Article

Predominantly buried residues in the response regulator Spo0F influence specific sensor kinase recognition

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Several alanine mutations in the response regulator Spo0F induce hypersporulation in Bacillus subtilis. L66A, I90A and H101A mutants are purported to be involved in contacts stabilizing the orientation of the alpha4-helix and hence the beta4-alpha4 kinase recognition loop. Y13A is thought to affect the orientation of the alpha1-helix and consequently phosphatase action. Using comparative NMR chemical shift analyses for these mutants, we have confirmed these suppositions and isolated residues in Spo0F critical in sensor kinases discrimination. In addition, we discuss how buried residues and intra-protein communication networks contribute to precise molecular recognition by ensuring that the correct surface is presented.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... This too could explain increased DNAbinding activity of the PmrA::I13M mutant. Congruently, it is predicted that PmrA residues M12, I13, E15, and S16 are also involved in interactions with phosphatases (75,76). A mutation in this region could alter interactions between PmrA and phosphatases, leading to reduced dephosphorylation, and hence increased DNA-binding. ...
... Since structural analysis of the well-studied response regulator Spo0F (Bacillus subtilis, PDB ID 1PUX) has identified a number of residues that are important for response regulator structure-function relationships, our other hypotheses predicting the effects of the PmrA::I13M mutation are based on homology of PmrA to Spo0F. The important residues identified in Spo0F include the sensor kinase and phosphatase interaction residues (Spo0F G14, I15, I17, L18, E21, and V22)(74)(75)(76), the aspartyl pocket residues (Spo0F D10, D11, and D54)(77), and residues surrounding the aspartyl pocket (Spo0F K104, R16, and T82)(78). ...
Article
Acinetobacter baumannii is an insidious emerging nosocomial pathogen that has developed resistance to all available antimicrobials, including the last resort antibiotic, colistin. Colistin resistance often occurs due to mutations in the PmrAB two component regulatory system. To better understand the regulatory mechanisms contributing to colistin resistance, we have biochemically characterized the A. baumannii PmrA response regulator. Initial DNA-binding analysis shows that A. baumannii PmrA bound to the Klebsiella pneumoniae PmrA box motif. This prompted analysis of the putative A. baumannii PmrAB regulon which indicated that the A. baumannii PmrA consensus box is 5′- HTTAAD N5 HTTAAD. Additionally, we provide the first structural information for the A. baumannii PmrA N-terminal domain through X-ray crystallography, and we present a full-length model using molecular modeling. From these studies, we were able to infer the effects of two critical PmrA mutations, PmrA::I13M and PmrA::P102R, both of which confer increased colistin resistance. Based on these data, we suggest structural and dynamic reasons for how these mutations can affect PmrA function and hence encourage resistive traits. Understanding these mechanisms will aid in the development of new targeted antimicrobial therapies.
... Recently, several constitutively active Spo0F mutants (L66A, I90A, and H101A) have been studied (24)(25)(26). I90 is in the β4-α4 recognition loop, H101 in β5-strand, and L66 in the middle of α3-helix. These mutant proteins are more readily phosphorylated by histidine kinases, resulting in hypersporulation phenotypes. ...
... There have been several intriguing studies on the precise mechanism of response regulator activation upon phosphorylation (25,26,(29)(30)(31). These studies have centered on the propagation of the activating signal across the N-terminal regulatory domain. ...
Article
Full-text available
Two-component signal transduction systems of microbes are a primary means to respond to signals emanating from environmental and metabolic fluctuations as well as to signals coordinating the cell cycle with macromolecular syntheses, among a large variety of other essential roles. Signals are recognized by a sensor domain of a histidine kinase which serves to convert signal binding to an active transmissible phosphoryl group through a signal-induced ATP-dependent autophosphorylation reaction directed to histidine residue. The sensor kinase is specifically mated to a response regulator, to which it transfers the phosphoryl group that activates the response regulator's function, most commonly gene repression or activation but also interaction with other regulatory proteins. Two-component systems have been genetically amplified to control a wide variety of cellular processes; for example, both Escherichia coli and Pseudomonas aeruginosa have 60 plus confirmed and putative two-component systems. Bacillus subtilis has 30 plus and Nostoc punctiformis over 100. As genetic amplification does not result in changes in the basic structural folds of the catalytic domains of the sensor kinase or response regulators, each sensor kinase must recognize its partner through subtle changes in residues at the interaction surface between the two proteins. Additionally, the response regulator must prepare itself for efficient activation by the phosphorylation event. In this short review, we discuss the contributions of the critical β4-α4 recognition loop in response regulators to their function. In particular, we focus on this region's microsecond-millisecond timescale dynamics propensities and discuss how these motions play a major role in response regulator recognition and activation.
