Fig 2 - uploaded by Sanjoy Ghosh
Content may be subject to copyright.
Maize and rapeseed oil diets fed to aged mice result in significant increases in body weight, whereas fish oil supplementation was associated with reduced weight gain. Body weight was measured at the indicated days after feeding high-fat diets and was calculated as the percentage of starting body weight at each time point. While all high-fat diets showed significantly more weight gain compared with the normal chow group, the fish oil-supplemented group showed significantly less weight gain at day 33 compared with both maize and rapeseed oil diets (* P, 0·05). , Maize oil; , maize oil þ fish oil; , rapeseed oil; , normal chow.

Maize and rapeseed oil diets fed to aged mice result in significant increases in body weight, whereas fish oil supplementation was associated with reduced weight gain. Body weight was measured at the indicated days after feeding high-fat diets and was calculated as the percentage of starting body weight at each time point. While all high-fat diets showed significantly more weight gain compared with the normal chow group, the fish oil-supplemented group showed significantly less weight gain at day 33 compared with both maize and rapeseed oil diets (* P, 0·05). , Maize oil; , maize oil þ fish oil; , rapeseed oil; , normal chow.

Source publication
Article
Full-text available
Controversies have emerged regarding the beneficial v. detrimental effects of dietary n-6 PUFA. The alteration of the intestinal microbiota, a phenomenon termed dysbiosis, occurs during several chronic inflammatory diseases, but has not been well studied in an aged population. With present 'Western' diets predominantly composed of n-6 PUFA, we hypo...

Similar publications

Article
Full-text available
Recent studies report that microbiota in the human intestine play an important role in host health and that both long- and short-term diets influence gut microbiota. These findings have fueled interest in the potential of food to promote health by shaping the intestinal microbiota. Despite the fact that large populations in Asia consume high quanti...

Citations

... A shift from a balanced ecosystem or the dysbiotic ecosystem could be attributed to diet and lifestyle alterations (Ghosh et al., 2013), age (Mariat et al., 2009), obesity (Magne et al., 2020), circadian rhythm (Thaiss et al., 2014(Thaiss et al., , 2015, and disease pathologies, including cancer (Sheflin et al., 2014;Biragyn and Ferrucci, 2018), cardiovascular disorder (Lau et al., 2017), immune dysfunction (de Oliveira et al., 2021), and several psychological illnesses (Sarkar et al., 2018;Parker et al., 2020). For instance, a reduced alpha diversity of gut microbiota was found in young adults (mean age: ~13 years) with attention-deficit hyperactivity disorder (ADHD). ...
Article
Full-text available
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
... Dietary PUFAs play a crucial role in the structure of the microbial community in the host. Adding fish oil (rich in n-3PUFA) to the low-fat diet of mice C57BL/6J significantly decreased the RA of Firmicutes, and decreased weight gain and inflammatory bowel diseases [20]. The Verrucomicrobia phylum, which colonizes the intestinal tract of humans and animals, is phylogenetically related to Planctomycetes and Chlamydiae and consists mainly of Akkermansia species [21]. ...
