Article

Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

It is hypothesized that L-lactate derived from astrocyte glycogen sustains axon excitability in mouse optic nerve (MON). This theory was tested by using a competitive antagonist of L-lactate transport and immunocytochemistry to determine whether transport proteins are appropriately distributed in adult MON. L-lactate sustained the compound action potential (CAP), indicating that exogenous L-lactate was an effective energy substrate. During 60 min of aglycemia, the CAP persisted for 30 min, surviving on a glycogen-derived substrate (probably lactate), before failing. After failing, the CAP could be partially rescued by restoring 10 mM glucose or 20 mM L-lactate. Aglycemia in the presence of 20 mM D-lactate, a metabolically inert but transportable monocarboxylate, resulted in accelerated CAP decline compared with aglycemia alone, suggesting that D-lactate blocked the axonal uptake of glycogen-derived L-lactate, speeding the onset of energy failure and loss of the CAP. The CAP was maintained for up to 2 hr when exposed to 20% of normal bath glucose (i.e., 2 mM). To test whether glycogen-derived L-lactate "supplemented" available glucose (2 mM) in supporting metabolism, L-lactate uptake into axons was reduced by the competitive inhibitor D-lactate. Indeed, in the presence of 20 mM D-lactate, the CAP was lost more rapidly in MONs bathed in 2 mM glucose artificial cerebrospinal fluid. Immunocytochemical staining demonstrated cell-specific expression of monocarboxylate transporter (MCT) subtypes, localizing MCT2 predominantly to axons and MCT1 predominantly to astrocytes, supporting the idea that L-lactate is released from astrocytes and taken up by axons as an energy source for sustaining axon excitability.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Meanwhile, astrocytes in the white matter can also transfer lactate to axons via MCTs (Jha and Morrison, 2018;Lee et al., 2012). Glycogen mobilization from astrocytes produces L-lactic acid that provides energy for neighboring neurons and maintains axonal excitability in the mouse optic nerve (Tekkok et al., 2005). Previous studies demonstrated that exogenous lactate is an effective energy substrate to support axon formation and Fig. 6. ...
... axonal function in pathological states (Brown et al., 2003;Tekkok et al., 2005). Brain injury-induced persistent activation microglia is the leading cause of disrupted myelin regeneration (Guan and Kong, 2015;. ...
Article
Full-text available
Neonatal hypoxic-ischemic encephalopathy (HIE) is the primary reason for neonatal mortality and prolonged disablement. Currently, hypothermia is the only approved clinical treatment available for HIE. However, hypothermia's limited therapeutic efficacy and adverse effects suggest an urgent need to advance our knowledge of its molecular pathogenesis and develop novel therapies. The leading cause of HIE is impaired cerebral blood flow and oxygen deprivation-initiated primary and secondary energy failure. Lactate was traditionally regarded as a marker of energy failure or a waste product of anaerobic glycolysis. Recently, the beneficial aspects of lactate as supplementary energy for neurons have been demonstrated. Under the conditions of HI, lactate supports various functions of neuronal cells, including learning and memory formation, motor coordination, and somatosensory. Furthermore, lactate contributes to the regeneration of blood vessels and has shown its beneficial effects on the immune system. This review first introduces the hypoxic or ischemic events-induced fundamental pathophysiological changes in HIE and then discusses the potential neuroprotective properties of lactate for the treatment and prevention of HIE. Finally, we discuss the possible protective mechanisms of lactate in the context of the pathological features of perinatal HIE. We conclude that exogenous and endogenous lactate exert neuroprotective effects in HIE. Lactate administration may be a potential approach to treating HIE injury.
... The failure of rodent models to fully recapitulate the pathophysiology of ischemic injury in human stroke is in part due to the limited representation of WM, with its unique cytoarchitecture and cellular makeup, in the rodent brain (Hamner et al., 2015;Ransom et al., 2004;Sozmen et al., 2012). Moreover, the pathophysiology of ischemic injury differs markedly in WM compared to gray matter (GM); glutamate excitotoxicity mediated by N-methyl-D-aspartate (NMDA) glutamate receptors is a predominate mechanism of ischemic injury in GM, while this is not the case in WM (Ransom et al., 2004;Tekkok et al., 2005). Experimental pharmacotherapies for stroke based on traditional rodent ischemic injury models are thus not optimally targeting WM ischemic injury. ...
... It offers several advantages including capacity to quantitatively and dynamically assess ischemic injury using both physiological and anatomical methods (Baltan et al., 2008;Hamner et al., 2015). The optic nerve is also ideal for studying axonal energy metabolism dynamics ex vivo (Looser et al., 2018;Tekkok et al., 2005) due to its location and ease of ex vivo study. As such the MON has become a standard model for characterizing fundamental WM-specific molecular mechanisms of ischemic injury (Baltan et al., 2008;Hilla et al., 2017;Matute et al., 2013;Ransom et al., 2004;Stys et al., 1992). ...
Article
Full-text available
Ischemic preconditioning (IPC) is a phenomenon whereby a brief, non-injurious ischemic exposure enhances tolerance to a subsequent ischemic challenge. The mechanism of IPC has mainly been studied in rodent stroke models where gray matter (GM) constitutes about 85% of the cerebrum. In humans, white matter (WM) is 50% of cerebral volume and is a critical component of stroke damage. We developed a novel CNS WM IPC model using the mouse optic nerve (MON) and identified the involved immune signaling pathways. Here we tested the hypothesis that microglia are necessary for WM IPC. Microglia were depleted by treatment with the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622. MONs were exposed to transient ischemia in vivo, acutely isolated 72 h later, and subjected to oxygen–glucose deprivation (OGD) to simulate a severe ischemic injury (i.e., stroke). Functional and structural axonal recovery was assessed by recording compound action potentials (CAPs) and by microscopy using quantitative stereology. Microglia depletion eliminated IPC-mediated protection. In control mice, CAP recovery was improved in preconditioned MONs compared with non-preconditioned MONs, however, in PLX5622-treated mice, we observed no difference in CAP recovery between preconditioned and non-preconditioned MONs. Microgliadepletion also abolished IPC protective effects on axonal integrity and survival of mature (APC⁺) oligodendrocytes after OGD. IPC-mediated protection was independent of retinal injury suggesting it results from mechanistic processes intrinsic to ischemia-exposed WM. We conclude that preconditioned microglia are critical for IPC in WM. The “preconditioned microglia” phenotype might protect against other CNS pathologies and is a neurotherapeutic horizon worth exploring.
... Several studies, including those using mouse optic nerves ex vivo, suggest that astrocytes are the principal source of these metabolites. These cells break down stores of glycogen and pass lactate through the so-called Astrocyte to Neuron L-lactate shuttle (ANLS) using the monocarboxylate transporter MCT1 [102][103][104]. The contribution of the ANLS in white matter is a subject of controversy, however, given the limited access of astrocytes to axons wrapped in the oligodendrocyte myelin sheath [90]. ...
... Instead, oligodendrocytes appear to be the main source of lactate for axons [90,105,106] and these cells are also highly enriched for the MCT1 transporter. Unlike astrocytes, however, which catabolize glycogen to generate metabolic intermediates [102][103][104]107], pyruvate and lactate support from oligodendrocytes in the optic nerve is activity driven, with the release of glutamate stimulating glucose uptake, glycolysis, and lactate export in oligodendrocytes [108]. Similarly, astrocytes may not be the primary, or only, energy supporter for neurons in the inner retina, including retinal ganglion cells. ...
Article
Full-text available
The important roles of mitochondrial function and dysfunction in the process of neurodegeneration are widely acknowledged. Retinal ganglion cells (RGCs) appear to be a highly vulnerable neuronal cell type in the central nervous system with respect to mitochondrial dysfunction but the actual reasons for this are still incompletely understood. These cells have a unique circumstance where unmyelinated axons must bend nearly 90° to exit the eye and then cross a translaminar pressure gradient before becoming myelinated in the optic nerve. This region, the optic nerve head, contains some of the highest density of mitochondria present in these cells. Glaucoma represents a perfect storm of events occurring at this location, with a combination of changes in the translaminar pressure gradient and reassignment of the metabolic support functions of supporting glia, which appears to apply increased metabolic stress to the RGC axons leading to a failure of axonal transport mechanisms. However, RGCs themselves are also extremely sensitive to genetic mutations, particularly in genes affecting mitochondrial dynamics and mitochondrial clearance. These mutations, which systemically affect the mitochondria in every cell, often lead to an optic neuropathy as the sole pathologic defect in affected patients. This review summarizes knowledge of mitochondrial structure and function, the known energy demands of neurons in general, and places these in the context of normal and pathological characteristics of mitochondria attributed to RGCs.
... Astrocytes completely segregate axons from the vascular and peripapillary scleral spaces. Nutrients and water from the capillaries and astrocytes reach axons by flowing through astrocytic transmembrane channels, including monocarboxylate transporters [20][21][22], glucose transporters [21], and AQP channels. ...
... Astrocytes completely segregate axons from the vascular and peripapillary scleral spaces. Nutrients and water from the capillaries and astrocytes reach axons by flowing through astrocytic transmembrane channels, including monocarboxylate transporters [20][21][22], glucose transporters [21], and AQP channels. ...
Article
Full-text available
Purpose To study aquaporin channel expression in astrocytes of the mouse optic nerve (ON) and the response to IOP elevation in mice lacking aquaporin 4 (AQP4 null). Methods C57BL/6 (B6) and AQP4 null mice were exposed to bead-induced IOP elevation for 3 days (3D-IOP), 1 and 6 weeks. Mouse ocular tissue sections were immunolabeled against aquaporins 1(AQP1), 4(AQP4), and 9(AQP9). Ocular tissue was imaged to identify normal AQP distribution, ON changes, and axon loss after IOP elevation. Ultrastructure examination, cell proliferation, gene expression, and transport block were also analyzed. Results B6 mice had abundant AQP4 expression in Müller cells, astrocytes of retina and myelinated ON (MON), but minimal AQP4in prelaminar and unmyelinated ON (UON). MON of AQP4 nulls had smaller ON area, smaller axon diameter, higher axon density, and larger proportionate axon area than B6 (all p≤0.05). Bead-injection led to comparable 3D-IOP elevation (p = 0.42) and axonal transport blockade in both strains. In B6, AQP4 distribution was unchanged after 3D-IOP. At baseline, AQP1 and AQP9 were present in retina, but not in UON and this was unaffected after IOP elevation in both strains. In 3D-IOP mice, ON astrocytes and microglia proliferated, more in B6 than AQP4 null. After 6 week IOP elevation, axon loss occurred equally in the two mouse types (24.6%, AQP4 null vs. 23.3%, B6). Conclusion Lack of AQP4 was neither protective nor detrimental to the effects of IOP elevation. The minimal presence of AQP4 in UON may be a vital aspect of the regionally specific phenotype of astrocytes in the mouse optic nerve head.
... At the microscopic level, AG plays a vital role in the anabolic process (8). Specifically, AG produces acetyl CoA, a precursor for both fatty acid synthesis in myelination (15,16) and amino acid synthesis in axonal elongation (17,18). A metabolic transfer from the glycolytic oligodendroglia to the axons is necessary for long-term axonal integrity (9,(19)(20)(21). ...
... At a microscopic level, AG provides metabolic functions including biosynthesis and ATP generation, which are critical for axons with myelin (9,(19)(20)(21). Specifically, glycolytic product is the precursor for biosynthesis in myelination (15,16) and axonal elongation (17). High-AG regions are enriched for genes involved in the regulation of axon guidance and synaptic plasticity (11,18). ...
Article
Significance Aerobic glycolysis (AG) is the nonoxidative metabolism of glucose despite abundant oxygen. High AG is critical for various biological processes in the brain, such as biosynthesis and rapid ATP production, but also identifies regions most vulnerable to amyloid-β deposition. Currently, the wiring mechanisms underlying the metabolic benefits and risks of AG are largely unknown. Using advanced neuroimaging techniques and computational modelling, we systematically examined the relationship between AG and the connectome. Our results delineate large yet optimized wiring costs in high-AG regions (e.g., default-mode and prefrontal cortices), revealing a balancing mechanism that satisfies metabolic demand while reducing vulnerability risk. This research highlights wiring rules in high-AG regions and deepens our understanding of the relationship between brain metabolism and the connectome.
... Both l-lactic acid and d-lactic acid impact neural network activity by binding to the hydroxycarboxylic acid receptor 1. l-lactic acid plays a crucial role in neural oxidative metabolism, contributing to memory formation, protein synthesis, synaptic remodeling, and axonal excitability. Conversely, d-lactic acid can hinder the uptake of l-lactic acid by neurons, resulting in inadequate neuronal energy metabolism and memory impairment [50][51][52][53]. ...
