Ranjan Dutta

Ranjan Dutta
  • Ph.D
  • Associate Staff at Cleveland Clinic

About

121
Publications
19,175
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,637
Citations
Current institution
Cleveland Clinic
Current position
  • Associate Staff
Additional affiliations
October 2016 - present
Lerner Research Institute
Position
  • Assistant Staff
August 2012 - present
Lerner Research Institute
Position
  • Researcher
August 2012 - present
Cleveland Clinic
Position
  • Professor (Assistant)

Publications

Publications (121)
Article
Full-text available
Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex neurodegenerative disease by lack of effective treatments. We developed a network medicine methodology via integrating human brain multi-omics data to prioritize drug targets and repurposable treatments for ALS. We leveraged non-coding ALS loci effects from genome-wide associat...
Article
Full-text available
The interferon (IFN) system protects mammals from diseases caused by virus infections. IFN synthesis is induced by pattern recognition receptor signaling pathways activated by virus infection. IFN is secreted from the infected cells and acts upon neighboring cells by binding cell surface receptors and triggering induction of hundreds of IFN-stimula...
Article
Full-text available
Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitu...
Preprint
Full-text available
Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex neurodegenerative disease by lack of effective treatments. To date, the challenge to establishing effective treatment for ALS remains formidable, partly due to inadequate translation of existing human genetic findings into actionable ALS-specific pathobiology for subsequent the...
Preprint
Full-text available
Background and Objectives: Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex neurodegenerative disease by lack of effective treatments. To date, the challenge to establishing effective treatment for ALS remains formidable, partly due to inadequate translation of existing human genetic findings into actionable ALS-specific path...
Preprint
Spared regions of the damaged central nervous system undergo dynamic remodeling and exhibit a remarkable potential for therapeutic exploitation. Here, lesion-remote astrocytes (LRAs), which interact with viable neurons, glia and neural circuitry, undergo reactive transformations whose molecular and functional properties are poorly understood. Using...
Article
Full-text available
Objective Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, wh...
Article
Full-text available
Multiple Sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressi...
Preprint
Full-text available
Microglia are the resident immune cells of the central nervous system (CNS) and are important regulators of normal brain functions. In CNS demyelinating diseases like multiple sclerosis (MS), the functions of these cells are of particular interest. Here we probed the impact of microRNA (miRNA)-mediated post-transcriptional gene regulation using a m...
Article
Full-text available
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS). Infiltrating inflammatory immune cells perpetuate demyelination and axonal damage in the CNS and significantly contribute to pathology and clinical deficits. While the cytokine interferon (IFN)γ is classically described as deleterious in ac...
Preprint
Full-text available
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS). Infiltrating inflammatory immune cells perpetuate demyelination and axonal damage in the CNS and significantly contribute to pathology and clinical deficits. While the cytokine interferon (IFN)γ is classically described as deleterious in ac...
Article
Besides antiviral functions, type I IFN expresses potent anti-inflammatory properties and is being widely used to treat certain autoimmune conditions, such as multiple sclerosis. In a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis, administration of IFN-β effectively attenuates the disease development. However, the pr...
Preprint
Multiple Sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressi...
Article
Full-text available
The classification of multiple sclerosis (MS) has been established by Lublin in 1996 and revised in 2013. The revision includes clinically isolated syndrome, relapsing-remitting, primary progressive and secondary progressive MS, and has added activity (i.e., formation of white matter lesions or clinical relapses) as a qualifier. This allows for the...
Article
Full-text available
Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identif...
Preprint
Full-text available
Besides anti-viral functions, Type I IFN expresses potent anti-inflammatory properties and is being widely used to treat certain autoimmune conditions, such as multiple sclerosis (MS). In murine model of MS, experimental autoimmune encephalomyelitis (EAE), administration of IFNb effectively attenuates the disease development. However, the precise m...
Preprint
Full-text available
Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identif...
Article
Full-text available
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system, where ongoing demyelination and remyelination failure are the major factors for progressive neurological disability. In this report, we employed a comprehensive proteomic approach and immunohistochemical validation to gain insight into the pat...
Article
Full-text available
We have previously shown that two anti-cancer drugs, CX-4945 and MS-275, protect and preserve white matter (WM) architecture and improve functional recovery in a model of WM ischemic injury. While both compounds promote recovery, CX-4945 is a selective Casein kinase 2 (CK2) inhibitor and MS-275 is a selective Class I histone deacetylase (HDAC) inhi...