Article
Full-text available
Simple Summary Manipulating dietary fatty acid composition is a feasible approach to improve the mutton fatty acid profiles of feedlot fattening goats. A previous study showed that flaxseed oil and grain affected the concentrations of c18:3n3, c20:5n3, c22:6n3, and n-3PUFA in the muscle tissues of Albas cashmere goats differently. The intestinal microflora may be involved in the regulation of blood lipid levels and their accumulation, as it plays an important role in the host’s metabolism. The specific results showed that the effects of flaxseed oil and grain on gut microbiota diversity vary in different segments in Albas cashmere goats. And flaxseed grain is more efficient than flaxseed oil in protecting intestinal health and promoting the absorption of c18:3n3. Abstract The present study investigated the effects of flaxseed oil or flaxseed grain on the intestinal microbiota and blood fatty acid profiles of Albas cashmere goats. Sixty kid goats were allocated to three treatments and fed for 90 days with a control treatment, comprising a basal diet (CON, total-mixed ration with flaxseed meal), or experimental treatments, comprising a basal diet with added flaxseed oil (LNO) and a basal diet with added heated flaxseed grain (HLS). On day 90, two goats were randomly selected from each pen (eight goats per treatment) for euthanizing; then, five of the eight goats were randomly selected, and we collected their intestinal (duodenum, jejunum, ileum, cecum, and colon) digesta for analysis of the bacteria community. The results indicated that Firmicutes are the most predominant phylum in different segments of the intestinal digesta. Compared with the CON group, the relative abundance of duodenal Firmicutes, jejunal Saccharibacteria, and Verrucomicrobia significantly decreased in the LNO and HLS groups (p < 0.05), but there was no significant difference between the LNO and HLS groups. Compared with the CON and HLS groups, the RA of duodenal and jejunal Proteobacteria remarkably increased in the LNO group (p < 0.05), and there was no significant difference between the CON and HLS groups. Compared with the CON and LNO groups, the RA of Actinobacteria remarkably increased in the small intestine of the HLS group (p < 0.05), but there was no significant difference between the CON and LNO groups in the duodenum and ileum. The results of linear discriminant analysis (LDA) effect size (LEfSe) analysis showed that the HLS group was characterized by a higher RA of the [Eubacterium]_coprostanoligenes_group in the small intestine and the LNO group was represented by a higher RA of the Lachnospiraceae_NK3A20_group in the cecum and colon, while the CON group was represented by a higher RA of Solobacterium, Pseudoramibacter, and Acetitomaculum in the small intestine and a higher RA of norank_o__Bradymonadales, the Prevotellaceae_Ga6A1_group, and Ruminiclostridium_1 in the cecum and colon. In conclusion, the addition of flaxseed oil and grain rich in c18:3n3 to the diet could reduce the microbial diversity of the small intestinal segments and the microbial diversity and richness of the cecum and colon in Albas cashmere goats. And flaxseed grain is more efficient than flaxseed oil in protecting intestinal health and promoting the absorption of c18:3n3.
... Another study found Lactobacillus, Bifidobacterium, and Faecalibacterium in the gut catabolize inulin to produce SCFAs, which act as signaling molecules to activate specific cell surface receptors of GPR43 and GPR41 to regulate lipid metabolism [3,4]. In addition, Ghost and Shen et al. have shown that gut microbes regulate lipid metabolism by affecting the formation of bile acids as well as the distribution of secondary bile acids [5,6]. Altogether, these studies demonstrate how intestinal bacteria play a crucial role in host metabolism. ...
Article
Full-text available
The biological mechanisms underlying meat quality remain unclear. Currently, many studies report that the gastrointestinal microbiota is essential for animal growth and performance. However, it is uncertain which bacterial species are specifically associated with the meat quality traits. In this study, 16S rDNA and metagenomic sequencing were performed to explore the composition and function of microbes in various gastrointestinal segments of Tan sheep and Dorper sheep, as well as the relationship between microbiota and meat quality (specifically, the fatty acid content of the muscle). In the ruminal, duodenal, and colonic microbiome, several bacteria were uniquely identified in respective breeds, including Agrobacterium tumefaciens, Bacteroidales bacterium CF, and several members of the family Oscillospiraceae. The annotation of GO, KEGG, and CAZYme revealed that these different bacterial species were linked to the metabolism of glucose, lipids, and amino acids. Additionally, our findings suggested that 16 microbial species may be essential to the content of fatty acids in the muscle, especially C12:0 (lauric acid). 4 bacterial species, including Achromobacter xylosoxidans, Mageeibacillus indolicus, and Mycobacterium dioxanotrophicus, were positively correlated with C12:0, while 13 bacteria, including Methanobrevibacter millerae, Bacteroidales bacterium CF, and Bacteroides coprosuis were negatively correlated with C12:0. In a word, this study provides a basic data for better understanding the interaction between ruminant gastrointestinal microorganisms and the meat quality traits of hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-023-03079-2.