... We have studied Spo0F as the prototypical RR receiver domain and have elucidated both specific and general mechanistic characteristics3456789101112. In its unphosphorylated-inactive form, Spo0F occupies two conformational families in the important β4-α4 loop. ...
... We, along with others, proposed that such dynamic sampling of the active conformation was a common feature for RRs [8,10,13,14]. Recently we have been investigating several Spo0F mutants (L66A, I90A and H101A) that are constitutively active [3,4]. These mutants are more readily phosphorylated resulting in a hyper-sporulation phenotype [4,15]. ...
Article
When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This 'conformational trapping' results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site.
... There are, however, some exceptions such as the positions L40, L66, H101, I90, and L87. The L66, H101, and I90 positions are, respectively, buried on the α3 helix, the β5 sheet, and the α4 helix, which do not appear to be in contact with KinA in the predicted complex, although it has been suggested that the hypersporulation phenotypes associated with these mutants arise through the conformational stabilization of an active Spo0F structure (44,45) rather than directly forming stabilizing contacts with KinA. Likewise, the L87 position located on the C-terminal end of the β4 − α4 loop may influence the orientation the β4 − α4 loop, which forms key contacts with the DHp domain. ...
Article
Full-text available
Significance Our study uses amino acid coevolutionary information to better understand how bacterial two-component signaling (TCS) proteins preferentially interact with their correct partners while avoiding interactions with nonpartners. We extract coevolutionary couplings from sequences of TCS partners and study how coevolution is necessary to maintain their ability to transfer signals with high specificity. We use these coevolving couplings to devise a metric, which can predict the effects of mutations in the quality of signal transmission observed in vitro and provide support to the hypothesis that hybrid TCS proteins have reduced specificity. Our metric can potentially be used to redesign a TCS protein to preferentially interact with a nonpartner. Furthermore, our study can potentially be extended to networks of interacting proteins.
... Mutation of H101 of Spo0F to alanine caused a hypersporulating phenotype in B. subtilis (24) by decoupling sporulation from two of the five sensor kinases, presumably by altering the amino residues in the ␤4-␣4 recognition loop (38). The Spo0F protein of B. atrophaeus subsp. ...
Article
Full-text available
Sporulation is a critical developmental process in Bacillus spp, which once initiated removes the possibility of further growth until germination. Therefore, the threshold conditions triggering sporulation are likely to be subject to evolutionary constraint. Our previous studies revealed two spontaneous hypersporulating mutants of B. atrophaeus var. globigii (BG), both containing point mutations in the spo0F gene. One of these strains (Detrick-2; contains the spo0F101allele with a C:T (His101Arg) substitution) had been deliberately selected in the early 1940s as an anthrax surrogate. To determine whether the experimental conditions used during the selection of the "military" strains could have supported the emergence of hypersporulating variants, the relative fitness of strain Detrick-2 was measured in several experimental settings modeled on experimental conditions employed during its development in the 1940s as a simulant. The congenic strain Detrick-1 contained a wild-type spo0F gene and sporulated like the wild-type strain. Relative fitness of Detrick-1 and Detrick-2 were evaluated in competition experiments using quantitative single nucleotide polymorphism (SNP)-specific real-time polymerase chain reaction (PCR) assays directed at the C:T substitution. In all tested conditions, the ancestral strain Detrick-1 had a fitness advantage, except when competing cultures were subjected to frequent heat-shocks. The hypersporulating strain gained maximum fitness advantage when cultures were grown at low oxygen tension and when heat-shock was applied soon after the formation of the first heat-resistant spores. This is interpreted as gain of fitness by the hypersporulating strain in fast changing fluctuating environments as a result of increased rate of switching to sporulating phenotype.
... Other high-MI residue pairings, however, were distant from the interface and involved cluster of residues connecting buried residues in the four-helix bundle core of the kinase to a highly dynamic region of the response regulator. The importance of these correlations for SK/RR recognition has been described (McLaughlin et al., 2007;Szurmant et al., 2008). In the light of identifying protein interaction surfaces, however, these highly correlated pairings have to be considered false positives. ...
Article
Since the onset of the genomic era more than 1000 bacterial genomes have been sequenced and several fold more are expected to be completed in the near future. These genome sequences supply a wealth of information that can be exploited by statistical methods to gain significant insights into cellular processes. In Volume 422 of Methods in Enzymology we described a covariance-based method, which was able to identify coevolving residue pairs between the ubiquitous bacterial two-component signal transduction proteins, the sensor kinase and the response regulator. Such residue position pairs supply interaction specificity in the light of highly amplified but structurally conserved two-component systems in a typical bacterium and are enriched with interaction surface residue pairings. In this chapter we describe an extended version of this method, termed "direct coupling analysis" (DCA), which greatly enhances the predictive power of traditional covariance analysis. DCA introduces a statistical inference step to covariance analysis, which allows to distinguish coevolution patterns introduced by direct correlations between two-residue positions, from those patterns that arise via indirect correlations, that is, correlations that are introduced by covariance with other residues in the respective proteins. This method was shown to reliably identify residue positions in spatial proximity within a protein or at the interface between two interaction partners. It is the goal of this chapter to allow an experienced programmer to reproduce our techniques and results so that DCA can soon be applied to new targets.
