ArticlePDF Available

Abstract and Figures

The thalidomide tragedy of the 1960s resulted in thousands of children being born with severe limb reduction defects (LRD), among other malformations. In Brazil, there are still babies born with thalidomide embryopathy (TE) because of leprosy prevalence, availability of thalidomide, and deficiencies in the control of drug dispensation. Our objective was to implement a system of proactive surveillance to identify birth defects compatible with TE. Along one year, newborns with LRD were assessed in the Brazilian hospitals participating in the Latin-American Collaborative Study of Congenital Malformations (ECLAMC). A phenotype of LRD called thalidomide embryopathy phenotype (TEP) was established for surveillance. Children with TEP born between the years 2000-2008 were monitored, and during the 2007-2008 period we clinically investigated in greater detail all cases with TEP (proactive period). The period from 1982 to 1999 was defined as the baseline period for the cumulative sum statistics. The frequency of TEP during the surveillance period, at 3.10/10,000 births (CI 95%: 2.50-3.70), was significantly higher than that observed in the baseline period (1.92/10,000 births; CI 95%: 1.60-2.20), and not uniformly distributed across different Brazilian regions. During the proactive surveillance (2007-2008), two cases of suspected TE were identified, although the two mothers had denied the use of the drug during pregnancy. Our results suggest that TEP has probably increased in recent years, which coincides with the period of greater thalidomide availability. Our proactive surveillance identified two newborns with suspected TE, proving to be a sensitive tool to detect TE. The high frequency of leprosy and the large use of thalidomide reinforce the need for a continuous monitoring of TEP across Brazil.
Content may be subject to copyright.
Epidemiological Surveillance of Birth Defects Compatible
with Thalidomide Embryopathy in Brazil
Fernanda Sales Luiz Vianna
1,2
, Jorge S. Lopez-Camelo
3,4
,Ju
´lio Ce
´sar Louguercio Leite
1
, Maria Teresa
Vieira Sanseverino
1
, Maria da Grac¸a Dutra
5
, Eduardo E. Castilla
4,5
,Lavı
´nia Schu
¨ler-Faccini
1,2
*
1INAGEMP (Instituto Nacional de Gene
´tica Me
´dica Populacional) at Teratogen Information Service, Medical Genetics Service, Hospital de Clı
´nicas de Porto Alegre, Porto
Alegre, Brazil, 2INAGEMP at Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 3INAGEMP at ECLAMC (Latin-American Collaborative
Study of Congenital Malformations) in IMBICE: Instituto Multidisciplinario de Biologia Celular, La Plata, Argentina, 4INAGEMP at ECLAMC in CEMIC: Centro de Educacio
´n
Me
´dica e Investigacio
´nClı
´nica, Buenos Aires, Argentina, 5INAGEMP at ECLAMC in Laborato
´rio de Epidemiologia de Malformac¸o
˜es Conge
ˆnitas, Instituto Oswaldo Cruz,
FIOCRUZ, Rio de Janeiro, Brazil
Abstract
The thalidomide tragedy of the 1960s resulted in thousands of children being born with severe limb reduction defects
(LRD), among other malformations. In Brazil, there are still babies born with thalidomide embryopathy (TE) because of
leprosy prevalence, availability of thalidomide, and deficiencies in the control of drug dispensation. Our objective was to
implement a system of proactive surveillance to identify birth defects compatible with TE. Along one year, newborns with
LRD were assessed in the Brazilian hospitals participating in the Latin-American Collaborative Study of Congenital
Malformations (ECLAMC). A phenotype of LRD called thalidomide embryopathy phenotype (TEP) was established for
surveillance. Children with TEP born between the years 2000–2008 were monitored, and during the 2007–2008 period we
clinically investigated in greater detail all cases with TEP (proactive period). The period from 1982 to 1999 was defined as the
baseline period for the cumulative sum statistics. The frequency of TEP during the surveillance period, at 3.10/10,000 births
(CI 95%: 2.50–3.70), was significantly higher than that observed in the baseline period (1.92/10,000 births; CI 95%: 1.60–2.20),
and not uniformly distributed across different Brazilian regions. During the proactive surveillance (2007–2008), two cases of
suspected TE were identified, although the two mothers had denied the use of the drug during pregnancy. Our results
suggest that TEP has probably increased in recent years, which coincides with the period of greater thalidomide availability.
Our proactive surveillance identified two newborns with suspected TE, proving to be a sensitive tool to detect TE. The high
frequency of leprosy and the large use of thalidomide reinforce the need for a continuous monitoring of TEP across Brazil.