Article
Full-text available
Background Mounting evidence suggests the involvement of viruses in the development and treatment of Alzheimer’s disease (AD). However, there remains a significant research gap in metagenomic studies investigating the gut virome of AD patients, leaving gut viral dysbiosis in AD unexplored. This study aimed to fill this gap by conducting a metagenomics analysis of the gut virome in both amyloid-positive AD patients (Aβ + ADs) and healthy controls (HCs), with the objective of identifying viral signatures linked with AD. Method Whole-genome sequence (WGS) data from 65 human participants, including 30 Aβ + ADs and 35 HCs, was obtained from the database NCBI SRA (Bio Project: PRJEB47976). The Metaphlan3 pipeline and linear discriminant analysis effect size (LEfSe) analysis were utilized for the bioinformatics process and the detection of viral signatures, respectively. In addition, the Benjamini–Hochberg method was applied with a significance cutoff of 0.05 to evaluate the false discovery rate for all biomarkers identified by LEfSe. The CombiROC model was employed to determine the discriminatory power of the viral signatures identified by LEfSe. Results Compared to HCs, the gut virome profiles of Aβ + ADs showed lower alpha diversity, indicating a lower bacteriophage richness. The Siphoviridae family was decreased in Aβ + ADs. Significant decreases of Lactococcus phages were found in Aβ + ADs, including bIL285, Lactococcus phage bIL286, Lactococcus phage bIL309, and Lactococcus phage BK5 T, Lactococcus phage BM13, Lactococcus phage P335 sensu lato, Lactococcus phage phiLC3, Lactococcus phage r1t, Lactococcus phage Tuc2009, Lactococcus phage ul36, and Lactococcus virus bIL67. The predictive combined model of these viral signatures obtained an area under the curve of 0.958 when discriminating Aβ + ADs from HCs. Conclusion This is the first study to identify distinct viral signatures in the intestine that can be used to effectively distinguish individuals with AD from HCs.
... This energy is produced from glucose after its entry via the BBB and its intracellular transportation by glucose transporters (GLUT-1) in the perivascular endfeet [32] or from gluconeogenesis/glycogenolysis processes, since these are limited to astrocytes [33]. Astrocytes under glucose inadequacy can break stored glycogen into lactate and thus increase the participation of lactate to energy metabolism of nearby axons when such deprivations occur [34]. Oligodendrocytes express high levels of monocarboxylate transporter 1 (MCT-1) and, as a result, consume lactate at higher levels than other CNS cells to produce myelin by lipogenesis. ...
Article
Full-text available
Neuroglial cells, and especially astrocytes, constitute the most varied group of central nervous system (CNS) cells, displaying substantial diversity and plasticity during development and in disease states. The morphological changes exhibited by astrocytes during the acute and chronic stages following CNS injury can be characterized more precisely as a dynamic continuum of astrocytic reactivity. Different subpopulations of reactive astrocytes may be ascribed to stages of degenerative progression through their direct pathogenic influence upon neurons, neuroglia, the blood-brain barrier, and infiltrating immune cells. Multiple sclerosis (MS) constitutes an autoimmune demyelinating disease of the CNS. Despite the previously held notion that reactive astrocytes purely form the structured glial scar in MS plaques, their continued multifaceted participation in neuroinflammatory outcomes and oligodendrocyte and neuronal function during chronicity, suggest that they may be an integral cell type that can govern the pathophysiology of MS. From a therapeutic-oriented perspective, astrocytes could serve as key players to limit MS progression, once the integral astrocyte–MS relationship is accurately identified. This review aims toward delineating the current knowledge, which is mainly focused on immunomodulatory therapies of the relapsing–remitting form, while shedding light on uncharted approaches of astrocyte-specific therapies that could constitute novel, innovative applications once the role of specific subgroups in disease pathogenesis is clarified.
... Surrounding the beams are associated glial cells, principally astrocytes, and specialized cells termed LC cells. Principal roles of these cells are to main integrity of the LC and provide support to adjacent RGC axons, including supplying energy substrates in the form of lactate (Tekkök et al., 2005) and providing a role for mitochondrial turnover in the RGC axons in a process relatively unique to the central nervous system called transmitophagy (Davis et al., 2014;Nguyen et al., 2011). Complicating the support role of these cells is the fact that they have minimal, if any, direct contact to the blood vessels within the laminar connective tissue beams and it appears that the majority of access to blood-borne metabolites is through the process of diffusion. ...
... In conditions of pathological shortage of glucose, astrocytes are capable of processing glycogen and producing lactate, which is shuttled to neighbouring neurones to assist their energy homeostasis. 46 Increase in lactate production and release, however, results in acidosis. Astrocytes are rather sensitive to acidification of their environment, and lowering pH to w6.6 completely and rapidly (about 15 min in vitro) inhibits astroglial ATP production. ...
... Astrocytes exist ubiquitously throughout the central nervous system (CNS), performing numerous key functions, including maintaining extracellular ionic balance, neurotransmitter clearance, modulating the synaptic connectivity and plasticity, providing metabolic support to neurons, and protecting nearby cells by secreting neurotrophic factors [7,13,45,51,56]. Given the important roles and supportive capacity in the CNS, it is not surprising that malfunction of astrocytes is directly responsible for various pathological conditions. ...
Article
Full-text available
Molecular and functional diversity among region-specific astrocytes is of great interest in basic neuroscience and the study of neurological diseases. In this study, we present the generation and characterization of astrocytes from human embryonic stem cells with the characteristics of the ventral midbrain (VM). Fine modulation of WNT and SHH signaling during neural differentiation induced neural precursor cells (NPCs) with high expression of EN1 and NKX6.1, but less expression of FOXA2. Overexpression of nuclear factor IB in NPCs induced astrocytes, thereby maintaining the expression of region-specific genes acquired in the NPC stage. When cocultured with dopaminergic (DA) precursors or DA neurons, astrocytes with VM characteristics (VM-iASTs) promoted the differentiation and survival of DA neurons better than those that were not regionally specified. Transcriptomic analysis showed that VM-iASTs were more closely related to human primary midbrain astrocytes than to cortical astrocytes, and revealed the upregulation of WNT1 and WNT5A, which supports their VM identity and explains their superior activity in DA neurons. Taken together, we hope that VM-iASTs can serve to improve ongoing DA precursor transplantation for Parkinson’s disease, and that their transcriptomic data provide a valuable resource for investigating regional diversity in human astrocyte populations. Graphical Abstract
... In addition, white matter ASTproduced lactate can maintain axon function during high neuronal activity or when glucose supply is limited [10,11]. Although this effect of lactate has been attributed to uptake by axons, no direct proof has been given so far, and at least some lactate may go to preserve the function of myelinating OLGs [11,12]. ...
Article
Full-text available
Iron deficiency (ID) represents one of the most prevalent nutritional deficits, affecting almost two billion people worldwide. Gestational iron deprivation induces hypomyelination due to oligodendroglial maturation deficiencies and is thus a useful experimental model to analyze oligodendrocyte (OLG) requirements to progress to a mature myelinating state. A previous proteomic study in the adult ID brain by our group demonstrated a pattern of dysregulated proteins involved in the tricarboxylic acid cycle and mitochondrial dysfunction. The aim of the present report was to assess bioenergetics metabolism in primary cultures of OLGs and astrocytes (ASTs) from control and ID newborns, on the hypothesis that the regulation of cell metabolism correlates with cell maturation. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. ID OLGs and ASTs both exhibited decreased spare respiratory capacity, which indicates that ID effectively induces mitochondrial dysfunction. A decrease in glycogen granules was observed in ID ASTs, and an increase in ROS production was detected in ID OLGs. Immunolabeling of structural proteins showed that mitochondrial number and size were increased in ID OLGs, while an increased number of smaller mitochondria was observed in ID ASTs. These results reflect an unfavorable bioenergetic scenario in which ID OLGs fail to progress to a myelinating state, and indicate that the regulation of cell metabolism may impact cell fate decisions and maturation.
... D-lactate, as an isomer of L-lactate, shares the same mass but has much lower amounts compared with L-lactate in mammals [40]. It is considered the "physiological inertia" in the body [41] due to the absence of metabolizing enzymes [42,43]. Previously, D-lactate is proved to be an important component of the cell wall of a lactic acid bacterium. ...
Article
Full-text available
Simple Summary Lactate (L-lactate and D-lactate) is the main production of the Warburg effect, which is vital for carcinoma cell metabolism. This review retrospects the lactate isomer metabolism in the cancer progress. The related enzyme and proteins have been listed as prognostic biomarkers for cancers, and the lactate down-streamed molecular cancerogenic signaling is also introduced. This review will provide a new strategy for anticancer therapy that targets lactate metabolism. Abstract Lactate mediates multiple cell-intrinsic effects in cancer metabolism in terms of development, maintenance, and metastasis and is often correlated with poor prognosis. Its functions are undertaken as an energy source for neighboring carcinoma cells and serve as a lactormone for oncogenic signaling pathways. Indeed, two isomers of lactate are produced in the Warburg effect: L-lactate and D-lactate. L-lactate is the main end-production of glycolytic fermentation which catalyzes glucose, and tiny D-lactate is fabricated through the glyoxalase system. Their production inevitably affects cancer development and therapy. Here, we systematically review the mechanisms of lactate isomers production, and highlight emerging evidence of the carcinogenic biological effects of lactate and its isomers in cancer. Accordingly, therapy that targets lactate and its metabolism is a promising approach for anticancer treatment.
... ;https://doi.org/10.1101https://doi.org/10. /2022 derived lactate is essential for neuronal metabolic support (Descalzi et al., 2019, Tekkok et al., 2005, Vezzoli et al., 2019, Suzuki et al., 2011, Netzahualcoyotzi and Pellerin, 2020. Extracellular glucose and lactate concentrations when measured with bio-probes or biosensors change as mice perform a memory task suggesting a role for lactate during memory formation (Newman et al., 2011). ...
Preprint
Full-text available
We recently reported that loss of oligodendrocyte metabolic support through the lactate and pyruvate transporter Monocarboxylate Transporter 1 (MCT1) is well tolerated into adulthood. Only with advanced aging did we observe axonal degeneration and hypomyelination due to loss of MCT1 from oligodendroglia lineage cells. MCT1 is also expressed by other glial subtypes, such as astrocytes and endothelial cells where it has been suggested to be essential for learning and memory tasks. However, the importance of MCT1 in these cell types for long-term axonal metabolic support is still unknown. We therefore addressed whether conditional loss of MCT1 from either of these cell types would lead to widespread axonal degeneration with aging. Using a conditional null approach, similar to what was used for oligodendrocyte MCT1 depletion, we observed that conditional knockout of MCT1 from either astrocytes or endothelial cells did not cause neuronal injury. On the other hand, inducible ubiquitous depletion of MCT1 causes late-onset axonal degeneration, comparable with what was observed in our previous study using the oligodendrocyte lineage MCT1 null mice. In summary, we conclude that unlike oligodendrocyte MCT1, astrocyte MCT1 is not an essential driver of astrocyte mediated axonal energy homeostasis with aging.
... In this role glycogen is stored as an energy buffer and only converted to lactate when ambient glucose alone is insufficient to meet J o u r n a l P r e -p r o o f the immediate energy demands. Lactate becomes the preferred energy source for fueling axons when glucose is very low or when there is increased neuronal activity (e.g., increased firing) 68,69 . This metabolic support is not solely a local function, as studies have demonstrated that astrocytes in both white 70 and gray matter 71 are capable of redistributing metabolic resources to stressed regions of tissue through gap junction (Cx43) coupled networks. ...
Article
Full-text available
Much of what we know about astrocyte form and function is derived from the study of grey matter protoplasmic astrocytes, whereas white matter fibrous astrocytes remain relatively unexplored. Here, we used the ribotag approach to isolate ribosome-associated mRNA and investigated the transcriptome of uninjured fibrous astrocytes from three regions: unmyelinated optic nerve head, myelinated optic nerve proper, and corpus callosum. Astrocytes from each region were transcriptionally distinct and we identified region-specific astrocyte genes and pathways. Energy metabolism, particularly oxidative phosphorylation and mitochondrial protein translation emerged as key differentiators of astrocyte populations. Optic nerve astrocytes expressed higher levels of neuroinflammatory pathways than corpus callosum astrocytes and we further identified Cartpt as a new marker of optic nerve head astrocytes. These previously uncharacterized transcriptional profiles of white matter astrocyte types reveal their functional diversity and a greater heterogeneity than previously appreciated.
... Here, lactate production from infected Schwann cells was deviated to the synthesis of neurotoxic lipid species, such as fatty acids and 1,3 diacylglycerol, which are capable of inducing mitochondrial uncoupling (Wojtczak & Schönfeld, 1993) and neuronal lipoapoptosis, resulting in endoplasmic reticulum and mitochondrial stress by high levels of longchain fatty acids (Ulloth et al., 2003;Véga et al., 2003). Therefore, M. leprae infection is disturbing the energetic axon-glia coupling, which represents a pivotal function of healthy Schwann cells (Tekkök et al., 2005;Véga et al., 2003;Wang et al., 2021). ...