... Although this structural model is expected to be mostly accurate, slight discrepancies are to be expected. The most obvious feature of concern is the (4-4)-loop/helix 4-region, which is known to be very dynamic in RR proteins (14,27,28) (Fig. 4B). In the structural template, and hence in our TM0468 model structure, the (4-4)-loop is quite extensive and the helix 4 is quite short (two turns) in comparison with three to four turns in the average RR structure. ...
Article
Full-text available
Bacteria use two-component signal transduction systems (TCS) extensively to sense and react to external stimuli. In these, a membrane-bound sensor histidine kinase (SK) autophosphorylates in response to an environmental stimulus and transfers the phosphoryl group to a transcription factor/response regulator (RR) that mediates the cellular response. The complex between these two proteins is ruled by transient interactions, which provides a challenge to experimental structure determination techniques. The functional and structural homolog of an SK/RR pair Spo0B/Spo0F, however, has been structurally resolved. Here, we describe a method capable of generating structural models of such transient protein complexes. By using existing structures of the individual proteins, our method combines bioinformatically derived contact residue information with molecular dynamics simulations. We find crystal resolution accuracy with existing crystallographic data when reconstituting the known system Spo0B/Spo0F. Using this approach, we introduce a complex structure of TM0853/TM0468 as an exemplary SK/RR TCS, consistent with all experimentally available data.
Article
Clostridioides difficile is an anaerobic, Gram-positive pathogen that is responsible for C. difficile infection (CDI). To survive in the environment and spread to new hosts, C. difficile must form metabolically dormant spores. The formation of spores requires activation of the transcription factor Spo0A, which is the master regulator of sporulation in all endospore-forming bacteria. Though the sporulation initiation pathway has been delineated in the Bacilli, including the model spore-former Bacillus subtilis, the direct regulators of Spo0A in C. difficile remain undefined. C. difficile Spo0A shares highly conserved protein interaction regions with the B. subtilis sporulation proteins Spo0F and Spo0A, although many of the interacting factors present in B. subtilis are not encoded in C. difficile. To determine if comparable Spo0A residues are important for C. difficile sporulation initiation, site-directed mutagenesis was performed at conserved receiver domain residues and the effects on sporulation were examined. Mutation of residues important for homodimerization and interaction with positive and negative regulators of B. subtilis Spo0A and Spo0F impacted C. difficile Spo0A function. The data also demonstrated that mutation of many additional conserved residues altered C. difficile Spo0A activity, even when the corresponding Bacillus interacting proteins are not apparent in the C. difficile genome. Finally, the conserved aspartate residue at position 56 of C. difficile Spo0A was determined to be the phosphorylation site that is necessary for Spo0A activation. The finding that Spo0A interacting motifs maintain functionality suggests that C. difficile Spo0A interacts with yet unidentified proteins that regulate its activity and control spore formation
Preprint
Full-text available
Clostridioides difficile is an anaerobic, Gram-positive pathogen that is responsible for C. difficile infection (CDI). To survive in the environment and spread to new hosts, C. difficile must form metabolically-dormant spores. The formation of spores requires activation of the transcription factor Spo0A, which is the master regulator of sporulation in all endospore-forming bacteria. Though the sporulation initiation pathway has been delineated in the Bacilli, including the model spore-former Bacillus subtilis , the direct regulators of Spo0A in C. difficile remain undefined. C. difficile Spo0A shares highly conserved protein interaction regions with the B. subtilis sporulation proteins Spo0F and Spo0A, although many of the interacting factors present in B. subtilis are not encoded in C. difficile . To determine if comparable Spo0A residues are important for C. difficile sporulation initiation, site-directed mutagenesis was performed at conserved receiver domain residues and the effects on sporulation were examined. Mutation of residues important for homodimerization and interaction with both positive and negative regulators of B. subtilis Spo0A and Spo0F impacted C. difficile Spo0A function. The data also demonstrated that mutation of many additional conserved residues altered C. difficile Spo0A activity, even when the corresponding Bacillus interacting proteins are not apparent in the C. difficile genome. Finally, the conserved aspartate residue at position 56 of C. difficile Spo0A was determined to be the phosphorylation site that is necessary for Spo0A activation. The finding that Spo0A interacting motifs maintain functionality suggests that C. difficile Spo0A interacts with yet unidentified proteins that regulate its activity and control spore formation.