Citation: Vianna FSL, Lopez-Camelo JS, Leite JCL, Sanseverino MTV, Dutra MdG, et al. (2011) Epidemiological Surveillance of Birth Defects Compatible with
Thalidomide Embryopathy in Brazil. PLoS ONE 6(7): e21735. doi:10.1371/journal.pone.0021735
Editor: Julian Little, University of Ottawa, Canada
Received January 18, 2011; Accepted June 8, 2011; Published July 6, 2011
Copyright: ß2011 Vianna et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: Funding was provided by INCT (National Institute of Science and Technology), National Council of Research (CNPq), Process nr 573993/2008-4. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing Interests: The authors have declared that no competing interests exist.
* E-mail: lavinia.faccini@ufrgs.br
Introduction
Thalidomide was first synthesized in 1954 in Western
Germany and introduced to the market in 1956. Subsequently
it was licensed in a further 46 countries worldwide, including
Brazil [1,2]. Limited studies inanimalshadsuggestedthat
thalidomide was not toxic, which indicated it was a safe sedative
when compared to barbiturates [3]. However, a great number of
babies with congenital defects, especially limb reduction, were
born at the beginning of the 1960s, something that was
promptly detected by ‘‘alert practitioners’’ [4,5,6]. These
malformations were characterized by defects in the development
of the long bones of the limbs, with hands and feet varying
between normal and rudimentary. Besides limb reduction
defects (LRD), associated malformations were also documented,
such as anotia, microtia, anophthalmia, and microphthalmia, as
well as cardiac, genitourinary and gastrointestinal anomalies [7].
At the end of 1961 [5,6] Lenz in Germany, and McBride in
Australia [4] suggested a possible correlation between these
congenital defects and the use of thalidomide during pregnancy.
The drug was removed from the market in Germany and in
several other countries between 1961 and 1962, by which time
some 10,000 child victims of thalidomide had already been born
worldwide [2].
A few years later, Sheskin in 1965 [8] reported the effectiveness
of thalidomide in the treatment of erythema nodosum leprosum
(ENL), an inflammatory condition resulting from leprosy. He
prescribed this drug to a leprosy patient as a sedative, and
observed the complete improvement of symptoms and skin lesions
within three days. The proven efficacy of the drug for this
indication [9] increased the general interest in the drug’s
therapeutic potential for other conditions, especially after its
anti-inflammatory, immunomodulating and anti-angiogenic pro-
prieties were recognized [10,11,12].
Based on the knowledge of these properties, several clinical trials
set out to demonstrate the effectiveness of the drug for the
treatment of various medical conditions. In 1998, thalidomide was
approved by the US FDA for the treatment of ENL and later, in
2006, for the treatment of multiple myeloma, under strict
restrictions to prevent exposure in utero [13]. Presently, the use of
thalidomide is approved in many countries for the treatment
mainly of ENL, skin diseases, and several types of cancer.
PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e21735
In Brazil, thalidomide has always been available in the regions
with endemic leprosy. In 1965 Brazil approved its use for the
treatment of ENL [14]. This continuous commercialization plus its
high use due to the prevalence of leprosy and inefficient drug
control measures gave way to the appearance of new cases of
thalidomide embryopathy (TE) between the 1970s and 1990s [15].
Following these reports, a more restrictive regulation was created
for thalidomide use and prescription in Brazil [16]. Nevertheless,
three new individuals with thalidomide syndrome were reported
after that [17].
Besides being employed in the treatment of ENL since 1965,
thalidomide has been available for use in Brazil since the end of
the 1990s for the treatment of multiple myeloma, graft-versus-host
reaction, systemic lupus erythematosus, and ulcerations related to
the acquired immunodeficiency syndrome (AIDS), among other
diseases, as long as the purpose of prescription in these situations is
duly documented. Leprosy is definitely the main disease to which
thalidomide has been prescribed. Brazil, with a population of 190
million inhabitants is one of the leading countries in number of
leprosy cases the world, with an overall estimated prevalence of 5/
10,000. However, regional prevalences are quite dissimilar,
ranging from less than 1/10,000 in South Brazil to 7/10,000 in
North and Northeast [18].
The drug is not commercially available being distributed only
through specific programs of the Ministry of Health, and
dispensed following explicit and rigid rules. However, the recent
discovery of babies with thalidomide embryopathy (TE) [17] raises
questions as to the effectiveness of the restricted distribution system
with respect to prevention of pregnancy exposures. Thus, the
objective of the present study was to perform a proactive
surveillance of thalidomide embryopathy phenotype (TEP) using
an established system for monitoring birth defects in Latin
America.
