT474 cells. Most importantly, the apoptosis-promoting effect of DAP-kinase is completely abolished by enforced activation of integrin-mediated signaling pathways from either integrin itself or its downstream effector, FAK. Finally, we show that integrin or FAK activation blocks the ability of DAP-kinase to upregulate p53. Our results indicate that DAP-kinase exerts apoptotic effects by suppressing integrin functions and integrin-mediated survival signals, thereby activating a p53-dependent apoptotic pathway.
Article
Full-text available
Death-associated protein kinase (DAP kinase) is a proapoptotic, calcium/calmodulin-dependent serine/threonine kinase. Here, we report that DAP kinase phosphorylates the regulatory light chain of myosin II (MLC) both in vitro and in vivo, and that this phosphorylation occurs preferentially at residue Ser19. In quiescent fibroblasts, DAP kinase stabilizes stress fibers through phosphorylation of MLC, but it is dispensable for the formation of peripheral microfilament bundles. This cytoskeletal effect of DAP kinase occurs before the onset of apoptosis and does not require an intact death domain. In addition, DAP kinase is required for serum-induced stress-fiber formation, which is associated with the upregulation of its catalytic activity. Despite being both sufficient and necessary for the assembly or maintenance of stress fibers, DAP kinase is incapable of stimulating the formation of focal adhesions in quiescent cells. Moreover, it promotes the disassembly of focal adhesions but not stress fibers in cells receiving serum factors. Together, our results identify a novel and unique function of DAP kinase in the uncoupling of stress fibers and focal adhesions. Such uncoupling would lead to a perturbation of the balance between contractile and adhesion forces and subsequent cell detachment, which might contribute to its pro-apoptotic activity.
Article
Full-text available
Cancer cells showing microsatellite instability (MSI) demonstrate a high frequency of acquired frameshift mutations that result in the generation of nonsense mutations. RNA transcripts carrying these nonsense mutations are usually targeted for degradation through the nonsense mediated decay (NMD) pathway. Blocking this pathway with drugs such as emitine, results in the 'stabilization' of these mutant transcripts, which can now be detected on cDNA arrays. Unfortunately, emetine also induces a stress response that results in upregulation of additional transcripts which contribute to the analysis of the array. As a result, identifying which genes truly carry nonsense mutations is made more difficult. To overcome this, we have combined the emetine treatment with actinomycin D, which effectively prevents the upregulation of stress response genes while still stabilizing mutant transcripts. When we applied this modified approach to the analysis of MSI-positive colon cancer cells, we identified mutations in the UVRAG and p300 genes.
Article
Full-text available
DAP-kinase (DAPk) is a Ser/Thr kinase that regulates cytoplasmic changes associated with programmed cell death. It is shown here that a GFP-DAPk fusion, which partially localized to actin stress fibers, induced extensive membrane protrusions. This phenotype correlated with changes in myosin-II distribution and with increased phosphorylation of the myosin-II regulatory light chain (RLC). A mutant lacking the cytoskeletal-interacting region (GFP-DAPkDeltaCyto) displayed diffuse cytoplasmic localization, and induced peripheral membrane blebbing, instead of the extensive protrusions. In contrast, deletion of the ankyrin repeats led to mislocalization of the kinase to focal contacts, where it failed to elicit any changes in cell morphology. While both wild-type DAPk and DAPkDeltaCyto induced RLC phosphorylation independently of the Rho-activated kinase ROCK, only the wild type led to increases in stress-fiber associated phospho-RLC. Thus, the precise intracellular localization of DAPk is critical for exposure to its substrates, including the RLC, which mediate varying morphologic changes.
Article
Full-text available
Autophagy is characterized by sequestration of bulk cytoplasm and organelles in double or multimembrane autophagic vesicles, and their delivery to and subsequent degradation by the cell's own lysosomal system. Autophagy has multiple physiological functions in multicellular organisms, including protein degradation and organelle turnover. Genes and proteins that constitute the basic machinery of the autophagic process were first identified in the yeast system and some of their mammalian orthologues have been characterized as well. Increasing lines of evidence indicate that these molecular mechanisms may be recruited by an alternative, caspase-independent form of programmed cell death, named autophagic type II cell death. In some settings, autophagy and apoptosis seem to be interconnected positively or negatively, introducing the concept of 'molecular switches' between them. Additionally, mitochondria may be central organelles integrating the two types of cell death. Malignant transformation is frequently associated with suppression of autophagy. The recent implication of tumor suppressors like Beclin 1, DAP-kinase and PTEN in autophagic pathways indicates a causative role for autophagy deficiencies in cancer formation. Autophagic cell death induction by some anticancer agents underlines the potential utility of its induction as a new cancer treatment modality.