... In contrast, a MUFA-rich diet was shown to improve metabolic health by altering the abundance of bacterial taxa [16]. Another study also demonstrated that PUFA supplementation restored the microbiota and inflammatory cell infiltration as well as promoted regulatory T cell recruitment [17]. Thus, different types of dietary fatty acids (SFAs, MUFAs, and PUFAs) are important in modifying the gut microbiome composition, which interplays between the host health status and metabolic disease. ...
Article
Full-text available
Dietary fat can alter host metabolism and gut microbial composition. Crocodile oil (CO) was extracted from the fatty tissues of Crocodylus siamensis. CO, rich in monounsaturated-and polyunsaturated fatty acids, has been reported to reduce inflammation, counter toxification, and improve energy metabolism. The aim of this study was to investigate the effect of CO on gut microbiota (GM) in laboratory mice as well as the accompanying metabolic changes in the animals. Forty-five C57BL/6 male mice were randomly divided into five groups and orally administrated either sterile water (control [C]); 1 or 3% (v/w) CO (CO-low [CO-L] and CO-high [CO-H], respectively); or 1 or 3% (v/w) palm oil (PO-low and PO-high, respectively) for 11 weeks. Body weight gain, food intake, energy intake, blood glucose levels, and blood lipid profiles were determined. Samples from colon tissue were collected and the 16S rRNA genes were pyrosequenced to clarify GM analyses. The results showed that there were no differences in body weight and blood glucose levels. Food intake by the mice in the CO-L and CO-H groups was statistically significantly less when compared to that by the animals in the C group. However, neither CO treatment had a statistically significant effect on calorie intake when compared to the controls. The CO-H exhibited a significant increase in serum total cholesterol and low-density lipoprotein but showed a downward trend in triglyceride levels compared to the control. The GM analyses revealed that both CO treatments have no significant influence on bacterial diversity and relative abundance at the phylum level, whereas increases of Choa1 and abundance-based coverage estimator indexes, distinct β-diversity, and Proteobacteria abundance were observed in the PO-high group compared with the C group. Furthermore, the abundance of Azospirillum thiophilum and Romboutsia ilealis was significantly higher in the CO-L and CO-H groups which could be associated with energy metabolic activity. Thus, CO may be an alternative fat source for preserving host metabolism and gut flora.
... A study with aged C57BL/6 mice observed that adding 20% (w/w) of corn oil and 20% (w/w) of rapeseed oil, rich in n-6 PUFAs, to the diet significantly changed the microbiota composition, raising the ratio between the phyla Firmicutes and Bacteroidetes [76]. Alterations in the ratio between these phyla can promote intestinal dysbiosis associated with increased bacterial infiltration in the intestinal epithelium; this results in the higher recruitment of macrophages and neutrophils in the inflammatory response [76]. Thus, it is observed that such an imbalance can lead to systemic inflammation with activation of the innate immune system. ...
... The qualitative change in the diet concerning the lipid composition is reflected directly in the gut microbiota. A study with aged C57BL/6 mice observed that adding 20% (w/w) of corn oil and 20% (w/w) of rapeseed oil, rich in n-6 PUFAs, to the diet significantly changed the microbiota composition, raising the ratio between the phyla Firmicutes and Bacteroidetes [76]. Alterations in the ratio between these phyla can promote intestinal dysbiosis associated with increased bacterial infiltration in the intestinal epithelium; this results in the higher recruitment of macrophages and neutrophils in the inflammatory response [76]. ...
... A study with aged C57BL/6 mice observed that adding 20% (w/w) of corn oil and 20% (w/w) of rapeseed oil, rich in n-6 PUFAs, to the diet significantly changed the microbiota composition, raising the ratio between the phyla Firmicutes and Bacteroidetes [76]. Alterations in the ratio between these phyla can promote intestinal dysbiosis associated with increased bacterial infiltration in the intestinal epithelium; this results in the higher recruitment of macrophages and neutrophils in the inflammatory response [76]. Thus, it is observed that such an imbalance can lead to systemic inflam- Figure 1. ...