Article
Full-text available
Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell‐conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial ¹⁴C‐labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid‐1 (PGL‐1) is a specific M. leprae cell wall antigen proposed to mediate bacterial–Schwann cell interaction. Therefore, we assessed the role of the PGL‐1 on Schwann cell phenotype by using transgenic M. bovis (BCG)‐expressing the M. leprae PGL‐1. We observed that BCG‐PGL‐1 was able to induce a phenotype similar to M. leprae, unlike the wild‐type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL‐1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae‐ and BCG‐PGL‐1‐infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL‐1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy. image
... 35 In addition, the increase of neuronal activity induced by sensory stimulation is related to the decrease of glycogen level in the activated area, indicating that there is a close coupling between neuronal activity and glycogen mobilization. 36 Furthermore, astrocyte glycogen mobilization is possibly related to the transfer of lactic acid from astrocytes to neurons, as the absolutely necessary part of maintaining neuronal activity 37 and glutamatergic synaptic transmission. 38 These strong evidences indicate that glycogen plays a key and indispensable role in normal brain function and activity. ...
Article
Full-text available
Astrocytes are the most abundant cells in the brain. They have many important functions in the central nervous system (CNS), including the maintenance of glutamate and ion homeostasis, the elimination of oxidative stress, energy storage in glycogen, tissue repair, regulating synaptic activity by releasing neurotransmitters, and participating in synaptic formation. Astrocytes have special highly ramified structure. Their branches contact with synapses of neurons inwardly, with fine structure and wrapping synapses; their feet contact with blood vessels of brain parenchyma outward, almost wrapping the whole brain. The adjacent astrocytes rarely overlap and communicate with each other through gap junction channels. The ideal location of astrocytes enables them to sense the weak changes of their surroundings and provide the structural basis for the energy supply of neurons. Neurons and astrocytes are closely coupled units of energy metabolism in the brain. Neurons consume a lot of ATPs in the process of neurotransmission. Astrocytes provide metabolic substrates for neurons, maintain high activity of neuron, and facilitate information transmission of neurons. This article reviews the characteristics of glucose metabolism, lipid metabolism, and amino acid metabolism of astrocytes. The metabolic interactions between astrocytes and neurons, astrocytes and microglia were also detailed discussed. Finally, we classified analyzed the role of metabolic disorder of astrocytes in the occurrence and development of neurodegenerative diseases.
... Immunohistochemistry in mouse optic nerve showed MCT1 expression in astrocytes responsible for shuttling lactate and MCT2 on neurofilaments that actively uptake this energy source into neurons (Tekkok et al., 2005). In the same study, it was shown that in conditions without lactate or glucose, neurons encounter apparent energy failure and loss of action potentials. ...
Article
Full-text available
Astrocyte volume fluctuation is a physiological phenomenon tied closely to the activation of neural circuits. Identification of underlying mechanisms has been challenging due in part to use of a wide range of experimental approaches that vary between research groups. Here, we first review the many methods that have been used to measure astrocyte volume changes directly or indirectly. While the field has recently shifted towards volume analysis using fluorescence microscopy to record cell volume changes directly, established metrics corresponding to extracellular space dynamics have also yielded valuable insights. We then turn to analysis of mechanisms of astrocyte swelling derived from many studies, with a focus on volume changes tied to increases in extracellular potassium concentration ([K+]o). The diverse methods that have been utilized to generate the external [K+]o environment highlight multiple scenarios of astrocyte swelling mediated by different mechanisms. Classical potassium buffering theories are tempered by many recent studies that point to different swelling pathways optimized at particular [K+]o and that depend on local/transient versus more sustained increases in [K+]o. MAIN POINTS: Many methods have been used to measure or estimate astrocyte volume change. Physiological astrocyte volume changes are driven by fluctuations in extracellular K+. Underlying mechanisms may vary as a function of [K+]o and transient/local versus sustained K+ elevations.
... l-Lactic acid and d-lactic acid regulate neural network activity by binding to the hydroxycarboxylic acid receptor 1. l-Lactic acid is the main substrate involved in neural oxidative metabolism. It promotes protein synthesis during learning and memory formation, increases synaptic remodeling and axonal excitability [7], and enhances the formation of memory [8]. ...
Article
Full-text available
Lactic acid is produced mainly in astrocytes in the brain and serves as a substance that supplies energy to neurons. In recent years, numerous studies identified the potential effects of lactic acid on the central nervous system and demonstrated its role in regulating brain function as an energy metabolism substrate or cellular signaling molecule. Both deficiency and accumulation of lactic acid cause neurological dysfunction, which further lead to the development of neuropsychiatric disorders, such as Major depressive disorder, Schizophrenia, Alzheimer’s disease, and Multiple sclerosis. Although an association between lactic acid and neuropsychiatric disorders was reported in previous research, the underlying pathogenic mechanisms remain unclear. Therefore, an in-depth understanding of the molecular mechanisms by which lactic acid regulates brain function is of significance for the early diagnosis and prevention of neuropsychiatric disorders. In this review, we summarize evidence that is focused on the potential mechanisms of lactic acid as a signaling molecule involved in the pathogenesis of neuropsychiatric disorders and propose a new mechanism by which lactic acid regulates brain function and disease through the microbiota–gut–brain axis to offer new insight into the prevention and treatment of neuropsychiatric diseases.
... For example, it was established that glycogen content in cultured astrocytes significantly increases during incubation with glutamate [58], while inhibition of glycogenolysis suppresses the uptake of glutamate [59] and potassium ions [60]. Besides, in the absence of glucose, astrocytic gly cogen can be degraded to lactate, which in turn is transported to axons as an energy source to boost their activity [61]. Thus, astrocytic glycogen is likely to increase the survival rate and functional activity of brain neurons under conditions of glu cose restriction. ...
... Likewise, OGD increases eNOS activity in astrocytes, leading to axonal mitochondrial dysfunction and oligodendrocyte death in young and aging WM . In contrast, astrocytes diligently store glucose as glycogen to derive lactate to support axon function during a metabolic challenge (Baltan, 2015;Bastian et al., 2019b;Brown et al., 2003;Tekkok et al., 2005). Therefore, the changes in astrocyte function through the action of miRNAs following an ischemic episode could dictate the functional status of the astrocyte being beneficial or detrimental for WM. ...
Article
Full-text available
We have previously shown that two anti-cancer drugs, CX-4945 and MS-275, protect and preserve white matter (WM) architecture and improve functional recovery in a model of WM ischemic injury. While both compounds promote recovery, CX-4945 is a selective Casein kinase 2 (CK2) inhibitor and MS-275 is a selective Class I histone deacetylase (HDAC) inhibitor. Alterations in microRNAs (miRNAs) mediate some of the protective actions of these drugs. In this study, we aimed to (1) identify miRNAs expressed in mouse optic nerves (MONs); (2) determine which miRNAs are regulated by oxygen glucose deprivation (OGD); and (3) determine the effects of CX-4945 and MS-275 treatment on miRNA expression. RNA isolated from MONs from control and OGD-treated animals with and without CX-4945 or MS-275 treatment were quantified using NanoString nCounter® miRNA expression profiling. Comparative analysis of experimental groups revealed that 12 miRNAs were expressed at high levels in MONs. OGD upregulated five miRNAs (miR-1959, miR-501-3p, miR-146b, miR-201, and miR-335-3p) and downregulated two miRNAs (miR-1937a and miR-1937b) compared to controls. OGD with CX-4945 upregulated miR-1937a and miR-1937b, and downregulated miR-501-3p, miR-200a, miR-1959, and miR-654-3p compared to OGD alone. OGD with MS-275 upregulated miR-2134, miR-2141, miR-2133, miR-34b-5p, miR-153, miR-487b, miR-376b, and downregulated miR-717, miR-190, miR-27a, miR-1959, miR-200a, miR-501-3p, and miR-200c compared to OGD alone. Interestingly, miR-501-3p and miR-1959 were the only miRNAs upregulated by OGD, and downregulated by OGD plus CX-4945 and MS-275. Therefore, we suggest that protective functions of CX-4945 or MS-275 against WM injury maybe mediated, in part, through miRNA expression.
... So, the proliferation and successful differentiation of OPCs into mature oligodendrocytes is a key factor in the recovery of white matter injury and demyelinating diseases [25]. Astrocytes regulate OPC's proliferation and differentiation by providing energy [26,27], secreting cytokines [3], and exchanging materials through gap junction channels [28][29][30]. In this study, we demonstrated that oxygen-glucose deprivation induces the activation of astrocytes, and exosomes-derived from astrocytes under hypoxia condition can inhibit the proliferation whereas promote OPCs differentiation and migration in vitro. ...
Article
Full-text available
Background Excessive release of glutamate, oxidative stress, inflammation after ischemic brain injury can lead to demyelination. Astrocytes participate in the maturation and differentiation of oligodendrocyte precursor cells (OPCs), and play multiple roles in the process of demyelination and remyelination. Here, we studied the role of Astrocyte-derived exosomes (AS-Exo) under ischemic conditions in proliferation, differentiation and migration of OPCs in vitro.Methods and resultsExosomes were collected from astrocytes supernatant by differential centrifugation from control astrocytes (CTexo), mild hypoxia astrocytes (O2R24exo) which were applied oxygen-glucose deprivation for 2 h and reperfusion for 24 h (OGD2hR24h) and severe hypoxia astrocytes (O4R24exo) which were applied oxygen-glucose deprivation for 4 h and reperfusion for 24 h (OGD4hR24h). Exosomes (20 µg/ml) were co-cultured with OPCs for 24 h and their proliferation, differentiation and migration were detected. The results showed that AS-Exo under severe hypoxia (O4R24exo) inhibit the proliferation of OPCs. Meanwhile, all exosomes from three groups can promote OPCs differentiation and migration. Compared to control, the expressions of MAG and MBP, markers of mature oligodendrocytes, were significantly increased in AS-Exo treatment groups. AS-Exo treatment significantly increased chemotaxis for OPCs.ConclusionsAS-Exo improve OPCs’ differentiation and migration, whereas AS-Exo with severe hypoxic precondition suppress OPCs’ proliferation. AS-Exo may be a potential therapeutic target for myelin regeneration and repair in white matter injury or other demyelination related diseases.
... All these genes, except thbs4 and tgfb1, were found expressed in Olig2-AS and non-Olig2-AS with no significant difference in their expression levels, if not a trend toward down-regulation of the 3 thbs genes in the Olig2-AS ( Figure 6A). Similar analyses were then performed for a set of genes whose products are known to control brain homeostasis and energetic support, i.e., the Aquaporin-4 water channel (aqp4), the inwardly rectifying potassium channels Kir4.1 (kcnj10) and Kir5.1 (kcnj16) (Simard and Nedergaard, 2004), the glucose transporter GLUT1 (slc2a1), and components of the lactate shuttle (slc6a1, slc16a3, ldha) (Tekkö k et al., 2005). Again, all these genes, except slc16a3, were found expressed both in Olig2-AS and nonOlig2-AS with no significant difference in their expression levels ( Figure 6B). ...
Article
Full-text available
Astrocytes are recognized to be a heterogeneous population of cells that differ morphologically, functionally and molecularly. Whether this heterogeneity results from generation of distinct astrocyte cell lineages, each functionally specialized to perform specific tasks, remains an open question. In this study, we used RNA-seq analysis to determine the global transcriptome profile of the Olig2-expressing astrocyte subtype (Olig2-AS), a specific spinal astrocyte subtype which segregates early during development from Olig2 progenitors and differs from other spinal astrocytes by the expression of Olig2. We identified 245 differentially expressed genes. Among them, 135 exhibit higher levels of expression when compared to other populations of spinal astrocytes, indicating that these genes can serve as a ‘unique’ functional signature of Olig2-AS. Among them, we identify two genes, inka2 and kcnip3, as specific molecular markers of the Olig2-AS in the P7 spinal cord. Our work thus reveals that Olig2 progenitors produce a unique spinal astrocyte subtype.
... When the neuronal energy need increases, or glucose delivery and ATP generation decrease, astroglia and oligodendrocytes provide neurons with energy substrates through the glia-neuron energetic shuttle. By mobilizing their glycogen stores, these glial cells can supply neurons with glucose, or glycolysis-derived metabolic intermediates, such as lactate or pyruvate, via glucose or monocarboxylate transporters (MCT) [66][67][68][69]. Expression of lactate dehydrogenase that catalyzes the conversion between lactate and pyruvate supports the ability of RGCs to use these intermediates as bioenergetic substrates [70]. ...
Article
Full-text available
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
... Given oligodendrocytes do not store glycogen, this suggests a mechanism by which this oligodendroglial uptake of glucose and subsequent supply of glycolysis products might be matched to levels of activity in the myelinated axons (Micu et al., 2016), supporting axons during times of heightened metabolic load (Micu et al., 2017). This feature of supporting axons through provision of glycolysis products would mirror the role of astrocytes and invertebrate glial cells (Pellerin and Magistretti, 1994;Tekkok et al., 2005;Volkenhoff et al., 2015). ...
Article
Full-text available
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer’s disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
... For the mammalian brain, the major energy substrate is glucose. It can also be other sources of energy, such as lactate [3,4], which is obtained in astrocytes from anaerobic metabolism of glucose [5] and glycogenolysis [6]. Brain capillaries and astrocytes can utilize ketone bodies as a source of energy [7,8]. ...