Article
Full-text available
At birth the trans-placental nutrient supply is suddenly interrupted, and neonates face severe starvation until supply can be restored through milk nutrients. Here, we show that neonates adapt to this adverse circumstance by inducing autophagy. Autophagy is the primary means for the degradation of cytoplasmic constituents within lysosomes. The level of autophagy in mice remains low during embryogenesis; however, autophagy is immediately upregulated in various tissues after birth and is maintained at high levels for 3-12 h before returning to basal levels within 1-2 days. Mice deficient for Atg5, which is essential for autophagosome formation, appear almost normal at birth but die within 1 day of delivery. The survival time of starved Atg5-deficient neonates (approximately 12 h) is much shorter than that of wild-type mice (approximately 21 h) but can be prolonged by forced milk feeding. Atg5-deficient neonates exhibit reduced amino acid concentrations in plasma and tissues, and display signs of energy depletion. These results suggest that the production of amino acids by autophagic degradation of 'self' proteins, which allows for the maintenance of energy homeostasis, is important for survival during neonatal starvation.
Article
Full-text available
Death-associated protein kinase (DAPK) is a death domain-containing serine/threonine kinase, and participates in various apoptotic paradigms. Here, we identify the extracellular signal-regulated kinase (ERK) as a DAPK-interacting protein. DAPK interacts with ERK through a docking sequence within its death domain and is a substrate of ERK. Phosphorylation of DAPK at Ser 735 by ERK increases the catalytic activity of DAPK both in vitro and in vivo. Conversely, DAPK promotes the cytoplasmic retention of ERK, thereby inhibiting ERK signaling in the nucleus. This reciprocal regulation between DAPK and ERK constitutes a positive feedback loop that ultimately promotes the apoptotic activity of DAPK. In a physiological apoptosis system where ERK-DAPK interplay is reinforced, downregulation of either ERK or DAPK suppresses such apoptosis. These results indicate that bidirectional signalings between DAPK and ERK may contribute to the apoptosis-promoting function of the death domain of DAPK.
Article
Full-text available
Mammalian cells were observed to die under conditions in which nutrients were depleted and, simultaneously, macroautophagy was inhibited either genetically (by a small interfering RNA targeting Atg5, Atg6/Beclin 1-1, Atg10, or Atg12) or pharmacologically (by 3-methyladenine, hydroxychloroquine, bafilomycin A1, or monensin). Cell death occurred through apoptosis (type 1 cell death), since it was reduced by stabilization of mitochondrial membranes (with Bcl-2 or vMIA, a cytomegalovirus-derived gene) or by caspase inhibition. Under conditions in which the fusion between lysosomes and autophagosomes was inhibited, the formation of autophagic vacuoles was enhanced at a preapoptotic stage, as indicated by accumulation of LC3-II protein, ultrastructural studies, and an increase in the acidic vacuolar compartment. Cells exhibiting a morphology reminiscent of (autophagic) type 2 cell death, however, recovered, and only cells with a disrupted mitochondrial transmembrane potential were beyond the point of no return and inexorably died even under optimal culture conditions. All together, these data indicate that autophagy may be cytoprotective, at least under conditions of nutrient depletion, and point to an important cross talk between type 1 and type 2 cell death pathways.
Article
Full-text available
Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is a progressive, inherited neurodegenerative disorder that presents as polydipsia and polyuria as a consequence of a loss of secretion of the antidiuretic hormone vasopressin (VP) from posterior pituitary nerve terminals. VP gene mutations cause adFNDI. Rats expressing an adFNDI VP transgene (Cys67stop) show a neuronal pathology characterized by autophagic structures in the cell body. adFNDI has thus been added to the list of protein aggregation diseases, along with Alzheimer's, Parkinson's and Huntington's, which are associated with autophagy, a bulk process that delivers regions of cytosol to lysosomes for degradation. However, the role of autophagy in these diseases is unclear. To address the relationships between mutant protein accumulation, autophagy, cell survival, and cell death, we have developed a novel and tractable in vitro system. We have constructed adenoviral vectors (Ads) that express structural genes encoding either the Cys67stop mutant protein (Ad-VCAT-Cys67stop) or an epitope-tagged wild-type VP precursor (Ad-VCAT). After infection of mouse neuroblastoma Neuro2a cells, Ad-VCAT encoded material enters neurite processes and accumulates in terminals, while the Cys67stop protein is confined to enlarged vesicles in the cell body. Similar to the intracellular derangements seen in the Cys67stop rats, these structures are of ER origin, and colocalize with markers of autophagy. Neither Ad-VCAT-Cys67stop nor Ad-VCAT expression affected cell viability. However, inhibition of autophagy or lysosomal protein degradation, while having no effect on Ad-VCAT-expressing cells, significantly increased apoptotic cell death following Ad-VCAT-Cys67stop expression. These data suggest that activation of autophagy by the stress of the expression of an adFNDI mutant protein is a prosurvival mechanism.
