Mariana Penna-Lima

Mariana Penna-Lima
University of Brasília | UnB · Institute of Physics

Ph.D.

About

35
Publications
2,206
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
446
Citations
Additional affiliations
May 2017 - July 2018
Laboratoire d'Annecy de Physique des Particules
Position
  • PostDoc Position
October 2014 - June 2016
Paris Diderot University
Position
  • PostDoc Position
January 2013 - October 2014
National Institute for Space Research, Brazil
Position
  • PostDoc Position

Publications

Publications (35)
Preprint
Full-text available
Samples of galaxy clusters allow us to better understand the physics at play in galaxy formation and to constrain cosmological models once their mass, position (for clustering studies) and redshift are known. In this context, large optical data sets play a crucial role. We investigate the capabilities of the Javalambre-Physics of the Accelerating U...
Article
The problem of finding a vacuum definition for a single quantum field in curved spacetimes is discussed under a new geometrical perspective. The phase space dynamics of the quantum field modes are mapped to curves in a two-dimensional hyperbolic metric space, in which distances between neighbor points are shown to be proportional to the Bogoliubov...
Article
The abundance of galaxy clusters is a sensitive probe to the amplitude of matter density fluctuations, the total amount of matter in the Universe as well as its expansion history. Inferring correct values and accurate uncertainties of cosmological parameters requires accurate knowledge of cluster abundance statistics, encoded in the likelihood func...
Preprint
The abundance of galaxy clusters is a sensitive probe to the amplitude of matter density fluctuations, the total amount of matter in the Universe as well as its expansion history. Inferring correct values and accurate uncertainties of cosmological parameters requires accurate knowledge of cluster abundance statistics, encoded in the likelihood func...
Preprint
The problem of finding a vacuum definition for a single quantum field in curved space-times is discussed under a new geometrical perspective. The phase space dynamics of the quantum field modes are mapped to curves in a 2-dimensional hyperbolic metric space, in which distances between neighbor points are shown to be proportional to the Bogoliubov c...
Preprint
Full-text available
Galaxy clusters are important cosmological probes since their abundance and spatial distribution are directly linked to structure formation on large scales. The principal uncertainty source on the cosmological parameter constraints concerns the cluster mass estimation from mass proxies. In addition, future surveys will provide a large amount of dat...
Article
Full-text available
We present the v1.0 release of CLMM, an open source python library for the estimation of the weak lensing masses of clusters of galaxies. CLMM is designed as a stand-alone toolkit of building blocks to enable end-to-end analysis pipeline validation for upcoming cluster cosmology analyses such as the ones that will be performed by the Vera C. Rubin...
Preprint
Full-text available
We present the v1.0 release of CLMM, an open source Python library for the estimation of the weak lensing masses of clusters of galaxies. CLMM is designed as a standalone toolkit of building blocks to enable end-to-end analysis pipeline validation for upcoming cluster cosmology analyses such as the ones that will be performed by the LSST-DESC. Its...
Article
Full-text available
The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55 m Javalambre Survey Telescope (JST) at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg ² field-of-view wit...
Article
Full-text available
The large amount of cosmological data already available (and in the near future) makes the development of efficient numerical codes necessary. Many software products have been implemented to perform cosmological analyses considering one or few probes. The need of multi-task software is rapidly increasing, in order to combine numerous cosmological p...
Preprint
Full-text available
The large amount of cosmological data already available (and in the near future) makes necessary the development of efficient numerical codes. Many software products have been implemented to perform cosmological analyses considering one or few probes. The need of multi-task software is rapidly increasing, in order to combine numerous cosmological p...
Article
Full-text available
The attempt to describe the recent accelerated expansion of the Universe includes different propositions for dark energy models and modified gravity theories. Establish their features in order to discriminate and even rule out part of these models using observational data is a fundamental issue of cosmology. In the present work we consider a class...
Article
Full-text available
The attempt to describe the recent accelerated expansion of the universe includes different propositions for dark energy models and modified gravity theories. Establish their features in order to discriminate and even rule out part of these models using observational data is a fundamental issue of cosmology. In the present work we consider a class...
Article
Full-text available
Among the various possibilities to probe the theory behind the recent accelerated expansion of the universe, the energy conditions (ECs) are of particular interest, since it is possible to confront and constrain the many models, including different theories of gravity, with observational data. In this context, we use the ECs to probe any alternativ...
Article
Full-text available