Article
The central nervous system (CNS) plays an important role in the human body. It is involved in the receive, store and participation in information retrieval. It can use several substrates as a source of energy, however, the main source of energy is glucose. Cells of the central nervous system need a continuous supply of energy, therefore, transport of glucose into these cells is very important. There are three distinct families of glucose transporters: sodium-independent glucose transporters (GLUTs), sodium-dependent glucose cotransporters (SGLTs), and uniporter, SWEET protein. In the human brain only GLUTs and SGLTs were detected. In neurodegenerative diseases was observed hypometabolism of glucose due to decreased expression of glucose transporters, in particular GLUT1 and GLUT3. On the other hand, animal studies revealed, that increased levels of these glucose transporters, due to for example by the increased copy number of SLC2A genes, may have a beneficial effect and may be a targeted therapy in the treatment of patients with AD, HD and PD.
... Although aglycaemia is un-physiological such experiments are valuable as they indicated that lactate shuttling occurred in the optic nerve. Under these conditions, glycogen phosphorylase was inhibited by 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) or isofagomine [53,54], interruption of the flow of lactate caused the loss of the CAP [42], with immuno-histochemical studies confirming the presence of the monocarboxylate transporters (MCT) required for influx and efflux of the lactate [55] (Figure 1). (1) and is either glycolytically metabolised to pyruvate or stored as glycogen via the action of glycogen synthase (GS). ...
Article
Full-text available
Whilst it is universally accepted that the energy support of the brain is glucose, the form in which the glucose is taken up by neurones is the topic of intense debate. In the last few decades, the concept of lactate shuttling between glial elements and neural elements has emerged in which the glial cells glycolytically metabolise glucose/glycogen to lactate, which is shuttled to the neural elements via the extracellular fluid. The process occurs during periods of compromised glucose availability where glycogen stored in astrocytes provides lactate to the neurones, and is an integral part of the formation of learning and memory where the energy intensive process of learning requires neuronal lactate uptake provided by astrocytes. More recently sleep, myelination and motor end plate integrity have been shown to involve lactate shuttling. The sequential aspect of lactate production in the astrocyte followed by transport to the neurones is vulnerable to interruption and it is reported that such disparate pathological conditions as Alzheimer’s disease, amyotrophic lateral sclerosis, depression and schizophrenia show disrupted lactate signalling between glial cells and neurones.
Article
Full-text available
Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome‐associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina‐specific astrocyte genes and pathways. Moreover, although they share much of the “classical” gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.
Article
Full-text available
The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon–OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca²⁺) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca²⁺ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K⁺) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K⁺ signaling, making acute metabolic coupling possible and adjusting the axon–OL metabolic unit to promote axonal health.
Article
Purpose Pyruvate, produced from either glucose, glycogen, or lactate, is the dominant precursor of cerebral oxidative metabolism. Pyruvate dehydrogenase (PDH) flux is a direct measure of cerebral mitochondrial function and metabolism. Detection of [ ¹³ C]bicarbonate in the brain from hyperpolarized [1‐ ¹³ C]pyruvate using carbon‐13 ( ¹³ C) MRI provides a unique opportunity for assessing PDH flux in vivo. This study is to assess changes in cerebral PDH flux in response to visual stimuli using in vivo ¹³ C MRS with hyperpolarized [1‐ ¹³ C]pyruvate. Methods From seven sedentary adults in good general health, time‐resolved [ ¹³ C]bicarbonate production was measured in the brain using 90° flip angles with minimal perturbation of its precursors, [1‐ ¹³ C]pyruvate and [1‐ ¹³ C]lactate, to test the hypothesis that the appearance of [ ¹³ C]bicarbonate signals in the brain reflects the metabolic changes associated with neuronal activation. With a separate group of healthy participants ( n = 3), the likelihood of the bolus‐injected [1‐ ¹³ C]pyruvate being converted to [1‐ ¹³ C]lactate prior to decarboxylation was investigated by measuring [ ¹³ C]bicarbonate production with and without [1‐ ¹³ C]lactate saturation. Results In the course of visual stimulation, the measured [ ¹³ C]bicarbonate signal normalized to the total ¹³ C signal in the visual cortex increased by 17.1% ± 15.9% ( p = 0.017), whereas no significant change was detected in [1‐ ¹³ C]lactate. Proton BOLD fMRI confirmed the regional activation in the visual cortex with the stimuli. Lactate saturation decreased bicarbonate‐to‐pyruvate ratio by 44.4% ± 9.3% ( p < 0.01). Conclusion We demonstrated the utility of ¹³ C MRS with hyperpolarized [1‐ ¹³ C]pyruvate for assessing the activation of cerebral PDH flux via the detection of [ ¹³ C]bicarbonate production.
Article
Full-text available
The human brain utilizes ∼ 20% of all of the body’s metabolic resources, while chimpanzee brains use less than 10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell-type specific interspecies differences in brain gene expression, we conducted RNA-Seq on neural progenitor cells (NPCs), neurons, and astrocytes generated from induced pluripotent stem cells (iPSCs) from humans and chimpanzees. Interspecies differential expression (DE) analyses revealed that twice as many genes exhibit DE in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans.
Article
Full-text available
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Article
The myelin sheath facilitates signal conduction along axons in white matter tracts, and when disrupted, can result in significant functional deficits. Demyelination, observed in diseases like multiple sclerosis and optic neuritis, are associated with neural degeneration, however the extent of this damage on upstream circuitry is not well understood. Here we use the MBP-iCP9 mouse model to induce selective oligodendrocyte ablation in the optic nerve at P14 via a chemical inducer of dimerization (CID), resulting in partial demyelination of retinal ganglion cell (RGC) axons with minimal inflammation after two weeks. Oligodendrocyte loss reduced axon diameter and altered compound action potential waveforms, blocking conduction in the slowest-conducting axon populations. Demyelination resulted in disruptions to the normal composition of the retina, including reduced density of RBPMS+, Brn3a+, and OFF-transient RGCs, thinning of the IPL, and reduced density of displaced amacrine cells. The INL and ONL were unaffected by oligodendrocyte loss, suggesting that demyelination-induced deficits in this model are specific to the IPL and GCL. These results show that a partial demyelination of a subpopulation of RGC axons disrupts optic nerve function and affects the organization of the retinal network. This study highlights the significance of myelination in maintaining upstream neural connectivity and provides support for targeting neuronal degeneration in treatments of demyelinating diseases.
Article
The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.
Chapter
This resource is the long-awaited new revision of the most highly regarded reference volume on glial cells, and has been completely revised, greatly enlarged, and enhanced with full color figures throughout. Neglected in research for years, it is now evident that the brain only functions in a concerted action of all the cells, namely glia and neurons. Seventy one chapters comprehensively discuss virtually every aspect of normal glial cell anatomy, physiology, biochemistry and function, and consider the central roles of these cells in neurological diseases including stroke, Alzheimer disease, multiple sclerosis, Parkinson's disease, neuropathy, and psychiatric conditions. With more than 20 new chapters it addresses the massive growth of knowledge about the basic biology of glia and the sophisticated manner in which they partner with neurons in the course of normal brain function.
Article
Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+, typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions. MAIN POINTS: Gray and white matter astrocytes have different basal NADH/NAD+ redox states and ATP levels. Metabolism of both cell populations responds similarly to neuronal activity. Glutamate induced ATP loss is prevented by increasing extracellular K+.
Article
The astrocyte-neuron lactate shuttle (ANLS) is an essential metabolic support system that uptakes glucose, stores it as glycogen in astrocytes, and provides glycogen-derived lactate for axonal function. Aging intrinsically increases the vulnerability of white matter (WM) to injury. Therefore, we investigated the regulation of this shuttle to understand vascular-glial metabolic coupling to support axonal function during aging in two different WM tracts. Aging astrocytes displayed larger cell bodies and thicker horizontal processes in contrast to thinner vertically oriented processes of young astrocytes. Aging axons recovered less following aglycemia in mouse optic nerves (MONs) compared to young axons, although providing lactate during aglycemia equally supported young and aging axonal function. Incubating MONs in high glucose to upregulate glycogen stores in astrocytes delayed loss of function during aglycemia and improved recovery in both young and aging axons. Providing lactate during recovery from aglycemia unmasked a metabolic switch from glucose to lactate in aging axons. Young and aging corpus callosum consisting of a mixture of myelinated and unmyelinated axons sustained their function fully when lactate was available during aglycemia and surprisingly showed a greater resilience to aglycemia compared to fully myelinated axons of optic nerve. We conclude that lactate is a universal substrate for axons independent of their myelination content and age.
Article
Dementia is a complex set of disorders affecting normal cognitive function. Recently, several clinical studies have shown that diabetes, obesity, and components of the metabolic syndrome (MetS) are associated with cognitive impairment, including dementias such as Alzheimer's disease. Maintaining normal cognitive function is an intricate process involving coordination of neuron function with multiple brain glia. Well-orchestrated bioenergetics is a central requirement of neurons, which need large amounts of energy but lack significant energy storage capacity. Thus, one of the most important glial functions is to provide metabolic support and ensure an adequate energy supply for neurons. Obesity and metabolic disease dysregulate glial function, leading to a failure to respond to neuron energy demands, which results in neuronal damage. In this review, we outline evidence for links between diabetes, obesity, and MetS components to cognitive impairment. Next, we focus on the metabolic crosstalk between the three major glial cell types, oligodendrocytes, astrocytes, and microglia, with neurons under physiological conditions. Finally, we outline how diabetes, obesity, and MetS components can disrupt glial function, and how this disruption might impair glia-neuron metabolic crosstalk and ultimately promote cognitive impairment.
Article
Full-text available
Research to date has provided novel insights into lactate's positive role in multiple brain functions and several brain diseases. Although notable controversies and discrepancies remain, the neurobiological role and the metabolic mechanisms of brain lactate have now been described. A theoretical framework on the relevance between lactate and brain function and brain diseases is presented. This review begins with the source and route of lactate formation in the brain and food; goes on to uncover the regulatory effect of lactate on brain function; and progresses to gathering the application and concentration variation of lactate in several brain diseases (diabetic encephalopathy, Alzheimer's disease, stroke, traumatic brain injury, and epilepsy) treatment. Finally, the dual role of lactate in the brain is discussed. This review highlights the biological effect of lactate, especially L-lactate, in brain function and disease studies and amplifies our understanding of past research.
Article
Glucose transported to the brain is metabolized to lactate in astrocytes and supplied to neuronal cells via a monocarboxylic acid transporter (MCT). Lactate is used in neuronal cells for various functions, including learning and memory formation. Furthermore, lactate can block stroke-induced neurodegeneration. We aimed to clarify the effect of astrocyte-produced lactate on stroke-induced neurodegeneration. Previously published in vivo and in vitro animal and cell studies, respectively, were searched in PubMed, ScienceDirect, and Web of Science. Under physiological conditions, lactate production and release by astrocytes are regulated by changes in lactate dehydrogenase (LDH) and MCT expression. Moreover, considering stroke, lactate production and supply are regulated through hypoxia-inducible factor (HIF)-1α expression, especially with hypoxic stimulation, which may promote neuronal apoptosis; contrastingly, neuronal survival may be promoted via HIF-1α. Stroke stimulation could prevent neurodegeneration through the strong enhancement of lactate production, as well as upregulation of MCT4 expression to accelerate lactate supply. However, studies using astrocytes derived from animal stroke models revealed significantly reduced lactate production and MCT expression. These findings suggest that the lack of lactate supply may strongly contribute to hypoxia-induced neurodegeneration. Furthermore, diminished lactate supply from astrocytes could facilitate stroke-induced neurodegeneration. Therefore, astrocyte-derived lactate may contribute to stroke prevention.
Article
Full-text available
Oligodendrocytes wrap multiple lamellae of their membrane, myelin, around axons of the central nervous system (CNS), to improve impulse conduction. Myelin synthesis is specialised and dynamic, responsive to local neuronal excitation. Subtle pathological insults are sufficient to cause significant neuronal metabolic impairment, so myelin preservation is necessary to safeguard neural networks. Multiple sclerosis (MS) is the most prevalent demyelinating disease of the CNS. In MS, inflammatory attacks against myelin, proposed to be autoimmune, cause myelin decay and oligodendrocyte loss, leaving neurons vulnerable. Current therapies target the prominent neuroinflammation but are mostly ineffective in protecting from neurodegeneration and the progressive neurological disability. People with MS have substantially higher levels of extracellular glutamate, the main excitatory neurotransmitter. This impairs cellular homeostasis to cause excitotoxic stress. Large conductance Ca2 ⁺ -activated K + channels (BK channels) could preserve myelin or allow its recovery by protecting cells from the resulting excessive excitability. This review evaluates the role of excitotoxic stress, myelination and BK channels in MS pathology, and explores the hypothesis that BK channel activation could be a therapeutic strategy to protect oligodendrocytes from excitotoxic stress in MS. This could reduce progression of neurological disability if used in parallel to immunomodulatory therapies.