Article
Full-text available
Autophagy is a membrane-trafficking mechanism that delivers cytoplasmic constituents into the lysosome/vacuole for bulk protein degradation. This mechanism is involved in the preservation of nutrients under starvation condition as well as the normal turnover of cytoplasmic component. Aberrant autophagy has been reported in several neurodegenerative disorders, hepatitis, and myopathies. Here, we generated conditional knockout mice of Atg7, an essential gene for autophagy in yeast. Atg7 was essential for ATG conjugation systems and autophagosome formation, amino acid supply in neonates, and starvation-induced bulk degradation of proteins and organelles in mice. Furthermore, Atg7 deficiency led to multiple cellular abnormalities, such as appearance of concentric membranous structure and deformed mitochondria, and accumulation of ubiquitin-positive aggregates. Our results indicate the important role of autophagy in starvation response and the quality control of proteins and organelles in quiescent cells.
Article
Full-text available
Cell growth and proliferation requires an intricate coordination between the stimulatory signals arising from nutrients and growth factors and the inhibitory signals arising from intracellular and extracellular stresses. Alteration of the coordination often causes cancer. In mammals, the mTOR (mammalian target of rapamycin) protein kinase is the central node in nutrient and growth factor signaling, and p53 plays a critical role in sensing genotoxic and other stresses. The results presented here demonstrate that activation of p53 inhibits mTOR activity and regulates its downstream targets, including autophagy, a tumor suppression process. Moreover, the mechanisms by which p53 regulates mTOR involves AMP kinase activation and requires the tuberous sclerosis (TSC) 1/TSC2 complex, both of which respond to energy deprivation in cells. In addition, glucose starvation not only signals to shut down mTOR, but also results in the transient phosphorylation of the p53 protein. Thus, p53 and mTOR signaling machineries can cross-talk and coordinately regulate cell growth, proliferation, and death. • AMP-activated kinase • autophagy • tuberous sclerosis 1/tuberous sclerosis 2
Article
Full-text available
Bif-1, a member of the endophilin B protein family, interacts with Bax and promotes interleukin-3 withdrawal-induced Bax conformational change and apoptosis when overexpressed in FL5.12 cells. Here, we provide evidence that Bif-1 plays a regulatory role in apoptotic activation of not only Bax but also Bak and appears to be involved in suppression of tumorigenesis. Inhibition of endogenous Bif-1 expression in HeLa cells by RNA interference abrogated the conformational change of Bax and Bak, cytochrome c release, and caspase 3 activation induced by various intrinsic death signals. Similar results were obtained in Bif-1 knockout mouse embryonic fibroblasts. While Bif-1 did not directly interact with Bak, it heterodimerized with Bax on mitochondria in intact cells, and this interaction was enhanced by apoptosis induction and preceded the Bax conformational change. Moreover, suppression of Bif-1 expression was associated with an enhanced ability of HeLa cells to form colonies in soft agar and tumors in nude mice. Taken together, these findings support the notion that Bif-1 is an important component of the mitochondrial pathway for apoptosis as a novel Bax/Bak activator, and loss of this proapoptotic molecule may contribute to tumorigenesis.
Article
Full-text available
Death-associated protein kinase (DAPK) is a calmodulin-regulated serine/threonine kinase and possesses apoptotic and tumor-suppressive functions. However, it is unclear whether DAPK elicits apoptosis-independent activity to suppress tumor progression. We show that DAPK inhibits random migration by reducing directional persistence and directed migration by blocking cell polarization. These effects are mainly mediated by an inhibitory role of DAPK in talin head domain association with integrin, thereby suppressing the integrin-Cdc42 polarity pathway. We present evidence indicating that the antimigratory effect of DAPK represents a mechanism through which DAPK suppresses tumors. First, DAPK can block migration and invasion in certain tumor cells that are resistant to DAPK-induced apoptosis. Second, using an adenocarcinoma cell line and its highly invasive derivative, we demonstrate DAPK level as a determining factor in tumor invasiveness. Collectively, our study identifies a novel function of DAPK in regulating cell polarity during migration, which may act together with its apoptotic function to suppress tumor progression.
