Melissa Marie Gibbons

Melissa Marie Gibbons
University of San Diego | USD · Mechanical Engineering

PhD

About

14
Publications
1,663
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
714
Citations
Introduction
Melissa Gibbons currently works in the Mechanical Engineering department at the University of San Diego. Melissa does research in Bioengineering, Biomedical Engineering, and Mechanical Engineering. Her most recent publication is 'A Fast-Running, End-to-End Concussion Risk Model for Assessment of Complex Human Head Kinematics'.
Additional affiliations
January 2017 - present
University of San Diego
Position
  • Professor
June 2010 - January 2017
L-3 Communications, Applied Technologies
Position
  • Biomechanical Engineer
September 2008 - May 2010
University of California, Los Angeles
Position
  • PostDoc Position

Publications

Publications (14)
Article
An end-to-end, mechanism-based concussion risk model, linking head motion to axonal injury, has been demonstrated to predict concussion outcomes with greater sensitivity and specificity than external correlates such as peak head acceleration. The development of this model was driven by the need to more accurately translate head-worn sensor measurem...
Article
Full-text available
Past concussion studies have focused on understanding the injury processes occurring on discrete length scales (e.g., tissue-level stresses and strains, cell-level stresses and strains, or injury-induced cellular pathology). A comprehensive approach that connects all length scales and relates measurable macroscopic parameters to neurological outcom...
Chapter
Viral capsids undergo significant mechanical deformations during their assembly, maturation, and infective life-span. In order to characterize the mechanics of viral capsids, their response to applied external forces is analyzed in several experimental studies using, for instance, Atomic Force Microscope (AFM) indentation experiments. In recent yea...
Article
A detailed three-dimensional finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic-plastic...
Article
Full-text available
Enveloped viruses attach to host cells by binding to receptors on the cell surface. For many viruses, entry occurs via membrane fusion after a sufficient number of receptors have engaged ligand proteins on the virion. Under conditions where the cell surface receptor densities are low, recruitment of receptors may be limited by diffusion rather than...
Article
The current rapid growth in the use of nanosized particles is fueled in part by our increased understanding of their physical properties and ability to manipulate them, which is essential for achieving optimal functionality. Here we report detailed quantitative measurements of the mechanical response of nanosized protein shells (viral capsids) to l...
Article
Viral capsids are self assembled nano-containers with remarkable material properties. They combine extreme simplicity of construction with both, toughness and resilience protecting the viral genome, and with complex functionality that the virus needs for targeting and infecting new host cells. We have experimentally, with atomic force microscopy, a...
Article
We report nanoindentation experiments by atomic force microscopy on capsids of the Hepatitis B Virus (HBV). HBV is investigated because its capsids can form in either a smaller T=3 or a bigger T=4 configuration (see figure), making it an ideal system to test the predictive power of continuum elastic theory to describe nanometer-sized objects. It is...
Article
We report nanoindentation experiments by atomic force microscopy on capsids of the Hepatitis B Virus (HBV). HBV is investigated because its capsids can form in either a smaller T=3 or a bigger T=4 configuration, making it an ideal system to test the predictive power of continuum elastic theory to describe nanometre-sized objects. It is shown that f...
Article
A series of recent nanoindentation experiments on the protein shells (capsids) of viruses has established atomic force microscopy (AFM) as a useful framework for probing the mechanics of large protein assemblies. Specifically these experiments provide an opportunity to study the coupling of the global assembly response to local conformational chang...
Article
We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic for...
Article
As revealed by techniques of structural biology and single-molecule experimentation, the protein shells of viruses (capsids) are some of nature’s best examples of highly symmetric multiscale self-assembled structures, with impressive mechanical properties of strength and elasticity. Mechanical models of viral capsids built “from the bottom up,” i.e...
Article
Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling appr...
Article
Full-text available
The elastic properties of capsids of the cowpea chlorotic mottle virus have been examined at pH 4.8 by nanoindentation measurements with an atomic force microscope. Studies have been carried out on WT capsids, both empty and containing the RNA genome, and on full capsids of a salt-stable mutant and empty capsids of the subE mutant. Full capsids res...

Network

Cited By