Yukun Zhang's research while affiliated with Tianjin Medical University and other places

What is this page?


This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.

It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.

If you're a ResearchGate member, you can follow this page to keep up with this author's work.

If you are this author, and you don't want us to display this page anymore, please let us know.

Publications (1)


Exercise ameliorates chronic inflammatory response induced by high-fat diet via Sestrin2 in an Nrf2-dependent manner
  • Article

June 2023

·

8 Reads

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease

Sujuan Liu

·

Huige Li

·

Yukun Zhang

·

[...]

·

Chronic inflammation is a major contributor to the development of metabolic disorders and is commonly seen in studies of diet-induced obesity in humans and rodents. Exercise has been shown to have anti-inflammatory properties, though the exact mechanisms are still not fully understood. Sestrins and Nrf2 are of interest to researchers as they are known to protect against inflammation and oxidative stress. In this study, we aim to explore the interconnection between Sestrin2 (SESN2) and Nrf2 and their roles in exercise benefits on chronic inflammation. Our data showed that SESN2 knockout aggravated the abnormalities of body weight, fat mass, and serum lipid that were induced by a high-fat diet (HFD), and a concomitant increase of TNF-α, IL-1β and IL-6 in both serum and skeletal muscle. Notably, exercise was found to reverse these changes, and SESN2 was found to be necessary for exercise to reduce the inflammatory response in skeletal muscles, though not in serum. Immunoprecipitation and bioinformatics prediction experiments further revealed that SESN2 directly binds to Nrf2, indicating a protein-protein interaction between the two. Furthermore, our data demonstrated that SESN2 protein is necessary for exercise-induced effects on Nrf2 pathway in HFD-fed mice, and Nrf2 protein is necessary to enable SESN2 to reduce the inflammation caused by palmitic acid (PA)+ oleic acid (OA) treatment in vitro. Our findings indicate that exercise mitigates chronic inflammation induced by HFD through SESN2 in an Nrf2-dependent manner. Our study reveals a novel molecular mechanism whereby the SESN2/Nrf2 pathway mediates the positive impact of exercise on chronic inflammation.

Share