Article
Macroautophagy (hereafter called autophagy) is a dynamic and evolutionarily conserved process used to sequester and degrade cytoplasm and entire organelles in a sequestering vesicle with a double membrane, known as the autophagosome, which ultimately fuses with a lysosome to degrade its autophagic cargo. Recently, we have unraveled two distinct forms of autophagy in cancer cells, which we term canonical and non-canonical autophagy. In contrast to classical or canonical autophagy, non-canonical autophagy is a process that does not require the entire set of autophagy-related (Atg) proteins in particular Beclin 1, to form the autophagosome. Non-canonical autophagy is therefore not blocked by the knockdown of Beclin I or of its binding partner hVps34. Moreover overexpression of Bcl-2, which is known to block canonical starvation-induced autophagy by binding to Beclin 1, is unable to reverse the non-canonical autophagy triggered by the polyphenol resveratrol in the breast cancer MCF-7 cell line. In MCF-7 cells, at least, non-canonical autophagy is involved in the caspase-independent cell death induced by resveratrol.
Article
Multi drug resistance (MDR) is defined as the ability of tumor cells to become resistant to unrelated drugs. Tyrosine kinase inhibitor imatinib has been demonstrated to be effective in the treatment of certain tumors. In particular, imatinib inhib-its Bcr-Abl kinase activity, c-kit and the phosphorylation of platelet-derived growth factor (PDGF) receptors. In this work, we show that imatinib inhibits PDGF phosphorylation not only in wt Kaposi sarcoma (KS) but also in multi drug resistant KS cells. This was associated with an increased apoptosis in wt cells and an increased autophagy in MDR-KS cells. These data add new insights to the possible use of imatinib in the overcoming of MDR in KS cells. Ó 2007 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Article
Macroautophagy (hereafter called autophagy) is a dynamic and evolutionarily conserved process used to sequester and degrade cytoplasm and entire organelles in a sequestering vesicle with a double membrane, known as the autophagosome, which ultimately fuses with a lysosome to degrade its autophagic cargo. Recently, we have unraveled two distinct forms of autophagy in cancer cells, which we term canonical and non-canonical autophagy. In contrast to classical or canonical autophagy, non-canonical autophagy is a process that does not require the entire set of autophagy-related (Atg) proteins in particular Beclin 1, to form the autophagosome. Non-canonical autophagy is therefore not blocked by the knockdown of Beclin 1 or of its binding partner hVps34. Moreover overexpression of Bcl-2, which is known to block canonical starvation-induced autophagy by binding to Beclin 1, is unable to reverse the non-canonical autophagy triggered by the polyphenol resveratrol in the breast cancer MCF-7 cell line. In MCF-7 cells, at least, non-canonical autophagy is involved in the caspase-independent cell death induced by resveratrol.
Article
ARF mRNA encodes two distinct proteins, the nucleolar p19(ARF), and a shorter mitochondrial isoform, named smARF. Inappropriate proliferative signals generated by proto-oncogenes, such as c-Myc and E2F1, can elevate both p19(ARF) and smARF proteins. The two ARF isoforms differ not only in their localization but also in their functions. Nucleolar p19(ARF) inhibits cell growth mainly by activating p53 or by inhibiting ribosomal biogenesis. In contrast, mitochondrial smARF can induce dissipation of the mitochondrial membrane potential and autophagy in a p53 independent manner. Recently, it was proposed by Abida et al., that similar to smARF, the nucleolar p19(ARF) can also induce p53 independent autophagy, but in contrast to smARF it does so from within the nucleolus. Our current work shown here indicates, however, that if the ectopic expression of p19(ARF) is restricted to the nucleolus it cannot induce autophagic vesicle formation. Only upon extreme overexpression, when p19(ARF) is localized to extra nuclear compartments, can it trigger p53-independent autophagic vesicle formation. Thus, our experiments indicate that the nucleolar p19(ARF) is incapable of inducing autophagy from within the nucleolus.