Article
Bacteria detect environmental changes, thanks to two-component signal-transduction systems, composed, in general, of a sensor coupled to a histidine kinase and a DNA binding response regulator. Anoxygenic photosynthetic bacteria like Rhodopseudomonas (Rps.) palustris, possess a highly versatile metabolism and can grow via photosynthesis using light energy or via respiration through oxygen consumption. For photosynthetic bacteria, detecting changes in light quality or quantity, or in oxygen concentration, is therefore of prime importance for adjusting their metabolism for optimal development. A central role is played by bacteriophytochromes for light detection and initiation of regulatory responses. The switch of these chromoproteins between two photointerconvertible forms is the first event in the light-regulated cascade. This chapter describes in vitro and in vivo methods that have been successfully used to investigate the bacteriophytochrome dependent light regulation pathways, in several strains of Rps. palustris and Bradyrhizobium. These approaches range from biochemical and biophysical methods to genetic techniques. Such multiple approaches are indispensable for understanding these complex light-regulated pathway. In a first step, bacteriophytochromes and associated response regulators are overexpressed in Escherichia coli and purified. The spectral and kinetic properties of the two photointerconvertible forms of the purified bacteriophytochromes are then determined by biophysical approaches. Original spectral and kinetic properties found in some of the bacteriophytochromes that we studied necessitated the development of new methods for computing the spectra of the pure forms and the photoconversion yields. In vitro biochemical approaches help to assess the histidine kinase activity of bacteriophytochromes depending on light conditions, the phosphotransfer to response regulators and their affinity to promoter DNA sequences. Finally, gene inactivation tests the importance of specific genes in photosynthesis regulation under particular light and oxygen tension growth conditions. The methods described in this chapter are not restricted to the study of the light-transduction pathways of Rps. palustris and Bradyrhizobium strains but are applicable to the understanding of any bacterial light-regulatory system.
Article
Full-text available
Experiments and procedures are described that greatly alleviate the sequential assignment process of uniformly 13C/15N-enriched proteins by determining the type of amino acid from experiments that correlate side chain with backbone amide resonances. A recently proposed 3D NMR experiment, CBCA(CO)NH, correlates C alpha and C beta resonances to the backbone amide 1H and 15N resonances of the next residue (Grzesiek, S. and Bax, A. (1992) J. Am. Chem. Soc., 114, 6291-6293). An extension of this experiment is described which correlates the proton H beta and H alpha resonances to the amide 1H and 15N resonances of the next amino acid, and a detailed product operator description is given. A simple 2D-edited constant-time HSQC experiment is described which rapidly identifies H beta and C beta resonances of aromatic or Asn/Asp residues. The extent to which combined knowledge of the C alpha and C beta chemical shift values determines the amino acid type is investigated, and it is demonstrated that the combined C alpha and C beta chemical shifts of three or four adjacent residues usually are sufficient for defining a unique position in the protein sequence.
Article
A novel approach is described for obtaining sequential assignment of the backbone 1H, 13C, and 15N resonances of larger proteins. The approach is demonstrated for the protein calmodulin (16.7 kDa), uniformly (approximately 95%) labeled with 15N and 13C. Sequential assignment of the backbone residues by standard methods was not possible because of the very narrow chemical shift distribution range of both NH and C alpha H protons in this largely alpha-helical protein. We demonstrate that the combined use of four new types of heteronuclear 3D NMR spectra together with the previously described HOHAHA-HMQC 3D experiment [Marion, D., et al. (1989) Biochemistry 28, 6150-6156] can provide unambiguous sequential assignment of protein backbone resonances. Sequential connectivity is derived from one-bond J couplings and the procedure is therefore independent of the backbone conformation. All the new 3D NMR experiments use 1H detection and rely on multiple-step magnetization transfers via well-resolved one-bond J couplings, offering high sensitivity and requiring a total of only 9 days for the recording of all five 3D spectra. Because the combination of 3D spectra offers at least two and often three independent pathways for determining sequential connectivity, the new assignment procedure is easily automated. Complete assignments are reported for the proton, carbon, and nitrogen backbone resonances of calmodulin, complexed with calcium.
Article
The phosphorelay is the signal-transduction system recognizing and integrating environmental signals to initiate sporulation. The major signal input to the phosphorelay is an ATP-dependent kinase, KinA, responsible for phosphorylating the Spo0F protein. Mutants lacking KinA, however, still sporulate, suggesting that other kinases can fulfil its role. In order to identify these kinases, genes for kinases were isolated by hybridization using a degenerate oligonucleotide probe designed for common regions of this class of kinases. A gene for a second kinase, KinB, was isolated which gave a sporulation negative phenotype when inactivated in a kinA background. The kinB locus was sequenced and found to be a small operon consisting of the kinB gene and another gene, kapB, transcribed from a single σ;A-dependent promoter. Inactivation of either kinB or kapB in a kinA strain led to severe sporulation deficiency. The kinB gene coded for a 47774 Mr protein with the carboxyl half of this protein highly homologous to the same domain of KinA. The amino-terminal domain of KinB was hydro-phobic with six recognizable membrane-spanning regions. The kapB gene coded for a moderately charged, probably soluble, protein of 14666 Mr, with no homology to any known protein. Genetic evidence suggests that KapB is required either for the function of KinB or for its expression. Although double mutants kinA kinB cannot sporulate and assume a stage 0 phenotype, the SpoA∼P-dependent regulation of the abrB gene is normal in these strains, suggesting that low levels of SpoA∼P accumulate even in the absence of both kinases. This accumulation is dependent on functional spoOF and spoOB genes and its source is unknown. The KinA and KinB pathways are the only pathways capable of producing sufficient SpoOA∼P to allow initiation and completion of sporulation under laboratory conditions.