Article
Full-text available
Maternal food habits and gut microbiota composition have potential effects on fetal neurodevelopment, impacting Autism Spectrum Disorder (ASD). Our research aims to outline the relationship that ingestion of polyunsaturated fatty acids (PUFAs) and the composition of maternal gut microbiota have with the possible development of ASD in offspring. We suggest that genetic factors could be related to the different conversions between unsaturated fatty acids according to sex and, mainly, the impact of the pregnancy diet on the higher or lower risk of neurological impairments. The proportion of the phyla Firmicutes/Bacteroidetes is high with an increased consumption of linoleic acid (LA, n-6 PUFA), which is associated with maternal intestinal dysbiosis and consequently starts the inflammatory process, harming myelinization. In contrast, the consumption of α-linolenic acid (ALA, n-3 PUFA) tends to re-establish the balance of the maternal microbiota with anti-inflammatory action. Moreover, human observational studies showed a strong correlation between the consumption of n-3 PUFA, mainly above 340 g of fish per week, with beneficial effects on infant neurodevelopment. Therefore, we suggest that the proper intake of foods rich in n-3 PUFAs and their supplementation during pregnancy until lactation has an impact on reducing the development of ASD. Controlled studies with n-3 PUFA supplementation are still necessary to verify the ideal dose and the best form of administration.
... On the other hand, polyunsaturated fatty acids (PUFAs), a subgroup of essential fatty acids, have differential effects on health and the GM; a diet rich in n-6 PUFA promotes dysbiosis associated with weight gain and the infiltration of macrophages and neutrophils into the ileal submucosae. In contrast, fish oil-supplemented diets rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (n-3 PUFA) restore the GM composition, recruit regulatory T cells (Treg), and decrease the infiltration of macrophages and neutrophils [29]. In addition, n-3 PUFAs have been shown to reduce the production of reactive oxygen species (ROS) and to inhibit the production of pro-inflammatory cytokines, reducing metabolic endotoxemia [30]. ...
Article
Full-text available
Obesity is a chronic, relapsing, and multifactorial disease characterized by excessive accumulation of adipose tissue (AT), and is associated with inflammation mainly in white adipose tissue (WAT) and an increase in pro-inflammatory M1 macrophages and other immune cells. This milieu favors the secretion of cytokines and adipokines, contributing to AT dysfunction (ATD) and metabolic dysregulation. Numerous articles link specific changes in the gut microbiota (GM) to the development of obesity and its associated disorders, highlighting the role of diet, particularly fatty acid composition, in modulating the taxonomic profile. The aim of this study was to analyze the effect of a medium-fat-content diet (11%) supplemented with omega-3 fatty acids (D2) on the development of obesity, and on the composition of the GM compared with a control diet with a low fat content (4%) (D1) over a 6-month period. The effect of omega-3 supplementation on metabolic parameters and the modulation of the immunological microenvironment in visceral adipose tissue (VAT) was also evaluated. Six-weeks-old mice were adapted for two weeks and then divided into two groups of eight mice each: a control group D1 and the experimental group D2. Their body weight was recorded at 0, 4, 12, and 24 weeks post-differential feeding and stool samples were simultaneously collected to determine the GM composition. Four mice per group were sacrificed on week 24 and their VAT was taken to determine the immune cells phenotypes (M1 or M2 macrophages) and inflammatory biomarkers. Blood samples were used to determine the glucose, total LDL and HDL cholesterol LDL, HDL and total cholesterol, triglycerides, liver enzymes, leptin, and adiponectin. Body weight measurement showed significant differences at 4 (D1 = 32.0 ± 2.0 g vs. D2 = 36.2 ± 4.5 g, p-value = 0.0339), 12 (D1 = 35.7 ± 4.1 g vs. D2 = 45.3 ± 4.9 g, p-value = 0.0009), and 24 weeks (D1 = 37.5 ± 4.7 g vs. D2 = 47.9 ± 4.7, p-value = 0.0009). The effects of diet on the GM composition changed over time: in the first 12 weeks, α and β diversity differed considerably according to diet and weight increase. In contrast, at 24 weeks, the composition, although still different between groups D1 and D2, showed changes compared with previous samples, suggesting the beneficial effects of omega-3 fatty acids in D2. With regard to metabolic analysis, the results did not reveal relevant changes in biomarkers in accordance with AT studies showing an anti-inflammatory environment and conserved structure and function, which is in contrast to reported findings for pathogenic obesity. In conclusion, the results suggest that the constant and sustained administration of omega-3 fatty acids induced specific changes in GM composition, mainly with increases in Lactobacillus and Ligilactobacillus species, which, in turn, modulated the immune metabolic response of AT in this mouse model of obesity.