Article
A common feature of follicular lymphoma, the most prevalent haematological malignancy in humans, is a chromosome translocation (t(14;18] that has coupled the immunoglobulin heavy chain locus to a chromosome 18 gene denoted bcl-2. By analogy with the translocated c-myc oncogene in other B-lymphoid tumours bcl-2 is a candidate oncogene, but no biological effects of bcl-2 have yet been reported. To test whether bcl-2 influences the growth of haematopoietic cells, either alone or together with a deregulated c-myc gene, we have introduced a human bcl-2 complementary DNA using a retroviral vector into bone marrow cells from either normal or E mu-myc transgenic mice, in which B-lineage cells constitutively express the c-myc gene. Bcl-2 cooperated with c-myc to promote proliferation of B-cell precursors, some of which became tumorigenic. To determine how bcl-2 expression impinges on growth factor requirements, the gene was introduced into a lymphoid and a myeloid cell line that require interleukin 3 (IL-3). In the absence of IL-3, bcl-2 promoted the survival of the infected cells but they persisted in a G0 state, rather than proliferating. These results argue that bcl-2 provided a distinct survival signal to the cell and may contribute to neoplasia by allowing a clone to persist until other oncogenes, such as c-myc, become activated.
Article
Programmed cell death is often triggered by the interaction of some cytokines with their cell surface receptors. Here, we report that gamma interferon (IFN-gamma) induced in HeLa cells a type of cell death that had cytological characteristics of programmed cell death. In this system we have identified two novel genes whose expression was indispensable for the execution of this type of cell death. The rescue was based on positive growth selection of cells after transfection with antisense cDNA expression libraries. The antisense RNA-mediated inactivation of the two novel genes protected the cells from the IFN-gamma-induced cell death but not from the cytostatic effects of the cytokine or from a necrotic type of cell death. One of those genes (DAP-1) is expressed as a single 2.4-kb mRNA that codes for a basic, proline-rich, 15-kD protein. The second is transcribed into a single 6.3-kb mRNA and codes for a unique 160-kD calmodulin-dependent serine/threonine kinase (DAP kinase) that carries eight ankyrin repeats. The expression levels of the two DAP proteins were selectively reduced by the corresponding antisense RNAs. Altogether, it is suggested that these two novel genes are candidates for positive mediators of programmed cell death that is induced by IFN-gamma.
Article
Apoptosis is a genetically encoded programme of cell death that can be activated under physiological conditions and may be an important safeguard against tumour development. Regions of low oxygen (hypoxia) and necrosis are common features of solid tumours. Here we report that hypoxia induces apoptosis in oncogenically transformed cells and that further genetic alterations, such as loss of the p53 tumour-suppressor gene or overexpression of the apoptosis-inhibitor protein Bcl-2, substantially reduce hypoxia-induced cell death. Hypoxia also selects for cells with defects in apoptosis, because small numbers of transformed cells lacking p53 overtake similar cells expressing wild-type p53 when treated with hypoxia. Furthermore, highly apoptotic regions strongly correlate with hypoxic regions in transplanted tumours expressing wild-type p53, whereas little apoptosis occurs in hypoxic regions of p53-deficient tumours. We propose that hypoxia provides a physiological selective pressure in tumours for the expansion of variants that have lost their apoptotic potential, and in particular for cells acquiring p53 mutations.
Article
Phosphorylation of Bcl2 at serine 70 is required for its potent anti-apoptotic function. We have recently shown that Bcl2 phosphorylation is a dynamic process that involves the protein kinase C alpha and protein phosphatase 2A (PP2A) (Ruvolo, P. P., Deng, X., Carr, B. K., and May, W. S. (1998) J. Biol. Chem. 273, 25436-25442; and Deng, X., Ito, T., Carr, B. K., Mumby, M. C., and May, W. S. (1998) J. Biol. Chem. 273, 34157-34163). The potent apoptotic agent ceramide can activate a PP2A, suggesting that one potential component of the ceramide-induced death signal may involve the inactivation of Bcl2. Results indicate that C2-ceramide but not inactive C2-dihydroceramide, was found to specifically activate a mitochondrial PP2A, which rapidly and completely induced Bcl2 dephosphorylation and correlated closely with ceramide-induced cell death. Using a genetic approach, the gain-of-function S70E Bcl2 mutation, which mimics phosphorylation, fails to undergo apoptosis even with the addition of high doses of ceramide (IC50 > 50 microM). In contrast, cells overexpressing exogenous wild-type Bcl2 were sensitive to ceramide at dosages where PP2A is fully active and Bcl2 would be expected to be dephosphorylated (IC50 = 14 microM). These findings indicate that in cells expressing functional Bcl2, the mechanism of death action for ceramide may involve, at least in part, a mitochondrial PP2A that dephosphorylates and inactivates Bcl2.