Article
Five single alanine substitution mutations in the Spo0F response regulator gave rise to mutant strains of Bacillus subtilis with seemingly normal sporulation that nevertheless rapidly segregated variants blocked in sporulation. The basis for this deregulated phenotype was postulated to be increased phosphorylation of the Spo0A transcription factor, resulting from enhanced phosphate input or decreased dephosphorylation of the phosphorelay. Strains bearing two of these Spo0F mutant proteins, Y13A and I17A, retained a requirement for KinA and KinB kinases in sporulation, whereas the remaining three, L66A, I90A and H101A, gave strains that sporulated well in the absence of both KinA and KinB. Sporulation of strains bearing L66A and H101A mutations was decreased in a mutant lacking KinA, KinB and KinC, but the strain bearing the I90A mutation required the further deletion of KinD to lower its sporulation frequency. The affected residues, L-66, I-90 and H-101, are involved in crucial hydrophobic contacts stabilizing the orientation of helix α4 of Spo0F. The data are consistent with the notion that these three mutations alter the conformation of the β4–α4 loop of Spo0F that is known to contain residues critical for KinA:Spo0F recognition. As this loop has a propensity for multiple conformations, the spatial arrangement of this loop may play a critical role in kinase selection by Spo0F and might be altered by regulatory molecules interacting with Spo0F.
Article
A general approach for assigning the resonances of uniformly 15N- and 13C-labeled proteins in their unfolded state is presented. The assignment approach takes advantage of the spectral dispersion of the amide nitrogen chemical shifts in denatured proteins by correlating side chain and backbone carbon and proton frequencies with the amide resonances of the same and adiacent residues. The 1H resonances of the individual amino acid spin systems are correlated with their intraresidue amide in a 3D 15N-edited 1H, 1H-TOCSY-HSQC experiment, which allows the spin systems to be assigned to amino acid type. The spin systems are then linked to the adjacent i-1 spin system using the 3D H(C)(CO)NH-TOCSY experiment. Complete 13C assignments are obtained from the 3D (H)C(CO)NH-TOCSY experiment. Unlike other methods for assigning denatured proteins, this approach does not require previous knowledge of the native state assignments or specific interconversion rates between the native and denatured forms. The strategy is demonstrated by assigning the 1H, 13C, and 15N resonances of the FK506 binding protein denatured in 6.3 M urea.
Article
Two multidimensional heteronuclear NMR experiments are described for assigning the resonances in uniformly 15N- and 13C-labeled proteins. In one experiment (HCNH-TOCSY), the amide nitrogen and proton are correlated to the side-chain protons and carbons of the same and preceding residue. In a second triple resonance experiment (HC(CO)NH-TOCSY), the amide nitrogen and proton of one residue is correlated exclusively with the side-chain proton and carbon resonances of the preceding residue by transferring magnetization through the intervening carbonyl. The utility of these two experiments for making sequential resonance assignments in proteins is illustrated for [U-15N, 13C]FKBP (107 residues) complexed to the immunosuppressant, ascomycin.
Article
A general approach is described for measuring homo- and heteronuclear spin coupling constants in polypeptides and small proteins. This method uses selective magnetization transfer to generate cross peaks similar to exclusive correlated spectroscopy (E.COSY) and a large direct spin coupling (1J) in one dimension to "pull apart" cross-peak components by frequencies much larger than the resonance line width. A general description of this method is presented, along with a brief discussion of spin topology and relaxation effects that must be considered in designing multidimensional nmr pulse sequences for measuring vicinal coupling constants. The principles are demonstrated in designs of several two-dimensional nmr experiments for determining coupling constants in polypeptides and proteins. These include experiments for measuring 3J(HN-H alpha), 3J(H alpha i-1-15Ni), 3J(15N-H beta), and 3J(H alpha-H beta) coupling constants, which depend on the polypeptide dihedral angles phi, psi, and chi 1. Multidimensional nmr experiments developed with this approach will allow measurements of many vicinal coupling constants in peptides, proteins, and other molecules. Coupling constants measured in these spectra can be used to determine backbone and side-chain conformations, to obtain stereospecific resonance assignments of prochiral atoms, and to characterize conformational distributions of dihedral angles. Combined with information obtained from nuclear Overhauser effect measurements, these data will provide more precise determinations of protein solution structures by nmr spectroscopy.