Article
Full-text available
Objective Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS). Though MS was initially considered to be a white matter demyelinating disease, myelin loss in cortical gray matter has been reported in all disease stages. We previously identified microRNAs (miRNAs) in white matter...
Article
Full-text available
Research into the epigenome is of growing importance as a loss of epigenetic control has been implicated in the development of neurodegenerative diseases. Previous studies have implicated aberrant DNA and histone methylation in multiple sclerosis (MS) disease pathogenesis. We have previously reported that the methyl donor betaine is depleted in MS...
Article
Full-text available
Germline mutations in PTEN account for ~10% of cases of autism spectrum disorder (ASD) with coincident macrocephaly. To explore the importance of nuclear PTEN in the development of ASD and macrocephaly, we previously generated a mouse model with predominantly cytoplasmic localization of Pten (Ptenm3m4/m3m4).Cytoplasmic predominant Pten localization...
Article
Full-text available
Chronic demyelination in the human CNS is characterized by an inhibitory microenvironment that impairs recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) leading to failed remyelination and axonal atrophy. By network-based transcriptomics, we identified sulfatase 2 (Sulf2) mRNA in activated human primary OPCs. Sulf2, an extr...
Article
Full-text available
Cognitive dysfunction occurs in greater than 50% of individuals with multiple sclerosis (MS). Hippocampal demyelination is a prominent feature of postmortem MS brains and hippocampal atrophy correlates with cognitive decline in MS patients. Cellular and molecular mechanisms responsible for neuronal dysfunction in demyelinated hippocampi are not ful...
Preprint
Full-text available
1. Abstract. The clinical course of multiple sclerosis (MS) is highly variable. To establish a standardized terminology, four distinct MS phenotypes were defined in 1996: relapsing-remitting, secondary progressive, progressive relapsing and primary progressive MS 1. This scheme was recently revised to include radiologically isolated and clinically...
Article
Full-text available
The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathological quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ...
Article
Full-text available
We propose that multiple sclerosis (MS) is best characterized as a syndrome rather than a single disease because different pathogenetic mechanisms can result in the constellation of symptoms and signs by which MS is clinically characterized. We describe several cellular mechanisms that could generate inflammatory demyelination through disruption of...
Article
Full-text available
Fumarate targets pyroptosis A form of inflammatory cell death called pyroptosis depends on the caspase-mediated cleavage of gasdermin D (GSDMD), the fragments of which assemble into permeability pores that then kill the cell. The mechanisms regulating this important cellular process are not yet fully understood. Humphries et al. now report that the...
Article
Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we...
Article
Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the CNS. Bile acids are cholesterol metabolites that can signal through receptors on cells throughout the body, including the CNS and immune system. Whether bile acid metabolism is abnormal in MS is unknown. Using global and targeted metabolomic profiling, we identified lower leve...
Preprint
Full-text available
Following demyelination in the adult CNS, an inhibitory microenvironment impairs recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) leading to failed remyelination and axonal atrophy. By network-based transcriptomics, we identified sulfatase 2 (Sulf2) mRNA in activated human primary OPCs. Sulf2, an extracellular endosulfatas...
Article
Full-text available
Remyelination requires the generation of new oligodendrocytes (OLs), which are derived from oligodendrocyte progenitor cells (OPCs). Maturation of OPCs into OLs is a multi-step process. Here, we describe a microRNA expressed by OLs, miR-27a, as a regulator of OL development and survival. Increased levels of miR-27a were found in OPCs associated wit...
Article
Full-text available
Remyelination requires the generation of new oligodendrocytes (OLs), which are derived from oligodendrocyte progenitor cells (OPCs). Maturation of OPCs into OLs is a multi-step process. Here, we describe a microRNA expressed by OLs, miR-27a, as a regulator of OL development and survival. Increased levels of miR-27a were found in OPCs associated wit...
Article
Full-text available
Oligodendrocyte precursor cells (OPCs) are abundant in the adult central nervous system, and have the capacity to regenerate oligodendrocytes and myelin. However, in inflammatory diseases such as multiple sclerosis (MS) remyelination is often incomplete. To investigate how neuroinflammation influences OPCs, we perform in vivo fate-tracing in an inf...
Article
Full-text available
We describe a rapid tissue donation program for individuals with multiple sclerosis (MS) that requires scientists and technicians to be on-call 24/7, 365 days a year. Participants consent to donate their brain and spinal cord. Most patients were followed by neurologists at the Cleveland Clinic Mellen Center for MS Treatment and Research. Their clin...