Article
Full-text available
Oligodendrocytes wrap multiple lamellae of their membrane, myelin, around axons of the central nervous system (CNS), to improve impulse conduction. Myelin synthesis is specialised and dynamic, responsive to local neuronal excitation. Subtle pathological insults are sufficient to cause significant neuronal metabolic impairment, so myelin preservation is necessary to safeguard neural networks. Multiple sclerosis (MS) is the most prevalent demyelinating disease of the CNS. In MS, inflammatory attacks against myelin, proposed to be autoimmune, cause myelin decay and oligodendrocyte loss, leaving neurons vulnerable. Current therapies target the prominent neuroinflammation but are mostly ineffective in protecting from neurodegeneration and the progressive neurological disability. People with MS have substantially higher levels of extracellular glutamate, the main excitatory neurotransmitter. This impairs cellular homeostasis to cause excitotoxic stress. Large conductance Ca2 ⁺ -activated K + channels (BK channels) could preserve myelin or allow its recovery by protecting cells from the resulting excessive excitability. This review evaluates the role of excitotoxic stress, myelination and BK channels in MS pathology, and explores the hypothesis that BK channel activation could be a therapeutic strategy to protect oligodendrocytes from excitotoxic stress in MS. This could reduce progression of neurological disability if used in parallel to immunomodulatory therapies.
Article
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Chapter
Stroke is one of the most life-threatening diseases in most countries and is a leading cause of disability in the United States. Most ischemic strokes involve both white matter and gray matter, and 20% of strokes occur predominantly in white matter. The anatomy and physiology of white matter are different compared to gray matter, and the mechanisms of white matter stroke are less understood. Axons with their myelin and myelinating oligodendrocytes are the cell types that are most vulnerable to ischemic injury. In this chapter, we summarize and describe cellular and molecular mechanisms of axon-oligodendrocyte interactions and damage after ischemic stress. Then, we discuss potential therapeutic approaches to protect white matter and to promote white-matter repair after stroke in young and aging white matter. Understanding the different pathophysiologies of white matter and gray matter after stroke will guide us in developing meaningful comprehensive stroke therapies.
Conference Paper
The aim of this study was to investigate the effect of chronic exercise on muscle tissue GLUT-4 and zinc levels in experimental diabetic rats. This study was performed on 39 adult male Wistar rats obtained from Experimental Medicine Research and Application Center of Selçuk University. After the study protocol was approved by the Experimental Medicine Research and Application Center of the Experimental Animal Ethics Committee of Selcuk University, it started after the supply of test materials. A total of 39 experimental animals were used in this study: Group 1: Control (n=10): No medical practice and no exercise. Group 2: Exercise Control (n=10): The group which couldn’t medical practice, daily 45 minute chronic running exercise group for 4 weeks. Group 3: Diabetes (n=9): The group which was injected 40 mg/kg intraperitoneal streptozotocin (STZ) 2 times in 24 hour intervals. Group 4: Diabetes+Exercise (n=10): The group which 40 mg/kg intraperitoneal streptozotocin (STZ) injected into diabetes, daily 45 minute chronic running exercise for 4 weeks. At the end of the four-week study, the animals were sacrificed under the anesthesia and the tissue samples were taken. Tissue samples were stored at -80C° until the time of analysis. GLUT-4 analyzes were performed with the Elabscience brand (E-EL-R0430) Elisa test kit and the results were recorded as ng/mL and ng/g per gram of tissue. Zinc analyzes were performed on Atomic Absorption Spectrophotometer (AAS Varian AA240FS) and the results were calculated as mg/gr tissue. In the study, the highest zinc level was found in the control group (P<0,05) and the lowest zinc level was found in the diabetic exercise group. Diabetes group zinc levels were significantly lower than exercise group (P<0,05). The zinc levels of the exercise group were significantly lower than the control group (P<0,05). In the study, the highest GLUT-4 level was obtained in the diabetic exercise group (P<0,05), while the lowest GLUT-4 level was obtained in the diabetes group (P<0,05). GLUT-4 levels of exercise group were significantly higher than diabetes mellitus and control group (P<0,05). As a result, diabetes and chronic swimming exercise significantly reduce muscle tissue zinc levels. Diabetes is more effective in lowering muscle zinc levels than in chronic exercise. While diabetes significantly suppresses the muscle mass GLUT-4, exercise eliminates this pressure and increases the GLUT-4 level above normal values. In this respect, it can be said that exercise has a significant effect on the prevention of diabetes. Key Words: Diabetes, Chronic Exercise, Muscle GLUT-4, Muscle Zinc.
Article
Full-text available
This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, and Huntington’s disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.
Article
The functions of sleep and its links with neuropsychiatric diseases have long been questioned. Among the numerous hypotheses on sleep function, early studies proposed that sleep helps to replenish glycogen stores consumed during waking. Later studies found increased brain glycogen after sleep deprivation, leading to “glycogenetic” hypothesis, which states that there is a parallel increase in synthesis and utilization of glycogen during wakefulness, whereas decrease in the excitatory transmission creates an imbalance causing accumulation of glycogen during sleep. Glycogen is a vital energy reservoir to match the synaptic demand particularly for re-uptake of potassium and glutamate during intense glutamatergic transmission. Therefore, sleep deprivation-induced transcriptional changes may trigger migraine by reducing glycogen availability, which slows clearance of extracellular potassium and glutamate, hence, creates susceptibility to cortical spreading depression, the electrophysiological correlate of migraine aura. Interestingly, chronic stress accompanied by increased glucocorticoid levels and locus coeruleus activity and leading to mood disorders in which sleep disturbances are prevalent, also affects brain glycogen turnover via glucocorticoids, noradrenaline, serotonin and adenosine. These observations altogether suggest that inadequate astrocytic glycogen turnover may be one of the mechanisms linking migraine, mood disorders and sleep.
Article
Full-text available
Several laboratories have investigated monocarboxylate transport in a variety of cell types. The characterization of the cloned transporter isoforms in a suitable expression system is nevertheless still lacking. H+/monocarboxylate co-transport was therefore investigated in monocarboxylate transporter 1 (MCT1)expressing.Xenopus laevis oocytes by using pH-sensitive microelectrodes and [C-14]lactate. Superfusion with lactate resulted in intracellular acidification of MCT1-expressing oocytes, but not in non-injected control oocytes. The basic kinetic properties of lactate transport in MCT1-expressing oocytes were determined by analysing the rates of intracellular pH changes under different conditions. The results were in agreement with the known properties of the transporter, with respect to both the dependence on the lactate concentration and the external pH value. Besides lactate, MCT1 mediated the reversible transport of a wide variety of monocarboxylic acids including pyruvate, D,L-3hydroxybutyrate, acetoacetate, alpha-oxoisohexanoate and alpha-oxoisovalerate, but not of dicarboxylic and tricarboxylic acids. The inhibitor alpha-cyano-4-hydroxycinnamate bound strongly to the transporter without being translocated, but could be displaced by the addition of lactate. In addition to changes in the intracellular pH, lactate transport also induced deviations from the resting membrane potential.
Article
Full-text available
The transport of lactate is an essential part of the concept of metabolic coupling between neurons and glia. Lactate transport in primary cultures of astroglial cells was shown to be mediated by a single saturable transport system with aK m value for lactate of 7.7 mm and aV max value of 250 nmol/(min × mg of protein). Transport was inhibited by a variety of monocarboxylates and by compounds known to inhibit monocarboxylate transport in other cell types, such as α-cyano-4-hydroxycinnamate andp-chloromercurbenzenesulfonate. Using reverse transcriptase-polymerase chain reaction and Northern blotting, the presence of mRNA coding for the monocarboxylate transporter 1 (MCT1) was demonstrated in primary cultures of astroglial cells. In contrast, neuron-rich primary cultures were found to contain the mRNA coding for the monocarboxylate transporter 2 (MCT2). MCT1 was cloned and expressed in Xenopus laevis oocytes. Comparison of lactate transport in MCT1 expressing oocytes with lactate transport in glial cells revealed that MCT1 can account for all characteristics of lactate transport in glial cells. These data provide further molecular support for the existence of a lactate shuttle between astrocytes and neurons.
Article
Full-text available
Under particular circumstances like lactation and fasting, the blood-borne monocarboxylates acetoacetate, β-hydroxybutyrate, and lactate represent significant energy substrates for the brain. Their utilization is dependent on a transport system present on both endothelial cells forming the blood-brain barrier and on intraparenchymal brain cells. Recently, two monocarboxylate transporters, MCT1 and MCT2, have been cloned. We report here the characterization by Northern blot analysis and by in situ hybridization of the expression of MCT1 and MCT2 mRNAs in the mouse brain. In adults, both transporter mRNAs are highly expressed in the cortex, the hippocampus and the cerebellum. During development, a peak in the expression of both transporters occurs around postnatal day 15, declining rapidly by 30 days at levels observed in adults. Double-labeling experiments reveal that the expression of MCT1 mRNA in endothelial cells is highest at postnatal day 15 and is not detectable at adult stages. These results support the notion that monocarboxylates are important energy substrates for the brain at early postnatal stages and are consistent with the sharp decrease in blood-borne monocarboxylate utilization after weaning. In addition, the observation of a sustained intraparenchymal expression of monocarboxylate transporter mRNAs in adults, in face of the seemingly complete disappearance of their expression on endothelial cells, reinforces the view that an intercellular exchange of lactate occurs within the adult brain.
Article
Full-text available
Glutamate, released at a majority of excitatory synapses in the central nervous system, depolarizes neurons by acting at specific receptors. Its action is terminated by removal from the synaptic cleft mostly via Na(+)-dependent uptake systems located on both neurons and astrocytes. Here we report that glutamate, in addition to its receptor-mediated actions on neuronal excitability, stimulates glycolysis--i.e., glucose utilization and lactate production--in astrocytes. This metabolic action is mediated by activation of a Na(+)-dependent uptake system and not by interaction with receptors. The mechanism involves the Na+/K(+)-ATPase, which is activated by an increase in the intracellular concentration of Na+ cotransported with glutamate by the electrogenic uptake system. Thus, when glutamate is released from active synapses and taken up by astrocytes, the newly identified signaling pathway described here would provide a simple and direct mechanism to tightly couple neuronal activity to glucose utilization. In addition, glutamate-stimulated glycolysis is consistent with data obtained from functional brain imaging studies indicating local nonoxidative glucose utilization during physiological activation.
Article
Full-text available
The retina of honeybee drone is a nervous tissue with a crystal-like structure in which glial cells and photoreceptor neurons constitute two distinct metabolic compartments. The phosphorylation of glucose and its subsequent incorporation into glycogen occur in glia, whereas O2 consumption (QO2) occurs in the photoreceptors. Experimental evidence showed that glia phosphorylate glucose and supply the photoreceptors with metabolic substrates. We aimed to identify these transferred substrates. Using ion-exchange and reversed-phase HPLC and gas chromatography-mass spectrometry, we demonstrated that more than 50% of 14C(U)-glucose entering the glia is transformed to alanine by transamination of pyruvate with glutamate. In the absence of extracellular glucose, glycogen is used to make alanine; thus, its pool size in isolated retinas is maintained stable or even increased. Our model proposes that the formation of alanine occurs in the glia, thereby maintaining the redox potential of this cell and contributing to NH3 homeostasis. Alanine is released into the extracellular space and is then transported into photoreceptors using an Na(+)-dependent transport system. Purified suspensions of photoreceptors have similar alanine aminotransferase activity as glial cells and transform 14C-alanine to glutamate, aspartate, and CO2. Therefore, the alanine entering photoreceptors is transaminated to pyruvate, which in turn enters the Krebs cycle. Proline also supplies the Krebs cycle by making glutamate and, in turn, the intermediate alpha-ketoglutarate. Light stimulation caused a 200% increase of QO2 and a 50% decrease of proline and of glutamate. Also, the production of 14CO2 from 14C-proline was increased. The use of these amino acids would sustain about half of the light-induced delta QO2, the other half being sustained by glycogen via alanine formation. The use of proline meets a necessary anaplerotic function in the Krebs cycle, but implies high NH3 production. The results showed that alanine formation fixes NH3 at a rate exceeding glutamine formation. This is consistent with the rise of a glial pool of alanine upon photostimulation. In conclusion, the results strongly support a nutritive function for glia.