Article
Stage 0 sporulation (spo0) mutants of Bacillus subtilis are defective in the signal transduction system initiating sporulation. Two of the products of these genes, Spo0A and Spo0F, are related to response regulator components of two-component regulatory systems used to control environmental responses in bacteria. The Spo0F response regulator was found to be the primary substrate for phosphorylation by the sporulation-specific protein kinase, KinA. Phosphorylated Spo0F was the phosphodonor for a phosphotransferase, Spo0B, which transferred the phosphate group to the second response regulator, the transcription regulatory protein Spo0A. This phosphorelay provides a mechanism for signal gathering from several protein kinases using Spo0F as a secondary messenger. These divergent signals are integrated through Spo0B phosphotransferase to activate the Spo0A transcription factor. This system provides for many levels of control to prevent capricious induction of sporulation.
Article
The initiation of sporulation of bacteria is a complex cellular event controlled by an extensive network of regulatory proteins that serve to ensure that a cell embarks on this differentiation process only when appropriate conditions are met. The major signal-transduction pathway for the initiation of sporulation is the phosphorelay, which responds to environmental, cell cycle, and metabolic signals, and phosphorylates the Spo0A transcription factor activating its function. Signal input into the phosphorelay occurs through activation of kinases to phosphorylate a secondary-messenger protein, Spo0F. Spo0F-P serves as a substrate for phosphoprotein phosphotransferase, Spo0B, which phosphorylates Spo0A. The pathway is regulated by transcriptional control of its component proteins and by regulating phosphate flux through the pathway. This is accomplished by several regulatory proteins, and by activated Spo0A, which regulates transcription of genes for its own synthesis. Spo0A-P indirectly controls the transcription of numerous genes by regulating the level of other transcription regulators and directly activates the transcription of several regulatory proteins and sigma factors required for progression to the second stage of sporulation. Although the pathway and regulatory proteins have been identified, the signals and effectors for these regulators remain a mystery.
Article
Sporulating organisms, such as the aerobic bacilli are capable of competing successfully by maintaining high growth rates under conditions of nutrient sufficiency. When conditions are less favorable, such organisms retain the option to form a spore, thus allowing long-term survival under the most adverse natural circumstances. The signal-transduction system for initiation of sporulation is a significant variation of two-component regulatory systems that function to interpret environmental signals in bacteria. As sporulation is a direct response to the cellular level of phosphorylated Spo0A, the pathway that produces it is subject to a surfeit of controls. These controls operate by regulation of the flow of phosphate through the phosphorelay and by repression of transcription of genes for the components of the phosphorelay. There are several regulatory proteins in aggregate termed transition-state regulators that control expression of a large number of genes normally turned on during the transition state between exponential growth and the stationary phase of growth. Transition-state regulators are negative regulatory proteins that prevent transcription of the genes. The transition-state regulators and the phosphorelay are an integrated package producing a global regulatory network that ultimately can control sporulation as part of its function. However, they also can lead to other physiological states, such as competence that can be viewed as an alternative to sporulation. The chapter also outlines the initiation pathways for sporulation.
Article
The phosphorelay is the signal-transduction system recognizing and integrating environmental signals to initiate sporulation. The major signal input to the phosphorelay is an ATP-dependent kinase, KinA, responsible for phosphorylating the SpoOF protein. Mutants lacking KinA, however, still sporulate, suggesting that other kinases can fulfil its role. In order to identify these kinases, genes for kinases were isolated by hybridization using a degenerate oligonucleotide probe designed for common regions of this class of kinases. A gene for a second kinase, KinB, was isolated which gave a sporulation negative phenotype when inactivated in a kinA background. The kinB locus was sequenced and found to be a small operon consisting of the kinB gene and another gene, kapB, transcribed from a single.sigma A.-dependent promoter. Inactivation of either kinB or kapB in a kinA strain led to severe sporulation deficiency. The kinB gene coded for a 47774 M(r) protein with the carboxyl half of this protein highly homologous to the same domain of KinA. The amino-terminal domain of KinB was hydrophobic with six recognizable membrane-spanning regions. The kapB gene coded for a moderately charged, probably soluble, protein of 14,668 M(r) with no homology to any known protein. Genetic evidence suggests that KapB is required either for the function of KinB or for its expression. Although double mutants kinA kinB cannot sporulate and assume a stage 0 phenotype, the SpoA approximately P-dependent regulation of the abrB gene is normal in these strains, suggesting that low levels of SpoA approximately P accumulate even in the absence of both kinases. This accumulation is dependent on functional spo0F and spo0B genes and its source is unknown. The KinA and KinB pathways are the only pathways capable of producing sufficient Spo0A approximately P to allow initiation and completion of sporulation under laboratory conditions.