Results
During the baseline period (1982–1999), of the 793,177 births
examined 152 newborns presented TEP. The BPR observed was
1.92/10,000 births (CI 95%: 1.60–2.20), and no significant difference
between geographical regions was detected (Table 1).
During the surveillance period (2000–2008), of 352,037 births
assessed, 109 newborns fitted our definition of TEP, which generated
a BPR of 3.10/10,000 births (CI 95%: 2.50–3.70) (Table 2). Overall,
BPR was higher than that observed for the baseline period. Among
the regions assessed, the southeast presented the highest BPR in the
surveillance period (Tables 1 and 2). On the other hand, the south
region presented the lowest BPR compared to other regions during
the surveillance period, being similar during baseline and surveillance
periods (Table 1 and 2).
It is noteworthy also that during the surveillance period the
overall Brazilian frequency of LRD (8.50, CI 95%: 7.50–9.80) was
significantly higher than that registered by ECLAMC hospitals in
other Latin American countries (6.83, CI 95%: 6.40–7.30; data
not shown).
Cumulative Sum Analysis (CUSUM)
During the surveillance period (2000–2008), increases in the
frequencies of TEP were observed in all Brazilian geographical
regions (Figure 1), but only in the southeast and northeast regions
were the alarms confirmed.
Proactive Surveillance
After detailed clinical evaluation (photographs, radiographs and
a structured questionnaire) of the 96 babies born with LRD during
the proactive surveillance period (March 2007 to February 2008),
16 neonates were classified as affected by TEP. Of these, seven
cases were considered inconclusive because of lack of information
and seven were incompatibles. Thus, two infants had phenotypes
suggestive of thalidomide use during pregnancy and had not
received a diagnosis of any other type of syndrome. However, the
use of thalidomide was not confirmed by their mothers when
specifically questioned. These two cases are described in detail
below. For the second year of surveillance clinical evaluation is not
yet complete.
Case 1. Female born in July 2007 in the northeast of Brazil;
birth weight 2,360 g. The mother was 29 years old with no family
history of malformations and with no pregnancy exposure. Upper
limbs: bilateral intercalary defect; absent left humerus, hypoplastic
radius and ulna; hypoplastic left hand with two rudimentary digits;
hypoplastic right radius and ulna, hypoplastic hand with two
rudimentary fingers; both lower limbs normal. Besides the LRD,
this newborn presented unilateral cleft lip. The electrocardiogram
was normal.
Case 2. Male born in October 2007, in the same hospital as case
1; birth weight 2,405 g. The third son of a 34-year-old mother with
no family history of malformations or genetic diseases; his mother had
no exposure to thalidomide during pregnancy. Tetramelic amelia,
bilateral microtia, elongated nose root, moderate retromicrognathia,
and left cryptorchidism. Electrocardiogram was normal.
Discussion
Generic thalidomide is produced in Brazil by just one
laboratory, under supervision of the Ministry of Health. Around
four million tablets of thalidomide are distributed yearly, by
specific government programs, mostly for the treatment of ENL.
Until 2010, there was no information about the exact destination
of these tablets. This lack of information can be accountable for
the recent occurrence of cases of thalidomide syndrome. From
2011, a new legislation for thalidomide dispensing was imple-
mented in Brazil with a strong control of to whom this drug is
being prescribed [27]. However, we know that in Brazil around
24,000 cases of multibacilar leprosy are yearly diagnosed. From
these, 30% to 50% will present ENL. From this estimation,
approximately 10,000 individuals are possible users of thalido-
mide.
The assessment of TEP during the baseline period enabled the
establishment of a Brazilian BPR for phenotypes compatible with
this syndrome, permitting the detection of increases in the
frequency of TEP through the CUSUM methodology.
There are no references with which to compare the rates of a
sentinel phenotype as described here; however, during the
surveillance period, increases in the BPRs of TEP were observed,
Table 1. Number of newborns with TEP and BPR in the
period of 1982–1999 by Poisson distribution.
Region TEP Births BPR CI 95%
Northeast 22 155,784 1.41 0.90–2.10
Southeast 94 423,261 2.22 1.80–2.80
South 36 214,132 1.68 1.20–2.30
Total 152 793,177 1.92 1.60–2.20
Footnote: TEP: thalidomide embryopathy phenotype; BPR: birth prevalence
rate; BPR per ten thousand births.
doi:10.1371/journal.pone.0021735.t001
Thalidomide Embryopathy Surveillance in Brazil
PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e21735
corroborating the thalidomide distribution pattern from 2000. The
differences observed in the TEP rate between the different regions
of Brazil are in accordance with the distribution of leprosy across
the country [20]. In the south region, TEP was less frequent than
in other regions, and so was leprosy prevalence. Furthermore, no
differences between the two periods were detected. The southeast
region presented the highest BPR, although this result may have
been biased by data collected in specialized maternities belonging
to ECLAMC, which have a higher rate of birth defects, especially
from cases referred to them after prenatal diagnosis. The alarms
detected in the CUSUM analysis followed the same pattern.