Article
Significance There is a broad repertoire of immunomodulatory drugs that effectively treat the inflammatory aspects of relapsing multiple sclerosis (MS). However, axonal degeneration, which occurs mainly in progressive MS, is still not understood and cannot be treated pharmaceutically. As it is the major factor contributing to clinical disability in...
Article
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). The cause of MS is unknown, with no effective therapies available to halt the progressive neurological disability. Development of new and improvement of existing therapeutic strategies would therefore require a better u...
Preprint
Full-text available
Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the CNS. Bile acids are cholesterol metabolites that can signal through receptors on cells throughout the body, including the CNS and immune system. Whether bile acid metabolism is abnormal in MS is unknown. Using global and targeted metabolomic profiling, we identified lower leve...
Article
Full-text available
Background MicroRNA (miRNA) expression in the serum of multiple sclerosis (MS) patients has been correlated with white matter (WM) magnetic resonance imaging (MRI) abnormalities. The expression levels and cellular specificity of the target genes of these miRNAs are unknown in MS brain. Objective The aim of this study was to analyze and validate th...
Data
Table S1. TaqMan assay IDs and expression level of selected miRNAs in WMLs validated by qPCR.
Data
Table S2. Expression level of 362 miRNAs in WMLs compared to NAWM.
Data
Table S5. Inverse correlation between miRNAs and target gene mRNA levels. Clinically associated circulatory miRNA expression was significantly dysregulated in WM lesions as analyzed by microarray expression analysis. miRNAs highlighted in bold were validated by qPCR in independent MS samples. Predicted target genes of respective miRNAs were selecte...
Data
Table S3. Pathways of genes targeted by significantly changed miRNAs in WMLs.
Data
Table S4. KEGG pathway analysis of genes targeted by pathogenic and protective miRNAs.
Article
Full-text available
There is a strong genetic association between germline PTEN mutation and autism spectrum disorder (ASD), making Pten-mutant models exemplary for the study of ASD pathophysiology. We developed the Ptenm3m4 mouse, where Pten is largely restricted from the nucleus, which recapitulates patient-like, autism-related phenotypes: behavioral changes, macroc...
Preprint
Oligodendrocyte precursor cells (OPCs) are abundant in the adult CNS and can be recruited to form new oligodendrocytes and myelin in response to injury or disease. However, in multiple sclerosis (MS), oligodendrocyte regeneration and remyelination are often incomplete, suggesting that recruitment and maturation of OPCs is impaired. MS and the roden...
Article
Full-text available
Current multiple sclerosis (MS) therapies are effective in reducing relapse rate, short-term measures of disability, and magnetic resonance imaging (MRI) measures of inflammation in relapsing remitting MS (RRMS), whereas in progressive/degenerative disease phases these medications are of little or no benefit. Therefore, the development of new thera...
Article
Full-text available
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination and axonal loss. Demyelinating lesions are associated with infiltrating T lymphocytes, bone marrow-derived macrophages (BMDM), and activated resident microglia. Tissue damage is thought to be mediated by T cell produced cytok...
Data
Validation of Nanostring nCounter gene expression analysis by real-time PCR. To validate Nanostring nCounter data, expression of IL-15, Il1Rn, and Arg1 was analyzed by Q-PCR in naïve circulating monocytes and microglia, as well as in bone marrow-derived macrophage (BMDM) and microglia isolated from the spinal cord of JHMV-infected mice at days 5, 7...
Article
White matter (WM) is injured in most strokes, which contributes to functional deficits during recovery. Casein kinase 2 (CK2) is a protein kinase that is expressed in brain, including WM. To assess the impact of CK2 inhibition on axon recovery following oxygen glucose deprivation (OGD), mouse optic nerves (MONs), which are pure WM tracts, were subj...
Article
Fragile X Syndrome (FXS) is the major cause of inherited mental retardation and the leading genetic cause of Autism spectrum disorders. FXS is caused by mutations in the Fragile X Mental Retardation 1 (Fmr1) gene, which results in transcriptional silencing of Fragile X Mental Retardation Protein (FMRP). To elucidate cellular mechanisms involved in...
Article
Full-text available
Multiple Sclerosis (MS) is an immune-mediated demyelinating disease of the human central nervous system (CNS). Memory impairments and hippocampal demyelination are common features in MS patients. Our previous data have shown that demyelination alters neuronal gene expression in the hippocampus. DNA methylation is a common epigenetic modifier of gen...