Article
Rap phosphatases are a recently discovered family of protein aspartate phosphatases that dephosphorylate the Spo0F--P intermediate of the phosphorelay, thus preventing sporulation of Bacillus subtilis. They are regulators induced by physiological processes that are antithetical to sporulation. The RapA phosphatase is induced by the ComP-ComA two-component signal transduction system responsible for initiating competence. RapA phosphatase activity was found to be controlled by a small protein, PhrA, encoded on the same transcript as RapA. PhrA resembles secreted proteins and the evidence suggests that it is cleaved by signal peptidase I and a 19-residue C-terminal domain is secreted from the cell. The sporulation deficiency caused by the uncontrolled RapA activity of a phrA mutant can be complemented by synthetic peptides comprising the last six or more of the C-terminal residues of PhrA. Whether the peptide controls RapA activity directly or by regulating its synthesis remains to be determined. Complementation of the phrA mutant can also be obtained in mixed cultures with a wild-type strain, suggesting the peptide may serve as a means of communication between cells. Importation of the secreted peptide required the oligopeptide transport system. The sporulation deficiency of oligopeptide transport mutants can be suppressed by mutating the rapA and rapB genes or by introduction of a spo0F mutation Y13S that renders the protein insensitive to Rap phosphatases. The data indicate that the sporulation deficiency of oligopeptide transport mutants is due to their inability to import the peptides controlling Rap phosphatases.
Article
Spo0F, a phosphotransferase containing an aspartyl pocket, is involved in the signaling pathway (phosphorelay) controlling sporulation in Bacillus subtilis. It belongs to the superfamily of bacterial response regulatory proteins, which are activated upon phosphorylation of an invariant aspartate residue. This phosphorylation is carried out in a divalent cation dependent reaction catalyzed by cognate histidine kinases. Knowledge of the Spo0F structure would provide valuable information that would enable the elucidation of its function as a secondary messenger in a system in which a phosphate is donated from Spo0F to Spo0B, the third of four main proteins that constitute the phosphorelay. We have determined the crystal structure of a Rap phosphatase resistant mutant, Spo0F Tyr13-->Ser, at 1.9 A resolution. The structure was solved by single isomorphous replacement and anomalous scattering techniques. The overall structural fold is (beta/alpha)5 and contains a central beta sheet. The active site of the molecule is formed by three aspartate residues and a lysine residue which come together at the C terminus of the beta sheet. The active site accommodates a calcium ion. The structural analysis reveals that the overall topology and metal-binding coordination at the active site are similar to those of the bacterial chemotaxis response regulator CheY. Structural differences between Spo0F and CheY in the vicinity of the active site provide an insight into how similar molecular scaffolds can be adapted to perform different biological roles by the alteration of only a few amino acid residues. These differences may contribute to the observed stability of the phosphorylated species of Spo0F, a feature demanded by its role as a secondary messenger within the phosphorelay system which controls sporulation.
Article
NMR has been employed for structural and dynamic studies of the bacterial response regulator, Spo0F. This 124-residue protein is an essential component of the sporulation phosphorelay signal transduction pathway in Bacillus subtilis. Three-dimensional 1H, 15N, and 13C experiments have been used to obtain full side chain assignments and the 1511 distance, 121 dihedral angle, and 80 hydrogen bonding restraints required for generating a family of structures (14 restraints per residue). The structures give a well-defined (alpha/beta)5 fold for residues 4-120 with average rms deviations of 0.59 A for backbone heavy atoms and 1.02 A for all heavy atoms. Analyses of backbone 15N relaxation measurements demonstrate relative rigidity in most regions of regular secondary structure with a generalized order parameter (S2) of 0.9 +/- 0.05 and a rotational correlation time (taum) of 7.0 +/- 0.5 ns. Loop regions near the site of phosphorylation have higher than average rms deviation values and T1/T2 ratios suggesting significant internal motion or chemical exchange at these sites. Additionally, multiple conformers are observed for the beta4-alpha4 loop and beta-strand 5 region. These conformers may be related to structural changes associated with phosphorylation and also indicative of the propensity this recognition surface has for differential protein interactions. Comparison of Spo0F structural features to those of other response regulators reveals subtle differences in the orientations of secondary structure in the putative recognition surfaces and the relative charge distribution of residues surrounding the site of phosphorylation. These may be important in providing specificity for protein-protein interactions and for determining the lifetimes of the phosphorylated state.