This significant increase in the frequency of LRD could have been
biased by the improvement in prenatal diagnosis and derivation of
those cases with fetal anomalies to referral hospitals participants of
ECLAMC. Excluding tertiary hospitals in both periods, the increased
rate of TEP is not observed (baseline period: 1.59, 95% CI :1.30–
1.87; period of surveillance: 2.18, 95% CI 1.64–2.71).
Our proactive surveillance led to the identification of two cases
compatible with TE, although maternal use of thalidomide could
not be proven. However, the availability of this information often
depends on individual conditions, such as maternal memory and
fear of social prejudice due to of the use of a medication that is
contraindicated during pregnancy. Moreover, there is the
possibility of self-medication, which is a habitual behavior among
the Brazilian population and lies behind the unadvised use of
several drugs during pregnancy. This is a problem observed not
only with thalidomide but also with other drugs with teratogenic
potential. In three recent clinically characteristic cases of
embryopathy recorded in Brazil [17], maternal interview was
negative for the use of thalidomide.
Table 2. Number of newborns with TEP and BPR, per year and geographical region, in the period of 2000–2008 by Poisson
distribution.
Brazil Northeast Southeast South
Year TEP Births BPR CI 95% TEP Births BPR CI 95% TEP Births BPR CI 95% TEP Births BPR CI 95%
2000 11 40104 2.74 1.40–4.90 -- -- 6 12047 5.00 1.80–10.80 5 28057 1.80 0.60–4.20
2001 10 38742 2.50 1.20–4.70 0 5088 0.00 0.00–10.2 8 11876 6.74 2.90–13.30 2 21778 0.92 0.10–3.30
2002 10 40231 2.49 1.20–4.60 0 6617 0.00 0.00–7.8 8 12197 6.56 280–12.80 2 21417 0.93 0.10–3.40
2003 10 42061 2.38 1.10–4.40 0 10171 0.00 0.00–4.90 4 11466 3.50 0.90–8.90 6 20424 2.94 1.10–6.40
2004 11 42581 2.58 1.30–4.60 2 9733 2.10 0.20–7.40 5 11316 4.42 1.40–10.30 3 21532 1.40 0.30–4.10
2005 16 37518 4.26 2.40–6.90 7 10196 6.90 2.80–14.10 5 10909 4.60 1.50–10.70 5 16413 3.05 1.00–7.10
2006 15 38298 3.92 2.20–6.50 6 9341 6.42 2.30–14.00 4 13021 3.10 0.80–7.90 5 15936 3.24 1.00–7.30
2007 16 38281 4.18 2.40–6.80 2 8627 2.32 0.30–8.40 13 14658 8.90 4.70–13.20 1 14996 0.70 0.10–3.70
2008 10 34221 2.92 1.40–5.40 5 8920 5.60 1.80–13.10 3 13192 2.30 0.50–6.60 2 12109 1.65 0.20–6.00
Total 109 352037 3.10 2.50–3.70 22 68693 3.20 2.00–4.80 56 110682 5.10* 3.80–6.80 31 172662 1.80* 1.20–2.50
Footnote: TEP: thalidomide embryopathy phenotype; BPR: birth prevalence rate; CI 95%: confidence interval of 95%.
*p,0.05.
-: year without monitoring by ECLAMC. BPR per 10 thousand births.
doi:10.1371/journal.pone.0021735.t002
Figure 1. CUSUM analysis done for thalidomide embryopathy phenotype for southeast (black line), northeast (red line), and south
(blue line) Brazilian regions. Parameters: Southeast region (K = 0.8 H = 10 ARL = 518 OOCARL = 44.4); northeast region (K = 0.4 H = 5.6 ARL = 473
OOCARL = 44.2); and south region (K = 1 H = 8 ARL = 462.1 OOCARL = 36.4).
doi:10.1371/journal.pone.0021735.g001
Thalidomide Embryopathy Surveillance in Brazil
PLoS ONE | www.plosone.org 3 July 2011 | Volume 6 | Issue 7 | e21735
It is important to point out that thalidomide is not the only
etiological factor for the phenotypes that we included as suggestive
of TE. Syndromes whose characteristics are similar to those of TE
include: Roberts syndrome, Holt-Oram syndrome, Fanconi’s
pancytopenia, radial aplasia-thrombocytopenia (TAR), among
others syndromes, as well and Femur-Fibula-Ulna complex [1,7],
besides unspecified developmental conditions.