Chapter
Neuroprotective agents catalyze protective mechanisms, resulting in the reduction of cellular distress and slowing disease development in the nervous system. Specific trophic factors, polypeptides, and heterodimers activate or block receptors during pathogenesis to slow disease progression. Clinically, neuroprotective agents are being synthesized a...
Chapter
Multiple sclerosis (MS) is the major cause of non-traumatic neurological disability in young adults in North America and Europe, where it affects over 2.5 million individuals. Axonal transection in acute MS lesions is thought to occur due to the vulnerability of demyelinated axons to inflammation. Despite the large number of transected axons in acu...
Article
Used in combination with immunomodulatory therapies, remyelinating therapies are a viable therapeutic approach for treating individuals with multiple sclerosis. Studies of postmortem MS brains identified greater remyelination in demyelinated cerebral cortex than in demyelinated brain white matter and implicated reactive astrocytes as an inhibitor o...
Article
Full-text available
Oligodendrocytes produce multi-lamellar myelin membranes that surround axons in the central nervous system (CNS). Preservation and generation of myelin are potential therapeutic targets for dysmyelinating and demyelinating diseases. MicroRNAs (miRNAs) play a vital role in oligodendrocyte differentiation and overall CNS development. miR-124 is a wel...
Article
Full-text available
Myelin destruction due to inflammatory oligodendrocyte cell damage or death in conjunction with axonal degeneration are among the major histopathological hallmarks of multiple sclerosis (MS). The majority of available immunomodulatory medications for MS are approved for relapsing–remitting (RR) MS, for which they reduce relapse rate, MRI measures o...
Article
Full-text available
A remarkable pathological difference between grey matter lesions (GML) and white matter lesions (WML) in Multiple Sclerosis (MS) patients is the paucity of infiltrating leukocytes in GML. To better understand these pathological differences, we hypothesize that the chemokine monocyte chemotactic protein-1 (MCP-1 or CCL2), of importance for leukocyte...
Article
Full-text available
Microglia actively survey the brain microenvironment and play essential roles in sculpting synaptic connections during brain development. While microglial functions in the adult brain are less clear, activated microglia can closely appose neuronal cell bodies and displace axosomatic presynaptic terminals. Microglia-mediated stripping of presynaptic...
Article
The predominant clinical disease course of multiple sclerosis starts with reversible episodes of neurological disability, which transforms into progressive neurological decline. This review provides insight into the pathological differences during relapsing and progressive phases of multiple sclerosis. The clinical course of multiple sclerosis is v...
Article
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system and the leading cause of non-traumatic neurologic disability in young adults in the United States and Europe. The disease course is variable and starts with reversible episodes of neurologic disability which transforms into continuous and irreversi...
Article
Using the Illumina 450K array and a stringent statistical analysis with age and gender correction, we report genome-wide differences in DNA methylation between pathology-free regions derived from human multiple sclerosis-affected and control brains. Differences were subtle, but widespread and reproducible in an independent validation cohort. The tr...
Article
Full-text available
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with an unknown etiology. The clinical disease course is variable, with the majority of patients experiencing reversible episodes of neurological disability in the third or fourth decade of life, eventually followed by a state of irreversible progr...
Article
Full-text available
White matter neurons in multiple sclerosis brains are destroyed during demyelination and then replaced in some chronic multiple sclerosis lesions that exhibit a morphologically distinct population of activated microglia [Chang A, et al. (2008) Brain 131(Pt 9):2366-2375]. Here we investigated whether activated microglia secrete factors that promote...
Article
Objective: Hippocampal demyelination, a common feature of postmortem multiple sclerosis (MS) brains, reduces neuronal gene expression and is a likely contributor to the memory impairment that is found in >40% of individuals with MS. How demyelination alters neuronal gene expression is unknown. Methods: To explore whether loss of hippocampal myel...
Article
Objective: Generation and differentiation of new oligodendrocytes in demyelinated white matter is the best described repair process in the adult human brain. However, remyelinating capacity falters with age in patients with multiple sclerosis (MS). Because demyelination of cerebral cortex is extensive in brains from MS patients, we investigated th...
Article
Full-text available
Intraperitoneal injection of the Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a rapid innate immune response. While this systemic inflammatory response can be destructive, tolerable low doses of LPS render the brain transiently resistant to subsequent injuries. However, the mechanism by which microglia respond to LPS stimulati...