The standard model of cosmology, $\Lambda$CDM, is the simplest model that matches the current observations, but relies on two hypothetical components, to wit, dark matter and dark energy. Future galaxy surveys and cosmic microwave background (CMB) experiments will independently shed light on these components, but a joint analysis that includes cros...
Article
We determine the mass scale of Planck galaxy clusters using gravitational lensing mass measurements from the Cluster Lensing And Supernova survey with Hubble (CLASH). We compare the lensing masses to the Planck Sunyaev-Zeldovich (SZ) mass proxy for 21 clusters in common, employing a Bayesian analysis to simultaneously fit an idealized CLASH selecti...
Article
Full-text available
Evidences for late-time acceleration of the Universe are provided by multiple complementary probes, such as observations of distant Type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillations (BAO), large scale structure (LSS), and the integrated Sachs-Wolfe (ISW) effect. In this work we shall focus on the ISW effect,...
Article
Full-text available
Distance measurements are currently the most powerful tool to study the expansion history of the universe without specifying its matter content nor any theory of gravitation. Assuming only an isotropic, homogeneous and flat universe, in this work we introduce a model-independent method to reconstruct directly the deceleration function via a piecewi...
Article
Full-text available
Distance measurements are currently the most powerful tool to study the expansion history of the universe without specifying its matter content nor any theory of gravitation. Assuming only an isotropic, homogeneous and flat universe, in this work we introduce a model-independent method to reconstruct directly the deceleration function via a piecewi...
Article
Full-text available
Approximate Bayesian Computation (ABC) enables parameter inference for complex physical systems in cases where the true likelihood function is unknown, unavailable, or computationally too expensive. It relies on the forward simulation of mock data and comparison between observed and synthetic catalogues. Here we present cosmoabc, a Python ABC sampl...
Data
NumCosmo is a free software C library whose main purposes are to test cosmological models using observational data and to provide a set of tools to perform cosmological calculations. The software implements three different probes: cosmic microwave background (CMB), supernovae type Ia (SNeIa) and large scale structure (LSS) information, such as bary...
Article
Full-text available
The abundance of galaxy clusters is becoming a standard cosmological probe. In particular, Sunyaev-Zel'dovich (SZ) surveys are promising probes of the Dark Energy (DE) equation of state (eqos), given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objects. In this...
Article
Distance measurements are currently the most powerful tool to study the expansion history of the universe without assuming its matter content nor any theory of gravitation. In general, the reconstruction of the scale factor derivatives, such as the deceleration parameter q(z), is computed using two different methods: fixing the functional form of q...
Article
Full-text available
Models for galaxy clusters abundance and their spatial distribution are sensitive to cosmological parameters. Present and future surveys will provide high-redshift sample of clusters, such as Dark Energy Survey ( z ⩽ 1.3), making cluster number counts one of the most promising cosmological probes. In the literature, some cosmological analyses are c...
Article
Full-text available
In the coming years, the next generation wide field surveys will lead to the discovery of large numbers of galaxy clusters, both from optical identifications and through the Sunyev-Zel’dovich effect, providing extensive databases to study these objects. The abundance of clusters above a given mass threshold as a function of redshift is sensitive to...
Article
Full-text available
The immediate observational consequence of a non-trivial spatial topology of the Universe is that an observer could potentially detect multiple images of radiating sources. In particular, a non-trivial topology will generate pairs of correlated circles of temperature fluctuations in the anisotropies maps of the cosmic microwave background (CMB), th...
Article
Full-text available
In the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) approach to model the Universe the violation of the so-called energy conditions is related to some important properties of the Universe as, for example, the current and the inflationary accelerating expansion phases. The energy conditions are also necessary in the formulation and proofs of...
Article
Full-text available
The energy conditions play an important role in the description of some important properties of the Universe, including the current accelerating expansion phase and the possible recent phase of super-acceleration. In a recent work we have provided a detailed study of the energy conditions for the recent past by deriving bounds from energy condition...
Article
Full-text available
The energy conditions play an important role in the understanding of several properties of the Universe, including the current accelerating expansion phase and the possible existence of the so-called phantom fields. We show that the integrated bounds provided by the energy conditions on cosmological observables such as the distance modulus $\mu(z)$...
Article
Full-text available
As it is well known the topology of space is not totally determined by Einstein's equations. It is considered a massless scalar quantum field in a static Euclidean space of dimension 3. The expectation value for the energy density in all compact orientable Euclidean 3-spaces are obtained in this work as a finite summation of Epstein type zeta funct...

Network

Cited By