Article
The phosphorelay, a signal transduction pathway composed of two-component regulatory proteins, mediates the initiation of sporulation in Bacillus subtilis. Environmental and physiological signals activate the autophosphorylation of histidine kinases, KinA and KinB, which transfer the phosphoryl group to Spo0F, a single domain homolog of the two-component response regulator. Phosphorylated Spo0F passes the phosphate to the final transcriptional regulator, Spo0A, through a phosphotransferase, Spo0B. Spo0F shares significant homology with other members of the response regulator family. It displays a (beta/alpha)5-barrel scaffold with the active site situated at the carboxyl end of the beta strands. The molecular recognition of Spo0F with its cognate proteins was investigated using a comprehensive strategy termed alanine-scanning mutagenesis. Of the total 124 residues, 79 in the region of helices and loops were individually changed to alanine using site-directed mutagenesis. The mutants with notable in vivo sporulation phenotypes were further examined in vitro to identify the corresponding effect in each protein-protein interaction. This study revealed that most, if not all, protein-protein interactions involve the residues in the vicinity of the active site. The surface-exposed residues critical for the interactions with KinA or Spo0B were identified. Surprisingly, although these interaction proteins are very different, they recognize subsets of residues comprising a common surface of Spo0F.
Article
The phosphorelay signal transduction pathway controls sporulation initiation in Bacillus subtilis. Transfer of a phosphoryl group from multiple kinases (KinA and KinB) through a single domain response regulator homologue (Spo0F), a phosphotransferase (Spo0B), and ultimately to a transcriptional regulator, (Spo0A) activates sporulation. Counteracting this response are phosphatases (RapA and RapB), which can short-circuit this phosphorelay via dephosphorylation of Spo0F. In vitro assays of RapB activity on phosphorylated Spo0F alanine-scanning mutants have been used to identify Spo0F residues critical for interactions between these proteins. The Spo0F surface comprised of the beta1-alpha1 loop and N-terminal half of helix alpha1 has the largest number of residues in which an alanine substitution leads to resistance or decreased sensitivity to RapB phosphatase activity. Other mutations desensitizing Spo0F to RapB are also located near the site of phosphorylation on the beta3-alpha3 and beta4-alpha4 loops. This surface is similar to but not the same as the surface identified for KinA and Spo0B interactions with Spo0F. Divalent metal ions were shown to be required for RapB activity, and this activity was insensitive to vanadate, suggesting that Rap phosphatases catalyze acyl phosphate hydrolysis by inducing conformational changes in phosphorylated Spo0F, which results in increased autodephosphorylation. Arginine 16 of Spo0F is proposed to play a role in catalysis, and similarities between the mechanisms for RapB catalyzed Spo0F approximately P hydrolysis and GAP (GTPase activating protein)-assisted GTP hydrolysis of Ras are discussed.
Article
Protein backbones and side chains display varying degrees of flexibility, which allows many slightly different but related conformational substates to occur. Such fluctuations are known to differ in both timescale and magnitude, from rotation of methyl groups (nanoseconds) to the flipping of buried tyrosine rings (seconds). Because many mechanisms for protein function require conformational change, it has been proposed that some of these ground-state fluctuations are related to protein function. But exactly which aspects of motion are functionally relevant remains to be determined. Only a few examples so far exist where function can be correlated to structural fluctuations with known magnitude and timescale. As part of an investigation of the mechanism of action of the Bacillus subtilis response regulator SpoOF, we have explored the relationship between the motional characteristics and protein-protein interactions. Here we use a set of nuclear magnetic resonance 15N relaxation measurements to determine the relative timescales of SpoOF backbone fluctuations on the picosecond-to-millisecond timescale. We show that regions having motion on the millisecond timescale correlate with residues and surfaces that are known to be critical for protein-protein interactions.
Article
The initiation of the sporulation developmental pathway in Bacillus subtilis is controlled by the phospho-relay, a multicomponent signal transduction system. Multiple positive and negative signals are integrated by the phosphorelay through the opposing activities of histidine protein kinases and aspartyl phosphate phosphatases. Three members of the Rap family of phosphatases (RapA, RapB and RapE) specifically dephosphorylate the Spo0F approximately P response regulator intermediate, while the Spo0A approximately P transcription factor is specifically dephosphorylated by the Spo0E phosphatase and, as shown here, the newly identified YnzD and YisI proteins. The products of the YnzD and YisI genes are highly homologous to Spo0E and define a new family of phosphatases with a distinct signature motif in their amino acid sequence. As negative regulators of the developmental pathway, YnzD and YisI inhibit spore formation if over-expressed, while a chromosomal deletion of their coding sequences results in increased sporulation frequency. Transcription of the ynzD, yisI and spo0E genes is differentially regulated and generally induced by growth conditions antithetical to sporulation. Negative signals interpreted by aspartyl phosphate phosphatases appear to be a common mechanism in Gram-positive spore-forming microorganisms.
The PyMol Molecular Graphics. On World Wide Web <http
  • W L Delano
DeLano, W.L. (2002) The PyMol Molecular Graphics. On World Wide Web <http://www.pymol.org>.