Article
Full-text available
The kinetics of transport of L-lactate, pyruvate, ketone bodies, and other monocarboxylates into isolated hepatocytes from starved rats were measured at 25 degrees C using the intracellular pH-sensitive dye, 2',7'-bis(carboxyethyl)- 5(6)-carboxyfluorescein, to detect the associated proton influx. Transport kinetics were similar, but not identical, to those determined using the same technique for the monocarboxylate transporter (MCT) of Ehrlich Lettré tumor cells (MCT1) (Carpenter, L., and Halestrap, A. P. (1994) Biochem. J. 304, 751-760). Km values for L-lactate (4.7 mM), D-lactate (27 mM), D,L-2-hydroxybutyrate (3.3 mM), L-3-hydroxybutyrate (12.7 mM), and acetoacetate (6.1 mM) were very similar in both cell types, whereas in hepatocytes the Km values were higher than MCT1 for pyruvate (1.3 mM, cf. 0.72 mM), D-3-hydroxybutyrate (24.7 mM, cf. 10.1 mM), D-2-chloropropionate (1.3 mM, cf. 0.8 mM), 4-hydroxybutyrate (18.1 mM, cf. 7.7 mM), and acetate (5.4 mM, cf. 3.7 mM). In contrast, the hepatocyte carrier had lower Km values than MCT1 for glycolate, chloroacetate, dichloroacetate, and 2-hydroxy-2-methylpropionate. Differences in stereoselectivity were also detected; both carriers showed a lower Km for L-lactate than D-lactate, while hepatocyte MCT exhibited a lower Km for D- than L-2-chloropropionate and for L- than D-3-hydroxybutyrate; this is not the case for MCT1. A range of inhibitors of MCT1, including alpha-cyanocinnamate derivatives, phloretin, and niflumic acid, inhibited hepatocyte MCT with K0.5 values significantly higher than for tumor cell MCT1, while stilbene disulfonate derivatives and p-chloromercuribenzene sulfonate had similar K0.5 values in both cell types. The branched chain ketoacids alpha-ketoisocaproate and alpha-ketoisovalerate were also potent inhibitors of hepatocyte MCT with K0.5 values of 270 and 340 microM, respectively. The activation energy of L-lactate transport into hepatocytes was 58 kJ mol-1, and measured rates of transport at 37 degrees C were considerably greater than those required for maximal rates of gluconeogenesis. The properties of the hepatocyte monocarboxylate transporter are consistent with the presence of a distinct isoform of MCT in liver cells as suggested by the cloning and sequencing of MCT2 from hamster liver (Garcia, C. K., Brown, M. S., Pathak, R. K., and Goldstein, J. L. (1995) J. Biol. Chem. 270, 1843-1849).
Article
Full-text available
The ability to fuel neurons via glycogenolysis is believed to be an important function of glia. Indeed, the slow, rather than immediate, depression of synaptic transmission in hippocampal slices during exogenous glucose deprivation suggests that intrinsic energy reservoirs help to sustain neurotransmission. It is believed that glia fuel neighboring neurons via diffusible monocarboxylates such as pyruvate and lactate, although a role for glucose has been proposed also. Using alpha-cyano-4-hydroxycinnamate (4-CIN) to inhibit monocarboxylate transport and cytochalasin B (CCB) to inhibit glucose transport, we examined the role of glucose and monocarboxylates in supporting the functional and morphological integrity of hippocampal neurons during glucose deprivation. Although 200 microM 4-CIN failed to depress EPSPs supported by 10 mM glucose, pretreatment with 4-CIN accelerated the depression of EPSPs during glucose deprivation. 4-CIN also accelerated the decline in glucose-supported EPSPs after administration of 50 microM CCB, whereas CCB failed to alter the slow decay of pyruvate-supported EPSPs during pyruvate deprivation. 4-CIN did not alter the morphology of pyramidal neurons in the presence of 10 mM glucose but produced significant damage during glucose deprivation or CCB administration. These results suggest that endogenous monocarboxylates rather than glucose maintain neuronal integrity during energy deprivation. Furthermore, EPSPs supported by 2-3.3 mM glucose were sensitive to 4-CIN, suggesting that endogenous monocarboxylates are involved in maintaining neuronal function even under conditions of mild glucose deprivation.
Article
Full-text available
Several laboratories have investigated monocarboxylate transport in a variety of cell types. The characterization of the cloned transporter isoforms in a suitable expression system is nevertheless still lacking. H+/monocarboxylate co-transport was therefore investigated in monocarboxylate transporter 1 (MCT1)-expressing Xenopus laevis oocytes by using pH-sensitive microelectrodes and [14C]lactate. Superfusion with lactate resulted in intracellular acidification of MCT1-expressing oocytes, but not in non-injected control oocytes. The basic kinetic properties of lactate transport in MCT1-expressing oocytes were determined by analysing the rates of intracellular pH changes under different conditions. The results were in agreement with the known properties of the transporter, with respect to both the dependence on the lactate concentration and the external pH value. Besides lactate, MCT1 mediated the reversible transport of a wide variety of monocarboxylic acids including pyruvate, D,L-3-hydroxybutyrate, acetoacetate, alpha-oxoisohexanoate and alpha-oxoisovalerate, but not of dicarboxylic and tricarboxylic acids. The inhibitor alpha-cyano-4-hydroxycinnamate bound strongly to the transporter without being translocated, but could be displaced by the addition of lactate. In addition to changes in the intracellular pH, lactate transport also induced deviations from the resting membrane potential.
Article
Full-text available
Although glucose is the major metabolic fuel needed for normal brain function, monocarboxylic acids, i.e., lactate, pyruvate, and ketone bodies, can also be utilized by the brain as alternative energy substrates. In most mammalian cells, these substrates are transported either into or out of the cell by a family of monocarboxylate transporters (MCTs), first cloned and sequenced in the hamster. We have recently cloned two MCT isoforms (MCT1 and MCT2) from a mouse kidney cDNA library. Northern blot analysis revealed that MCT1 mRNA is ubiquitous and can be detected in most tissues at a relatively constant level. MCT2 expression is more limited, with high levels of expression confined to testes, kidney, stomach, and liver and lower levels in lung, brain, and epididymal fat. Both MCT1 mRNA and MCT2 mRNA are detected in mouse brain using antisense riboprobes and in situ hybridization. MCT1 mRNA is found throughout the cortex, with higher levels of hybridization in hippocampus and cerebellum. MCT2 mRNA was detected in the same areas, but the pattern of expression was more specific. In addition, MCT1 mRNA, but not MCT2, is localized to the choroid plexus, ependyma, microvessels, and white matter structures such as the corpus callosum. These results suggest a differential expression of the two MCTs at the cellular level.
Article
Full-text available
Mounting evidence from in vitro experiments indicates that lactate is an efficient energy substrate for neurons and that it may significantly contribute to maintain synaptic transmission, particularly during periods of intense activity. Since lactate does not cross the blood-brain barrier easily, blood-borne lactate cannot be a significant source. In vitro studies by several laboratories indicate that astrocytes release large amounts of lactate. In 1994, we proposed a mechanism whereby lactate could be produced by astrocytes in an activity-dependent, glutamate-mediated manner. Over the last 2 years we have obtained further evidence supporting the notion that a transfer of lactate from astrocytes to neurons might indeed take place. In this article, we first review data showing the presence of mRNA encoding for two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Second, by using monoclonal antibodies selectively directed against the two distinct lactate dehydrogenase isoforms, LDH1 and LDH5, a specific cellular distribution between neurons and astrocytes is revealed which suggests that a population of astrocytes is a lactate 'source' while neurons may be a lactate 'sink'. Third, we provide biochemical evidence that lactate is interchangeable with glucose to support oxidative metabolism in cortical neurons. This set of data is consistent with the existence of an activity-dependent astrocyte-neuron lactate shuttle for the supply of energy substrates to neurons.
Article
Full-text available
Aerobic energy metabolism uses glucose and oxygen to produce all the energy needs of the brain. Several studies published over the last 13 years challenged the assumption that the activated brain increases its oxidative glucose metabolism to meet the increased energy demands. Neuronal function in rat hippocampal slices supplied with 4 mM glucose could tolerate a 15 min activation by a 5 mM concentration of the excitatory neurotransmitter glutamate (Glu), whereas slices supplied with 10 mM glucose could tolerate a 15 min activation by 20 mM Glu. However, in slices in which neuronal lactate use was inhibited by the lactate transporter inhibitor a-cyano-4-hydroxycinnamate (4-CIN), activation by Glu elicited a permanent loss of neuronal function, with a twofold to threefold increase in tissue lactate content. Inhibition of glycolysis with the glucose analog 2-deoxy-D-glucose (2DG) during the period of exposure to Glu diminished normal neuronal function in the majority of slices and significantly reduced the number of slices that exhibited neuronal function after activation. However, when lactate was added with 2DG, the majority of the slices were neuronally functional after activation by Glu. NMDA, a nontransportable Glu analog by the glial glutamate transporter, could not induce a significant increase in slice lactate level when administered in the presence of 4-CIN. It is suggested that the heightened energy demands of activated neurons are met through increased glial glycolytic flux. The lactate thus formed is a crucial aerobic energy substrate that enables neurons to endure activation.
Article
Full-text available
Observations on lactate transport in brain cells and cardiac myocytes indicate the presence of a high-affinity monocarboxylate transporter. The rat monocarboxylate transporter isoform MCT2 was analysed by expression in Xenopus laevis oocytes and the results were compared with the known characteristics of lactate transport in heart and brain. Monocarboxylate transport via MCT2 was driven by the H(+) gradient over the plasma membrane. Uptake of lactate strongly increased with decreasing pH, showing half-maximal stimulation at pH 7.2. A wide variety of monocarboxylates and ketone bodies, including lactate, pyruvate, beta-hydroxybutyrate, acetoacetate, 2-oxoisovalerate and 2-oxoisohexanoate, were substrates of MCT2. All substrates had a high affinity for MCT2. For lactate a K(m) value of 0.74+/-0.07 mM was determined at pH 7.0. For the other substrates, K(i) values between 100 microM and 1 mM were measured for inhibition of lactate transport, which is about one-tenth of the corresponding values for the ubiquitously expressed monocarboxylate transporter isoform MCT1. Monocarboxylate transport via MCT2 could be inhibited by alpha-cyano-4-hydroxycinnamate, anion-channel inhibitors and flavonoids. It is suggested that cells which express MCT2 preferentially use lactate and ketone bodies as energy sources.
Article
Full-text available
We tested the hypothesis that astrocytic glycogen sustains axon function during and enhances axon survival after 60 min of glucose deprivation. Axon function in the rat optic nerve (RON), a CNS white matter tract, was monitored by measuring the area of the stimulus-evoked compound action potential (CAP). Switching to glucose-free artificial CSF (aCSF) had no effect on the CAP area for approximately 30 min, after which the CAP rapidly failed. Exposure to glucose-free aCSF for 60 min caused irreversible injury, which was measured as incomplete recovery of the CAP. Glycogen content of the RON fell to a low stable level 30 min after glucose withdrawal, compatible with rapid use in the absence of glucose. An increase of glycogen content induced by high-glucose pretreatment increased the latency to CAP failure and improved CAP recovery. Conversely, a decrease of glycogen content induced by norepinephrine pretreatment decreased the latency to CAP failure and reduced CAP recovery. To determine whether lactate represented the fuel derived from glycogen and shuttled to axons, we used the lactate transport blockers quercetin, alpha-cyano-4-hydroxycinnamic acid (4-CIN), and p-chloromercuribenzene sulfonic acid (pCMBS). All transport blockers, when applied during glucose withdrawal, decreased latency to CAP failure and decreased CAP recovery. The inhibitors 4-CIN and pCMBS, but not quercetin, blocked lactate uptake by axons. These results indicated that, in the absence of glucose, astrocytic glycogen was broken down to lactate, which was transferred to axons for fuel.
Chapter
Golgi, more than a century ago, suggested that glial cells provide nutritive support for neurons. He based this on his microscopic observations that glial cells are positioned between blood vessels and neurons, and their endfeet intimately surround blood vessels (Andriezen, 1893; Cajal, 1995). The anatomic arrangement of astrocytes, neurons and capillaries suggested that nutrients might be taken up preferentially by astrocytes. Astrocytes would then ‘share’ these nutrients with nearby neurons (Figure 11.1A). This old idea gained a degree of modern plausibility as more was learned about brain energy metabolism, and it was discovered that astrocytes are the only cells in the mammalian brain that contain significant glycogen (Cataldo and Broadwell, 1986a), the storage form of glucose. These refinements in the evolution of the nutritive hypothesis are shown in Figure 11.1B. The transfer of energy substrate (e.g. glucose or monocarboxylates) occurs across brain extracellular space (ECS), which is so narrow that molecules released from one cell diffuse almost instantly to adjacent cells (Nicholson, 1995). A crucial permissive feature of this scheme is that nearly every neuron in the brain shares common ECS with adjacent astrocytes.
Article
The glycolytic end product lactic acid induced a rapid transient decrease in cytosolic pH in cultured neurons and astrocytes, as measured by microspectrofluorometry using the fluorescent indicator dye 2',7'-bis-(2-car-boxyethyl)-5-and-6)carboxyfluorescein acetoxymethyl ester. Over a physiological range of pH, the initial rate of cellular acidification was a saturable function of the extracellular lactate concentration, suggesting that a saturable transport system mediated lactic acid permeation across the plasma membrane. This transport process displayed stereoselectivity, with a threefold higher rate of intracellular acidification by L-lactic acid than by its D-isomer. Lactic acid-induced acidification occurred in the absence of intracellular ATP, suggesting that transport proceeded independently of the cellular energy charge. These data suggest the existence of a lactic acid carrier in mammalian neuronal and astrocytic plasma membranes, which might serve an acid-scavenging function under conditions of altered pH homeostasis. In the setting of in vivo cerebral ischemia, this carrier may promote the efflux of lactic acid from astrocytes, redistributing it among less metabolically active neurons.