Article
Autophagy is a mechanism whereby cells digest themselves from within and so may be used in lieu of apoptosis to execute cell death. Little is known about its role in neurons. In newly isolated sympathetic neurons, two independent apoptotic stimuli, NGF-deprivation or cytosine arabinoside added in the presence of NGF, caused a 30-fold increase in autophagic particle numbers, many autophagosomes appearing before any signs of DNA-fragmentation. The anti-autophagic drug 3-methyladenine also delayed apoptosis, its neuroprotection correlating with inhibition of cytochrome c release from mitochondria and prevention of caspase activation. In contrast, autophagic activity remained elevated in neurons treated with the pan-caspase inhibitor Boc-Asp(OMe)fmk, which inhibited morphological apoptosis but did not inhibit cytochrome c release nor prevent cell death. We propose that the same apoptotic signals that cause mitochondrial dysfunction also activate autophagy. Once activated, autophagy may mediate caspase-independent neuronal death.
Article
DAP kinase is a pro-apoptotic calcium-regulated serine/threonine kinase, whose expression is frequently lost in human tumours. Here we show that DAP kinase counteracts oncogene-induced transformation by activating a p19ARF/p53-dependent apoptotic checkpoint. Ectopic expression of DAP kinase suppressed oncogenic transformation of primary embryonic fibroblasts by activating p53 in a p19ARF-dependent manner. Consequently, the fibroblasts underwent apoptosis, characterized by caspase activation and DNA fragmentation. In response to c-Myc or E2F-1, the endogenous DAP kinase protein was upregulated. Furthermore, functional or genetic inactivation of the endogenous DAP kinase reduced the extent of induction of p19ARF/p53 and weakened the subsequent apoptotic responses to c-Myc or E2F-1. These results establish a role for DAP kinase in an early apoptotic checkpoint designed to eliminate pre-malignant cells during cancer development.
Article
The mechanisms underlying neoplastic epithelial cell killing by ionizing radiation are largely unknown. We discovered a novel response to radiation manifested by autophagy and the development of acidic vesicular organelles (AVO). Acidification of AVO was mediated by the vacuolar H+-ATPase. Staining with the lysosomotropic agent acridine orange enabled us to quantify AVO accumulation and to demonstrate their time- and dose-dependent appearance. The appearance of AVO occurred in the presence of the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethyl ketone, but was inhibited by 3-methyladenine, an inhibitor of autophagy. The accretion of AVO in surviving progenies of irradiated cells, and the increased incidence of clonogenic death after inhibition of vacuolar H+-ATPase suggest that formation of acidic organelles represents a novel defense mechanism against radiation damage.
Article
The p53 tumor suppressor acts to integrate multiple stress signals into a series of diverse antiproliferative responses. One of the most important p53 functions is its ability to activate apoptosis, and disruption of this process can promote tumor progression and chemoresistance. p53 apparently promotes apoptosis through transcription-dependent and -independent mechanisms that act in concert to ensure that the cell death program proceeds efficiently. Moreover, the apoptotic activity of p53 is tightly controlled, and is influenced by a series of quantitative and qualitative events that influence the outcome of p53 activation. Interestingly, other p53 family members can also promote apoptosis, either in parallel or in concert with p53. Although incomplete, our current understanding of p53 illustrates how apoptosis can be integrated into a larger tumor suppressor network controlled by different signals, environmental factors, and cell type. Understanding this network in more detail will provide insights into cancer and other diseases, and will identify strategies to improve their therapeutic treatment.
Article
Caspases play a central role in apoptosis, a well-studied pathway of programmed cell death. Other programs of death potentially involving necrosis and autophagy may exist, but their relation to apoptosis and mechanisms of regulation remains unclear. We define a new molecular pathway in which activation of the receptor-interacting protein (a serine-threonine kinase) and Jun amino-terminal kinase induced cell death with the morphology of autophagy. Autophagic death required the genes ATG7 and beclin 1 and was induced by caspase-8 inhibition. Clinical therapies involving caspase inhibitors may arrest apoptosis but also have the unanticipated effect of promoting autophagic cell death.