... Recently, the relationship between the gut microbiota and the onset of human diseases has received attention 16,17 . The intake of n-3 PUFAs improves lipid metabolism by altering the relative ratios of Firmicutes and Bacteroidetes, the predominant phyla in the gut microbiota of mice fed a high-fat diet 18 . In addition, the intake of soy-protein isolate containing βCG by mice fed a high-fat diet reduces visceral fat and hepatic lipids by increasing the gut microbiota-mediated secretion of intestinal bile acid BA and glucagonlike peptide-1 19 . ...
Article
Full-text available
Dietary fish oil containing n-3 polyunsaturated fatty acids provides health benefits by lowering lipid levels in the liver and serum. β-Conglycinin (βCG) is a major constituent protein in soybean with many physiological effects, such as lowering blood triglyceride levels, preventing obesity and diabetes, and improving hepatic lipid metabolism. However, the combined effects of fish oil and βCG remain unclear. Here, we investigated the effects of a dietary combination of fish oil and βCG on lipid and glucose parameters in diabetic/obese KK-A y mice. KK-A y mice were divided into three groups: control, fish oil, and fish oil + βCG; these groups were fed a casein-based diet containing 7% (w/w) soybean oil, a casein-based diet containing 2% (w/w) soybean oil and 5% (w/w) fish oil, and a βCG-based diet containing 2% (w/w) soybean oil and 5% (w/w) fish oil, respectively. The effects of the dietary combination of fish oil and βCG on blood biochemical parameters, adipose tissue weight, expression levels of fat- and glucose metabolism-related genes, and cecal microbiome composition were evaluated. The total white adipose tissue weight (p < 0.05), levels of total serum cholesterol (p < 0.01), triglyceride (p < 0.01), and blood glucose (p < 0.05), and expression levels of fatty acid synthesis-related genes (including Fasn (p < 0.05) and Acc (p < 0.05)), and glucose metabolism-related genes (such as Pepck (p < 0.05)) were lower in the fish oil and fish oil + βCG groups than in the control group. Furthermore, the relative abundance of Bacteroidaceae and Coriobacteriaceae differed significantly between the fish oil + βCG and control groups. These findings suggest that dietary intake of fish oil + βCG may prevent obesity and diabetes, alleviate lipid abnormalities, and alter the gut microbiome composition in diabetic/obese KK-A y mice. Further research is needed to build on this study to evaluate the health benefits of major components of Japanese food. graphical abstract Fullsize Image
... Furthermore, several works demonstrated that ω-6 fatty acids exert specific effects on gut mucosa and microbiota. Ghosh et al. [36] found that high-fat diets enhanced the association of microbiota with ileal mucosa of 2-year-old mice but only an ω-6-(LA)-rich diet caused bacterial and neutrophil infiltrations of the mucosa. More recently, Selmin et al. [37] observed that the administration of a ω-6-rich soybean-oil-based diet containing 20% lipids (w/w) led to a pathobiontic profile in the gut of male C57BL/6j mice compared with a diet containing 11% lipids (w/w), mostly saturated fatty acids. ...