Article
Under particular circumstances like lactation and fasting, the blood-borne monocarboxylates acetoacetate, beta-hydroxybutyrate, and lactate represent significant energy substrates for the brain. Their utilization is dependent on a transport system present on both endothelial cells forming the blood-brain barrier and on intraparenchymal brain cells. Recently, two monocarboxylate transporters, MCT1 and MCT2, have been cloned. We report here the characterization by Northern blot analysis and by in situ hybridization of the expression of MCT1 and MCT2 mRNAs in the mouse brain. In adults, both transporter mRNAs are highly expressed in the cortex, the hippocampus and the cerebellum. During development, a peak in the expression of both transporters occurs around postnatal day 15, declining rapidly by 30 days at levels observed in adults. Double-labeling experiments reveal that the expression of MCT1 mRNA in endothelial cells is highest at postnatal day 15 and is not detectable at adult stages. These results support the notion that monocarboxylates are important energy substrates for the brain at early postnatal stages and are consistent with the sharp decrease in blood-borne monocarboxylate utilization after weaning. In addition, the observation of a sustained intraparenchymal expression of monocarboxylate transporter mRNAs in adults, in face of the seemingly complete disappearance of their expression on endothelial cells, reinforces the view that an intercellular exchange of lactate occurs within the adult brain.
Article
The transport of lactate is an essential part of the concept of metabolic coupling between neurons and glia. Lactate transport in primary cultures of astroglial cells was shown to be mediated by a single saturable transport system with a Km value for lactate of 7.7 mM and a Vmax value of 250 nmol/(min x mg of protein). Transport was inhibited by a variety of monocarboxylates and by compounds known to inhibit monocarboxylate transport in other cell types, such as alpha-cyano-4-hydroxycinnamate and p-chloromercurbenzenesulfonate. Using reverse transcriptase-polymerase chain reaction and Northern blotting, the presence of mRNA coding for the monocarboxylate transporter 1 (MCT1) was demonstrated in primary cultures of astroglial cells. In contrast, neuron-rich primary cultures were found to contain the mRNA coding for the monocarboxylate transporter 2 (MCT2). MCT1 was cloned and expressed in Xenopus laevis oocytes. Comparison of lactate transport in MCT1 expressing oocytes with lactate transport in glial cells revealed that MCT1 can account for all characteristics of lactate transport in glial cells. These data provide further molecular support for the existence of a lactate shuttle between astrocytes and neurons.
Article
Glutamate, released at a majority of excitatory synapses in the central nervous system, depolarizes neurons by acting at specific receptors. Its action is terminated by removal from the synaptic cleft mostly via Na(+)-dependent uptake systems located on both neurons and astrocytes. Here we report that glutamate, in addition to its receptor-mediated actions on neuronal excitability, stimulates glycolysis--i.e., glucose utilization and lactate production--in astrocytes. This metabolic action is mediated by activation of a Na(+)-dependent uptake system and not by interaction with receptors. The mechanism involves the Na+/K(+)-ATPase, which is activated by an increase in the intracellular concentration of Na+ cotransported with glutamate by the electrogenic uptake system. Thus, when glutamate is released from active synapses and taken up by astrocytes, the newly identified signaling pathway described here would provide a simple and direct mechanism to tightly couple neuronal activity to glucose utilization. In addition, glutamate-stimulated glycolysis is consistent with data obtained from functional brain imaging studies indicating local nonoxidative glucose utilization during physiological activation.
Article
Glucose has long been considered the substrate for neuronal energy metabolism in the brain. Recently, an alternative explanation of energy metabolism in the active brain, the astrocyte-neuron lactate shuttle hypothesis, has received attention. It suggests that during neural activity energy needs in glia are met by anaerobic glycolysis, whereas neuronal metabolism is fueled by lactate released from glia. In this article, we critically examine the evidence supporting this hypothesis and explain, from the perspective of enzyme kinetics and substrate availability, why neurons probably use ambient glucose, and not glial-derived lactate, as the major substrate during activity.
Article
1The effects of energy substrate removal and metabolic pathway block have been examined on neuronal and glial survival in organotypic slice cultures of rat hippocampus.2Slice cultures resisted 24 h of exogenous energy substrate deprivation. Application of 0.5 mM α-cyano-4-hydroxycinnamate (4-CIN) for 24 h resulted in specific damage to neuronal cell layers, which could be reversed by co-application of 5 mM lactate.3Addition of 10 mM 2-deoxyglucose in the absence of exogenous energy supply produced widespread cell death throughout the slice. This was partly reversed by co-application of 5 mM lactate.4These effects of metabolic blockade on cell survival were qualitatively similar to the effects on population spikes recorded in the CA1 cell layer following 60 min application of these agents.5The data suggest that monocarboxylate trafficking from glia to neurons is an essential route for supply of energy substrates to neurons particularly when exogenous energy supply is restricted.
Article
This study used the rat hippocampal slice preparation and the monocarboxylate transporter inhibitor, α-cyano-4-hydroxycinnamate (4-CIN), to assess the obligatory role that lactate plays in fueling the recovery of synaptic function after hypoxia upon reoxygenation. At a concentration of 500 µM, 4-CIN blocked lactate-supported synaptic function in hippocampal slices under normoxic conditions in 15 min. The inhibitor had no effect on glucose-supported synaptic function. Of control hippocampal slices exposed to 10-min hypoxia, 77.8 ± 6.8% recovered synaptic function after 30-min reoxygenation. Of slices supplemented with 500 µM 4-CIN, only 15 ± 10.9% recovered synaptic function despite the large amount of lactate formed during the hypoxic period and the abundance of glucose present before, during, and after hypoxia. These results indicate that 4-CIN, when present during hypoxia and reoxygenation, blocks lactate transport from astrocytes, where the bulk of anaerobic lactate is formed, to neurons, where lactate is being utilized aerobically to support recovery of function after hypoxia. These results unequivocally validate that brain lactate is an obligatory aerobic energy substrate for posthypoxia recovery of function.
Article
Suction electrodes are widely used for recording compound action potentials (CAPs) from peripheral nerves or central tracts. Unfortunately, the recordings obtained with suction electrodes often vary over time, making quantitative measurement of CAP amplitude difficult. We developed an equivalent electrical model which predicts that the magnitude of a recorded potential will be linearly related to the resistance of the electrode with a nerve inserted. Mathematical procedures were developed that allow correction of virtually all variability inherent in this type of recording; this variability may arise from resistance drift, variable stimulus artifact, or potentials generated as a result of the current of injury. The validity of the theoretical analysis was confirmed experimentally using rat optic nerves. The magnitude of the CAP and electrode resistance varied spontaneously by as much as 100% over time, due to changes in electrode resistance and size of the stimulus artifact. Because the CAP was linearly related to resistance, it was therefore best quantified by the slope computed from this relationship. The stimulus artifact, unlike the CAP itself, was shown to be independent of recording electrode resistance and therefore only resulted in a variable offset to the area vs resistance linear relationship; the slope of this relationship was unaffected. In the absence of stimulation, a steady negative DC potential was recorded from the optic nerve, which was greatest immediately after dissection, and was also a linear function of electrode resistance. In contrast to CAP amplitude, the latencies of the component peaks within the CAP were not significantly altered by changes in electrode resistance. The experimental results confirmed the validity of the electrical model and demonstrated that suction electrodes can be a very reliable and quantitative recording method if the signals are properly corrected.
Article
A new method, devised to maintain a steady concentration of glucose in the bloodstream, was used to study its influx into the brain of the living rat under sodium pentobarbitone or ether anaesthesia. The findings suggested that glucose entered the brain by a saturable carrier-mediated mechanism with a Km of 7.2 μ mol ml-1 and a maximum influx rate of 1.13 μ mol min-1 g-1 brain. This mechanism was not affected by the type of anaesthetic used. We did not detect any appreciable passive diffusion of glucose into the brain. There was no movement of glucose between the red cells and the plasma during passage of the blood through the brain. By comparing influx and net cerebral uptake rates it appears that efflux of glucose from the brain occurs, particularly in hyperglycaemic states.
Article
Uptake and output of lactate were measured in lumbar sympathetic chains excised from embryos of white leghorn chickens, 14-15 days old. The chains, typically containing 30-40 micrograms of protein, were incubated in Eagle's minimum essential medium containing bicarbonate buffer, 6-17 mM glucose, various concentrations of lactate, and either [U-14C]lactate, [1-14C]glucose, or [6-14C]glucose. The average rate of uptake of labeled lactate was measured with incubations of 5-6 h, starting with various external lactate concentrations. From these data the instantaneous relation between lactate uptake rate and concentration was deduced with a simple computerized model. The instantaneous uptake rate increased with the concentration according to a relation that fit the Michaelis-Menten equation, with Vmax = 360 mumol/g protein/h and Km = 4.8 mM. Substantial fractions of the lactate carbon were recovered from tissue constituents and in several nonvolatile products in the medium, as well as in CO2. Glucose uptake averaged about 108 mumol/g protein/h and did not vary greatly with external lactate concentration, although the metabolic partitioning of glucose carbon was considerably affected. Regardless of initial concentration, the lactate concentration in the medium tended to change towards approximately 0.6 mM, showing that uptake equaled output at this level, with rates at about 40 mumol/g protein/h. With the steady-state concentration of 0.6 mM lactate, about 20% of the glucose carbon was shunted out into the medium before it was reabsorbed and metabolized into various products. Lactate uptakes by neuronal and nonneuronal cultures prepared from the ganglia did not differ consistently from one another or from uptake by undissociated ganglia. The neuronal cultures tended to oxidize a greater fraction of the consumed lactate to CO2 and to convert a smaller fraction of the lactate to products in the medium than did the nonneuronal cultures. Computer modeling, using known parameters for blood-brain transport of lactate in the adult rat and data on uptake by the ganglia, suggests that lactate may supply substantial fuel to the brain, even in the presence of abundant glucose, when the lactate concentration in the blood is raised to levels commonly observed in exercising humans, such as 10-20 mM. This is in agreement with the findings of several investigators in hypoglycemic humans and in animals with intermediate blood lactate concentrations.
Article
In order to contribute to the elucidation of the function of astrocyte glycogen in brain, studies on the fate of the glucosyl residues of glycogen were carried out on astroglia-rich primary cultures derived from the brains of newborn rats. On glucose deprivation astroglial cells rapidly deplete their glycogen. In contrast to the situation with hepatocytes, only lactate, but not glucose, is detectable in the medium surrounding the astroglial cells. Besides glucose, astroglial cultures can also use mannose as a substrate for the synthesis of glycogen and the generation of lactate. Although mannose-fed astroglial cells contain glucose-6-phosphate, they do not release a measurable amount of glucose into the culture medium. Instead of glucose the astroglial cells release high amounts of lactate into the culture medium. Gluconolactone or 2-deoxyglucose which prevent glycogen breakdown in astroglial cells after glucose deprivation, allow to discriminate between lactate generated from glycogen and lactate from other sources. The amount of lactate found in the medium in the absence of gluconolactone (or 2-deoxyglucose) exceeds the amount found in the presence of either compound by the lactate equivalents calculated to be contained in the cellular glycogen. In conclusion, glycogen in astrocytes can be considered as a store for lactate rather than for glucose.
Article
The glycolytic end product lactic acid induced a rapid transient decrease in cytosolic pH in cultured neurons and astrocytes, as measured by microspectrofluorometry using the fluorescent indicator dye 2',7'-bis-(2-carboxyethyl)-5-(and-6) carboxyfluorescein acetoxymethyl ester. Over a physiological range of pH, the initial rate of cellular acidification was a saturable function of the extracellular lactate concentration, suggesting that a saturable transport system mediated lactic acid permeation across the plasma membrane. This transport process displayed stereoselectivity, with a threefold higher rate of intracellular acidification by L-lactic acid than by its D-isomer. Lactic acid-induced acidification occurred in the absence of intracellular ATP, suggesting that transport proceeded independently of the cellular energy charge. These data suggest the existence of a lactic acid carrier in mammalian neuronal and astrocytic plasma membranes, which might serve an acid-scavenging function under conditions of altered pH homeostasis. In the setting of in vivo cerebral ischemia, this carrier may promote the efflux of lactic acid from astrocytes, redistributing it among less metabolically active neurons.
Article
Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36 degrees C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1-10 mM), lactate (1-10 mM), [U-14C]glucose, [1(-14)C]glucose, [6(-14)C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U(-14)C]glucose, and glucose reduced that from [U(-14)C]lactate. When using uniformly labeled substrates in the presence of 5.5 mM glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was > 2 mM. The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1(-14)C]glucose always exceeded that from [6(-14)C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.
Article
In vertebrates, the interconversion of lactate and pyruvate is catalyzed by the enzyme lactate dehydrogenase. Two distinct subunits combine to form the five tetrameric isoenzymes of lactate dehydrogenase. The LDH-5 subunit (muscle type) has higher maximal velocity (Vmax) and is present in glycolytic tissues, favoring the formation of lactate from pyruvate. The LDH-1 subunit (heart type) is inhibited by pyruvate and therefore preferentially drives the reaction toward the production of pyruvate. There is mounting evidence indicating that during activation the brain resorts to the transient glycolytic processing of glucose. Indeed, transient lactate formation during physiological stimulation has been shown by 1H-magnetic resonance spectroscopy. However, since whole-brain arteriovenous studies under basal conditions indicate a virtually complete oxidation of glucose, the vast proportion of the lactate transiently formed during activation is likely to be oxidized. These in vivo data suggest that lactate may be formed in certain cells and oxidized in others. We therefore set out to determine whether the two isoforms of lactate dehydrogenase are localized to selective cell types in the human brain. We report here the production and characterization of two rat antisera, specific for the LDH-5 and LDH-1 subunits of lactate dehydrogenase, respectively. Immunohistochemical, immunodot, and western-blot analyses show that these antisera specifically recognize their homologous antigens. Immunohistochemistry on 10 control cases demonstrated a differential cellular distribution between both subunits in the hippocampus and occipital cortex: neurons are exclusively stained with the anti-LDH1 subunit while astrocytes are stained by both antibodies. These observations support the notion of a regulated lactate flux between astrocytes and neurons.