Article
Full-text available
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by a progressive loss of myelin and a failure of oligodendrocyte (OL)-mediated remyelination, particularly in the progressive phases of the disease. An improved understanding of the signaling mechanisms that control differentiation of OL precursors may lead to the identification o...
Data
Full-text available
Validated human and mouse oligonucleotides set for q-PCR quantification. Set of primers selected for the q-PCR based PTP expression profile. (PDF)
Data
Full-text available
Differential gene expression of PTP family members in MS white matter lesions. (PDF)
Data
Differential gene expression of PTP family members in MS grey matter lesions. (PDF)
Data
Full-text available
PTP gene expression in spinal cord and cerebellum from MOG-induced EAE mice. Differential gene expression of PTP family members in EAE spinal cord and cerebellum lesions. (PDF)
Data
Full-text available
PTP gene expression during OL differentiation in mouse mixed cortical cultures. Differential gene expression of PTP family members in mixed cortical culture undergoing OL differentiation. (PDF)
Article
Introduction Descriptions of putative MS date back as early as the Middle Ages, but it was in the nineteenth century when MS was definitively recognized as a distinct disease. The first pathological report was published by Jean-Martin Charcot, Professor of Neurology at the University of Paris in 1868 in the Leçons du mardi. He examined a young woma...
Article
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the human central nervous system. Although the clinical impact of gray matter pathology in MS brains is unknown, 30 to 40% of MS patients demonstrate memory impairment. The molecular basis of this memory dysfunction has not yet been investigated in MS patients. To investigate possi...
Article
This chapter discusses the role of axonal transection and neurodegeneration in multiple sclerosis (MS). Both play significant roles in MS disease progression and the possibility that MS may be a primary neurodegenerative disease with sec­ondary inflammatory demyelination is discussed. MS, an inflammatory demyelinating disease of the central ner­vou...
Article
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system and the leading cause of non-traumatic neurological disability in young adults in the United States and Europe. The clinical disease course is variable and starts with reversible episodes of neurological disability in the third or fourth decade of...
Article
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Due to its high prevalence, MS is the leading cause of non-traumatic neurological disability in young adults in the United States and Europe. The clinical disease course is variable and starts with reversible episodes of neurological disability in...
Article
Full-text available
Myelin, formed by oligodendrocytes (OLs) in the CNS, is critical for axonal functions, and its damage leads to debilitating neurological disorders such as multiple sclerosis. Understanding the molecular mechanisms of myelination and the pathogenesis of human myelin disease has been limited partly by the relative lack of identification and functiona...
Article
Full-text available
Neuronal and axonal degeneration results in irreversible neurological disability in multiple sclerosis (MS) patients. A number of adaptive or neuroprotective mechanisms are thought to repress neurodegeneration and neurological disability in MS patients. To investigate possible neuroprotective pathways in the cerebral cortex of MS patients, we compa...
Article
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the CNS. Approximately 2 million people worldwide have MS, with females outnumbering males 2:1. Because of its high prevalence, MS is the leading cause of nontraumatic neurologic disability in young adults in the United States and Europe. Axon loss is the major cause of irre...
Article
Full-text available
Microglia, the resident inflammatory cells of the CNS, are the only CNS cells that express the fractalkine receptor (CX3CR1). Using three different in vivo models, we show that CX3CR1 deficiency dysregulates microglial responses, resulting in neurotoxicity. Following peripheral lipopolysaccharide injections, Cx3cr1-/- mice showed cell-autonomous mi...
Article
Still today, as for the time of Charcot, multiple sclerosis is defined by pathology with the presence of inflammatory demyelinating foci ("plaques") disseminated in the white matter of the central nervous system (CNS). Each lesion follows its genuine course with an acute formation followed by a more or less complete regression whereas new lesions a...
Article
Still today, as for the time of Charcot, multiple sclerosis is defined by pathology with the presence of inflammatory demyelinating foci ("plaques") disseminated in the white matter of the central nervous system (CNS). Each lesion follows its genuine course with an acute formation followed by a more or less complete regression whereas new lesions a...
Article
Full-text available
Degeneration of chronically demyelinated axons is a major cause of irreversible neurological disability in multiple sclerosis (MS) patients. Development of neuroprotective therapies will require elucidation of the molecular mechanisms by which neurons and axons degenerate. We report ultrastructural changes that support Ca2+-mediated destruction of...

Network

Cited By