Article
Full-text available
Although arachidonic acid (ARA) is the precursor of the majority of eicosanoids, its influence as a food component on health is not well known. Therefore, we investigated its impact on the gut microbiota and gut–brain axis. Groups of male BALB/c mice were fed either a standard diet containing 5% lipids (Std-ARA) or 15%-lipid diets without ARA (HL-ARA) or with 1% ARA (HL + ARA) for 9 weeks. Fatty acid profiles of all three diets were the same. The HL-ARA diet favored the growth of Bifidobacterium pseudolongum contrary to the HL + ARA diet that favored the pro-inflammatory Escherichia–Shigella genus in fecal microbiota. Dietary ARA intake induced 4- and 15-fold colic overexpression of the pro-inflammatory markers IL-1β and CD40, respectively, without affecting those of TNFα and adiponectin. In the brain, dietary ARA intake led to moderate overexpression of GFAP in the hippocampus and cortex. Both the hyperlipidic diets reduced IL-6 and IL-12 in the brain. For the first time, it was shown that dietary ARA altered the gut microbiota, led to low-grade colic inflammation, and induced astrogliosis in the brain. Further work is necessary to determine the involved mechanisms.
... (Firmicutes), and reduction in Clostridial cluster XIVa (Firmicutes) followed by decrease in weight gain was observed in 8-week-old healthy female ICR Swiss mice, with HFD of n-3 PUFAs (EPA + DHA) for 19 weeks (Mujico et al. 2013). Ghosh et al. (2013)) in their studies highlighted that, n-6 PUFA-rich diets caused dysbiosis, infiltration of inflammatory mediators, and weight gain. In contrast, fish oil enriched with n-3 PUFA reversed effects in aged mice and favored regulatory T-cell recruitment. ...
Chapter
Globally, the significance of gut microbial composition in alleviating several intestinal complications has gained tremendous clinical consideration. Increasing lines support the evidence that, healthy lipids such as omega fatty acids and short-chain fatty acids play a pivotal role in orchestrating the composition and shaping the host microbial population in the gastrointestinal system by producing protective derivatives, restoring intestinal gut barrier, modulating gut microbial community, nervous, and immune system, attenuating inflammation, insulin resistance, and fat accumulation. In the above context, the present chapter uncovers the recent advancements carried out in the recent past on the impact of long- and short-chain fatty acids on gut microbiome–brain communication.
... Contrary, a diet high in n-6 PUFAs has been shown to induce gut microbiome dysbiosis resulting in a marked reduction of Firmicutes, Clostridia and Lachnospiraceae bacterial presence while stimulating growth of Bacteroidetes and Deferribacteraceae bacteria and the pro-inflammatory Mucispirillum schaedleri and Lactobacillus bacteria (80). In line, supplementation of high-fat diets rich in n-6 PUFA to aged mice caused dysbiosis resulting in intestinal inflammation by promoting bacterial overgrowth while depleting microbes from the Bacteroidetes and Firmicutes phyla (81). Although evidence is arising that the microbiota composition is essential for determining immunotherapy outcome, there is currently no consensus what type of microbiota composition or which microbial species are robustly associated with clinical responses; while one study reported an association between high abundance of Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium and improved responses to immunotherapy (82), other studies reported an association between higher abundance of microbes from the Verrucomicrobiota and Firmicutes phyla and enhanced immunotherapy responses (83,84). ...
Article
Full-text available
Although immunotherapy represents one of the most potent therapeutic anti-cancer approaches, only a limited number of patients shows clinical benefit. Recent evidence suggests that patients' nutritional status plays a major role in immunotherapy outcome. Fatty acids are essential in a balanced diet and well-known to influence the immune response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body weight and fat free mass preservation in cancer patients. In line with these data, several studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In this review, we specifically focus on mechanistic data showing that SCFAs modulate the immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on the immune system in the context of cancer. We provide preclinical and clinical evidence indicating that SCFAs and PUFAs may have the potential to boost immunotherapy efficacy. Finally, we describe the challenges and address opportunities for successful application of nutritional interventions focusing on SCFAs and PUFAs to increase the therapeutic potential of immunotherapeutic approaches for cancer.