Article
The transport of lactate and pyruvate across membranes of vestibular dark cells (VDC) may be important under aerobic, ischemic or hypoxic conditions. This study addresses the questions whether VDC from the gerbil contain an H+/monocarboxylate− cotransporter (MCT) and in which membrane, apical or basolateral, MCT is located. Uptake of monocarboxylates into VDC was monitored in functional studies by measuring the cytosolic pH (pH i ) and by measuring the pH-sensitive equivalent short circuit current (I sc ). Subtypes of the functionally identified MCT which are present in vestibular labyrinth tissues were identified as transcripts by cloning and sequencing of reverse-transcriptase polymerase chain reaction (RT-PCR) products. Monocarboxylates but not dicarboxylates induced a transient acidification of pH i which was inhibited by 5 mmα-cyano-4-hydroxycinnamate (CHC) but not by 1 μm DIDS or 500 μm pCMBS. The initial rate of acidification induced by monocarboxylates was dose-dependent in the range between 1 and 20 mm. K m values were for pyruvate 1.3, acetate 3.7, l-lactate 3.8 and d-lactate 7.3 mm. Both apical and basolateral application of monocarboxylates caused a transient increase of I sc which was sensitive to 5 mm CHC. RT-PCR revealed the presence of transcripts for the MCT subtypes MCT1 and MCT2. The identity of transcripts was confirmed by sequence analysis. These observations suggest that VDC contain an MCT in their apical and basolateral membrane and that the vestibular labyrinth contains transcripts for the subtypes MCT1 and MCT2.
Article
Recent evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. This would imply the presence of specific transporters for lactate on both cell types. We have investigated the immunohistochemical localization of two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Using specific antibodies raised against MCT1 and MCT2, we found strong immunoreactivity for each transporter in glia limitans, ependymocytes and several microvessel-like elements. In addition, small processes distributed throughout the cerebral parenchyma were immunolabeled for monocarboxylate transporters. Double immunofluorescent labeling and confocal microscopy examination of these small processes revealed no co-localization between glial fibrillary acidic protein and monocarboxylate transporters, although many glial fibrillary acidic protein-positive processes were often in close apposition to elements labeled for monocarboxylate transporters. In contrast, several elements expressing the S100beta protein, another astrocytic marker found to be located in distinct parts of the same cell when compared with glial fibrillary acidic protein, were also strongly immunoreactive for MCT1, suggesting expression of this transporter by astrocytes. In contrast, MCT2 was expressed in a small subset of microtubule-associated protein-2-positive elements, indicating a neuronal localization. In conclusion, these observations are consistent with the possibility that lactate, produced and released by astrocytes (via MCT1), could be taken up (via MCT2) and used by neurons as an energy substrate.
Article
A rat four-vessel cerebral occlusion model was used to examine the effects of D-lactate and oxamate, a lactate dehydrogenase inhibitor, on cortical window superfusate levels of amino acids, glucose and L-lactate. Superfusate levels of aspartate, glutamate, taurine, GABA and phosphoethanolamine rose during ischemia and then declined during reperfusion. Glycine and alanine levels tended to increase during reperfusion, whereas glutamine levels were lower. Serine levels were not altered. Glucose levels declined rapidly during ischemia and recovered during reperfusion. Lactate levels were sustained during ischemia and increased during reperfusion. Unlike L-lactate, which attenuated ischemia/reperfusion (I/R) evoked amino acid release (J.W. Phillis, D. Song, L.L. Guyot, M.H. O'Regan, Lactate reduces amino acid release and fuels recovery of function in the ischemic brain, Neurosci. Lett. 272 (1999) 195-198), topical application of D-lactate (20 mM), which is not used as an energy substrate, enhanced the I/R release of aspartate, glutamate, GABA and taurine into cortical superfusates, and also elevated L-lactate levels above those in the controls. Glucose levels were not altered. Oxamate (20 mM) application elevated the pre-ischemia levels of alanine, glycine and GABA and those of GABA during ischemia. Levels of all amino acids, with the exception of phosphoethanolamine, were elevated during reperfusion. Oxamate, an inhibitor of lactate dehydrogenases 1 and 5, did not alter the pattern of efflux of glucose and L-lactate. In the presence of oxamate, L-lactate (20 mM) failed to inhibit amino acid release. The failure of D-lactate to attenuate amino acid release confirms the inability of this isomer to act as a metabolic substrate. The oxamate data indicate that inhibition of lactate dehydrogenase is detrimental to the viability of cortical cells during I/R, even though extracellular lactate levels are elevated. The pre-ischemia increases in alanine and glycine are suggestive of elevations in pyruvate as a result of the block of its conversion to lactate, with transamination reactions converting pyruvate to form these amino acids. In summary, the results further substantiate the concept of a role for L-lactate as a cerebral energy substrate.
Article
Glucose has long been considered the substrate for neuronal energy metabolism in the brain. Recently, an alternative explanation of energy metabolism in the active brain, the astrocyte-neuron lactate shuttle hypothesis, has received attention. It suggests that during neural activity energy needs in glia are met by anaerobic glycolysis, whereas neuronal metabolism is fueled by lactate released from glia. In this article, we critically examine the evidence supporting this hypothesis and explain, from the perspective of enzyme kinetics and substrate availability, why neurons probably use ambient glucose, and not glial-derived lactate, as the major substrate during activity.
Article
We tested the hypothesis that non-glucose energy sources can support axon function in the rat optic nerve. Axon function was assessed by monitoring the stimulus-evoked compound action potential (CAP). CAP was maintained at full amplitude for 2 hr in 10 mM glucose. 20 mM lactate, 20 mM pyruvate, 10 mM fructose, or 10 mM mannose supported axon function as effectively as did glucose, and 10 mM glutamine provided partial support, but beta-hydroxybutyrate, octanoate, sorbitol, alanine, aspartate, and glutamate failed to support axon function. Our results indicated that a variety of compounds can sustain function in CNS myelinated axons. Axons probably use lactate, pyruvate, and glutamine directly as energy substrates, whereas mannose and fructose could be shuttled through astrocytes to lactate, which is then exported to axons.
Article
Experiments were carried out to test the hypothesis that lactate reduces the neurotoxicity of glutamate in vivo. MAP2 immunohistochemistry was used to measure lesion size, and microdialysis to measure the changes in glucose and lactate in the extracellular compartment. After implantation of a microdialysis probe 100 mM glutamate with or without 6 mM lactate was added to the perfusion medium and infused into the cortex of unanesthetized rats. Infusion of 100 mM glutamate for a period of 30 min produced a lesion of 6.05 +/- 0.64 mm(3), an increase in lactate of 124 +/- 19% above basal and a 21 +/- 9% reduction of glucose below basal level. When 6mM L-lactate was perfused together with 100 mM glutamate there was a significant reduction in the size of the lesion and there was no reduction in dialysate glucose. When L-lactate was replaced with D-lactate the lesion size and the increase in dialysate lactate were greater than after glutamate alone. The neuroprotective role of L-lactate is attributed to its ability to meet the increased energy demands of neurones exposed to high concentrations of glutamate.
Article
The rates of uptake and oxidation of [U-(14)C]lactate and [U-(14)C]glucose were determined in primary cultures of astrocytes and neurons from rat brain, in the presence and absence of the monocarboxylic acid transport inhibitor alpha-cyano-4-hydroxycinnamate (4-CIN). The rates of uptake for 1 mM lactate and glucose were 7.45 +/- 1.35 and 8.80 +/- 1.0 nmol/30 sec/mg protein in astrocytes and 2.36 +/- 0.19 and 1.93 +/- 0.16 nmol/30 sec/mg protein in neuron cultures, respectively. Lactate transport into both astrocytes and neurons was significantly decreased by 0.25-1.0 mM 4-CIN; however, glucose uptake was not affected. The rates of (14)CO(2) formation from 1 mM lactate and glucose were 12.49 +/- 0.77 and 3.42 +/- 0.67 nmol/hr/mg protein in astrocytes and 29.32 +/- 2.81 and 10.04 +/- 1.79 nmol/hr/mg protein in neurons, respectively. Incubation with 0.25 mM 4-CIN decreased the oxidation of lactate and glucose to 57.1% and 54.1% of control values in astrocytes and to 13.2% and 41.6% of the control rates in neurons, respectively. Preincubation with 4-CIN further decreased the oxidation of both glucose and lactate. Studies with glucose specifically labeled in the one and six positions demonstrated that 4-CIN decreased mitochondrial glucose oxidation but did not impair the metabolism of glucose via the pentose phosphate pathway in the cytosol. The lack of effect of 4-CIN on glutamate oxidation demonstrated that overall mitochondrial metabolism was not impaired. These findings suggest that the impaired neuronal function and tissue damage in the presence of 4-CIN observed in other studies may be due in part to decreased uptake of lactate; however, the effects of 4-CIN on mitochondrial transport would significantly decrease the oxidative metabolism of pyruvate derived from both glucose and lactate.
Article
Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.
Article
Although previous Northern blot and in situ hybridization studies suggested that neurons express the monocarboxylate transporter MCT2, subsequent immunohistochemical analyzes either failed to confirm the presence of this transporter or revealed only a low density of immunolabeled neuronal processes in vivo. The authors report that appropriate section pretreatment (brief warming episode or proteinase K exposure) leads to extensive labeling of the neuropil, which appears as tiny puncta throughout the whole mouse brain. In addition, intense MCT2 immunoreactivity was found in cerebellar Purkinje cell bodies and their processes, on mossy fibers in the cerebellum, and on sensory fibers in the brainstem. Double immunofluorescent labeling with appropriate markers and observation with epifluorescence and confocal microscopy did not show extensive colocalization of MCT2 immunoreactivity with presynaptic or postsynaptic elements, but colocalization could be observed occasionally in the cortex with the postsynaptic density protein PSD95. Observations made at the electron microscopic level in the cortex corroborated these results and showed that MCT2 immunoreactivity was associated with wide membrane segments of neuronal processes. These data provide convincing evidence that MCT2 represents a major neuronal monocarboxylate transporter in the adult mouse brain, and further suggest that mature neurons could use monocarboxylates such as lactate as additional energy substrates.
Article
Mammalian L-isomer dehydrogenases represent an expansive and well characterized class of metabolic enzymes. Surprisingly, little is known regarding their evolutionarily distinct counterparts, D-isomer dehydrogenases, since few mammalian D-isomer 2-hydroxy acid enzymes have been isolated. Here we present the identification and initial characterization of putative human and murine D-lactate dehydrogenases (DLD) that can interact with the muscle-specific cysteine-rich protein CRP3/MLP. Sequence analysis reveals that the human and mouse transcripts encode novel proteins that display strong similarities to the yeast D-lactate dehydrogenase proteins DLD1, AIP2, and YEL071W. Expression analysis of the mammalian proteins indicates widespread distribution with transcripts present in striated muscle tissues and a variety of other tissue types. Immunofluorescence subcellular localization of the mouse DLD protein indicates that it resides within mitochondria, a feature shared by many dehydrogenases. The identification of the human and mouse DLD clones provides new insight regarding the activity of D-isomer-specific enzymes in mammalian cells.
Article
Despite unquestionable evidence that glucose is the major energy substrate for the brain, data collected over several decades with different approaches suggest that lactate may represent a supplementary metabolic substrate for neurons. Starting with the pioneering work of McIlwain in the early 1950s which showed that lactate can sustain the respiratory rate of small brain tissue pieces, this idea receives confirmation with more recent studies using nuclear magnetic resonance spectroscopy undoubtedly demonstrating that lactate is efficiently oxidized by neurons, both in vitro and in vivo. Not only is lactate able to maintain ATP levels and promote neuronal survival but it was also found to support neuronal activity, at least if low levels of glucose are present. Despite the early suggestion for a role of astrocytes in metabolic supply to neurons, it is only recently however that they have been considered as a potential source of lactate for neurons. Moreover, it has been proposed that astrocytes might provide lactate to neurons in response to enhanced synaptic activity by a well-characterized mechanism involving glutamate uptake. The description of specific transporters for lactate on both astrocytes and neurons further suggest that there exist a coordinated mechanism of lactate exchange between the two cell types. Thus it is proposed that astrocytes play a nursing role toward neurons by providing lactate as an additional energy substrate especially during periods of enhanced synaptic activity. The importance of this metabolic cooperation within the central nervous system, although not unique if compared to other organs, still remains to be explored.