Article
Misregulated cell death, which can result in either the excessive, inappropriate elimination of cells, or in the insufficient removal of damaged or malignant cells, has been associated with numerous diseases. Here we discuss an important molecular regulator of cell death, DAP-kinase (DAPk), which presents a promising target for therapeutic intervention. A structure-functional analysis of this calcium-regulated Ser/Thr kinase which promotes cell death will be presented, and emphasis will be placed on particular disease models in which its modulation might affect clinically-relevant cell death processes.
Article
Programmed cell death can be divided into several categories including type I (apoptosis) and type II (autophagic death). The Bcl-2 family of proteins are well-characterized regulators of apoptosis, and the multidomain pro-apoptotic members of this family, such as Bax and Bak, act as a mitochondrial gateway where a variety of apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double knockout mice are resistant to apoptosis, we found that these cells still underwent a non-apoptotic death after death stimulation. Electron microscopic and biochemical studies revealed that double knockout cell death was associated with autophagosomes/autolysosomes. This non-apoptotic death of double knockout cells was suppressed by inhibitors of autophagy, including 3-methyl adenine, was dependent on autophagic proteins APG5 and Beclin 1 (capable of binding to Bcl-2/Bcl-x(L)), and was also modulated by Bcl-x(L). These results indicate that the Bcl-2 family of proteins not only regulates apoptosis, but also controls non-apoptotic programmed cell death that depends on the autophagy genes.
Article
In animals, cells are dependent on extracellular signals to prevent apoptosis. However, using growth factor-dependent cells from Bax/Bak-deficient mice, we demonstrate that apoptosis is not essential to limit cell autonomous survival. Following growth factor withdrawal, Bax-/-Bak-/- cells activate autophagy, undergo progressive atrophy, and ultimately succumb to death. These effects result from loss of the ability to take up sufficient nutrients to maintain cellular bioenergetics. Despite abundant extracellular nutrients, growth factor-deprived cells maintain ATP production from catabolism of intracellular substrates through autophagy. Autophagy is essential for maintaining cell survival following growth factor withdrawal and can sustain viability for several weeks. During this time, cells respond to growth factor readdition by rapid restoration of the ability to take up and metabolize glucose and by subsequent recovery of their original size and proliferative potential. Thus, growth factor signal transduction is required to direct the utilization of sufficient exogenous nutrients to maintain cell viability.
Article
Akt/PKB is a serine/threonine protein kinase that functions as a critical regulator of cell survival and proliferation. Akt/PKB family comprises three highly homologous members known as PKBalpha/Akt1, PKBbeta/Akt2 and PKBgamma/Akt3 in mammalian cells. Similar to many other protein kinases, Akt/PKB contains a conserved domain structure including a specific PH domain, a central kinase domain and a carboxyl-terminal regulatory domain that mediates the interaction between signaling molecules. Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival. This review surveys recent developments in understanding the molecular mechanisms of Akt/PKB activation and its roles in cell survival in normal and cancer cells.
Article
Autophagy is a novel response of cancer cells to ionizing radiation (IR) or chemotherapy, but its significance or mechanism remains largely elusive. Autophagy is characterized with the prominent formation of autophagic vacuoles in the cytoplasm. It is a protein degradation system that involves autophagic/lysosomal compartment. The process begins with sequestering a portion of the cytoplasm, forming the autophagosome. The autophagosome then fuses with the lysosome and lyses its contents. To study radiation-induced autophagy with specific molecules, we assessed changes in the expression of microtubule-associated protein light chain 3 (LC3) and its intracellular distribution after IR in comparison with starvation-induced autophagy. First, we showed that IR induced cell cycle arrest and autophagy, but not apoptosis, in human malignant glioma U373-MG cells. Type II LC3, that is specifically associated with the membrane of the autophagosome, increased after IR and amino acid starvation. Exogenous LC3 distributed on punctate structures, indicative of the formation of autophagosomes. Autophagy inhibitors, 3-methyladenine and bafilomycin A1, radiosensitized U373-MG cells. Furthermore, gammaH2AX foci, that show the extent of DNA double-strand breaks, were more pronounced and prolonged in the cells treated with IR and autophagy inhibitors than in those cells treated with IR only. Our results suggest that autophagy inhibitors may represent a new application of radiosensitization for malignant glioma cells.
Article
It is known that radiation activates the phosphoinositol-3 kinase (PI3K)/Akt pathway and that inhibition of PI3K or Akt sensitizes tumor vasculature to radiotherapy. Mammalian target of rapamycin (mTOR) is a downstream target of Akt, and we hypothesized that irradiation activates mTOR signaling in both glioma and endothelial cells (ECs) and that radiosensitization results from inhibiting mTOR signaling. mTOR inhibitors, rapamycin and RAD001 (everolimus) were found to radiosensitize vascular ECs, but failed to sensitize glioma cells as determined by clonogenic assay. Therefore, we investigated the anti-angiogenic effects of mTOR inhibitors. Increased phospho-mTOR protein was detected in irradiated human umbilical vein endothelial cells (HUVEC), but not in GL261 glioma cells. Phospho-S6, a biomarker for mTOR signaling, was also found to be induced following irradiation in HUVEC and this effect was inhibited by PI3K or mTOR inhibitors. Significant increase in cleaved caspase 3 was detected when Rad001 was combined with radiation. Endothelial tube formation was significantly diminished following treatment with rapamycin and 3 Gy of radiation. Histological sections of GL261 tumors from mice showed a greatly reduced vascular density when treated with RAD001 and radiation. Power Weighted Doppler of glioma xenografts in mice showed a significant reduction in vasculature and blood flow compared with mice treated with 3 Gy or RAD001 alone. We conclude that irradiation activates mTOR signaling in vascular endothelium and that rapamycin and RAD001 increased apoptosis of ECs in response to radiation. To the authors' best knowledge this is the first study which demonstrates that mTOR inhibitors may be a way to target the vasculature by radiosensitizing the vascular endothelium resulting in better tumor control as seen in experiments demonstrating increased tumor growth delay in mice treated with rapamycin with radiation compared with mice treat with either treatment alone. We conclude that mTOR inhibitors have increased efficacy as antiangiogenics when combined with radiation.
Article
Apoptosis and autophagy are both tightly regulated biological processes that play a central role in tissue homeostasis, development, and disease. The anti-apoptotic protein, Bcl-2, interacts with the evolutionarily conserved autophagy protein, Beclin 1. However, little is known about the functional significance of this interaction. Here, we show that wild-type Bcl-2 antiapoptotic proteins, but not Beclin 1 binding defective mutants of Bcl-2, inhibit Beclin 1-dependent autophagy in yeast and mammalian cells and that cardiac Bcl-2 transgenic expression inhibits autophagy in mouse heart muscle. Furthermore, Beclin 1 mutants that cannot bind to Bcl-2 induce more autophagy than wild-type Beclin 1 and, unlike wild-type Beclin 1, promote cell death. Thus, Bcl-2 not only functions as an antiapoptotic protein, but also as an antiautophagy protein via its inhibitory interaction with Beclin 1. This antiautophagy function of Bcl-2 may help maintain autophagy at levels that are compatible with cell survival, rather than cell death.
Article
The proteasome-mediated protein degradation is critical for regulation of a variety of cellular processes, including cell cycle, cell death, differentiation and immune response. Proteasome inhibitors have recently been shown to be potent anti-cancer agents against a variety of cancer cells. Our study demonstrated that proteasome inhibitor MG132 (carbobenzoxy-L-leucyle-L-leucyl-L-leucinal) was a potent death-inducing agent for PC3 prostate cancer cells. MG132-induced cell death was partially inhibited by pan-caspase inhibitor zAVD-fmk and translational inhibitor cycloheximide. To understand the signaling pathways of proteasome inhibitor-induced cell death, we performed gene profiling study using Affymetrix human DNA microarrays to identify the genes whose expression was affected by proteasome inhibitor MG132 in PC3 cells. The genes with more than threefold increased expression induced by MG132 were functionally categorized into the following groups: heat shock and chaperone proteins, ubiquitination and protein degradation, transcription/translation factors, cell death and cell cycle arrest, signaling molecules and enzymes, and secreted cytokines. Among them, heat shock proteins and anti-oxidant enzymes may promote cell survival, while pro-death proteins such as GADD45B and STK17a may promote cell death. Interestingly, expression of a few autophagic genes was elevated by MG132 treatment. Furthermore, autophagy inhibitor 3-methyladenine partially inhibited MG132-induced cell death, indicating that autophagic cell death may contribute to MG132-induced cell death. Taken together, our results demonstrated that proteasome inhibition elicits activation of multiple signaling pathways in prostate cancer cells.