One limitation of the present surveillance is that the main
endemic areas of leprosy in Brazil are located in rural regions,
especially in the north and center-west regions, where many births
take place outside hospital settings and where coverage and
monitoring by ECLAMC is not present. In any case, the percentage
of coverage of births is also a limiting factor in surveillance systems.
Yang et al. [22] evaluated the ability of monitoring systems to
detect TE alarms and suggested that the surveillance of all LRD is
insufficient for the detection of this type of embryopathy. They
support the notion that an impracticable surveillance time would
be necessary when the rate of exposure to thalidomide is very low,
even when monitoring bilateral intercalary and preaxial defects (or
only intercalary, which are the defects most frequently associated
with TE). In the present study, however, local accessibility to
thalidomide was high, and we proposed the cumulative sum
methodology (CUSUM) for the detection of increases in the
frequency of alarms, since it is a method which is faster at
detecting changes in prevalences than the Poisson methodology
[22]. The TE surveillance system presented herein is highly
sensitive because all the LRD described in the syndrome are
included, but the system has low specificity because it groups
different types of LRD not related to TE. This bias was controlled
by the direct assessment of all the TEP reported cases.
We believe that the surveillance protocol presented here is
feasible and sensitive to immediately detect new cases of
thalidomide embryopathy cases. This surveillance will be main-
tained at population level in Brazil through official birth certificates
registry, which includes mandatory description of birth defects.
The present paper should be considered as an alert toward the
prevention of an announced tragedy mainly in developing
countries. It also points the necessity to develop more precise
and controlled national systems that permit to identify and to
prevent the abuse observed in prescription of drugs widely known
as teratogens as well as the necessity to improve the diagnosis
procedures in children with complex limb anomalies.
Methods
Ethics Statement
The surveillance was carried out on the data generated by
ECLAMC (The Latin-American Collaborative Study of Congen-
ital Malformations). ECLAMC is a program for the clinical and
epidemiological investigation of risk factors in the etiology of
congenital anomalies in Latin-American hospitals, using a case-
control methodological approach already described elsewhere
[19]. ECLAMC has been performing quarterly surveillance of TE
since 1982. Participation of all Brazilian institutions active in the
ECLAMC network was approved by their local ethics committees,
and included the signing of a consent term for the publication of
data. This investigation was approved by the ethics committee of
CEMIC (Centro de Educacio´n Me´dica e Investigaciones Clı
´nicas),
Buenos Aires, Argentina (IRB-000001745, IORG-0001315).
Baseline Period and Surveillance
Two periods were examined: a baseline period (1982–1999) and
a surveillance period (2000–2008); from 2007 onwards we
clinically investigated in closer detail all TEP cases (proactive
surveillance).
During all periods, 56 Brazilian hospitals were included in the
analysis covering 1,145,214 births, representing 23.52% of
4,868,490 births in ECLAMC surveilled from nine different
Countries in Latin America.
We analyzed the frequency of variation within hospitals by
comparing the frequency during the surveillance period with the
frequency of the baseline period within each hospital. For this, we
calculated the observed and expected and used the Z test
according to the Poisson distribution.
The period between the years 1982 and 1999 was established as
a baseline period for TEP surveillance since the availability of
thalidomide is suspected to have increased after 2000 due to the
expansion in clinical indications for its prescription authorized
by the Brazilian Health Ministry. Geographical regions were
considered too, taking into account the differential prevalence of
leprosy in Brazil [20]. The Poisson distribution, with a confidence
interval of 95% was used to estimate birth prevalence rate (BPR).
The CUSUM methodology [21] was used to detect possible
increases in TEP frequency after 2000. CUSUM has already been
widely used for birth defects surveillance [22,23,24], being able to
detect variations of TEP from the BPR of the baseline period by
the sum of differences between the number of cases occurring
during the surveillance period and a reference value obtained from
the baseline period. The false alarm rate was set to one in 500
months (average run length (ARL) = 500).
Detailed clinical proactive surveillance was conducted from
March 2007 to February 2008 with records of newborns from 33
Brazilian hospitals participating in ECLAMC. All newborns with
limb reduction defects were assessed and classified according to the
type of limb defect and compatibility with TEP.
Thalidomide Embryopathy Phenotype (TEP)
Newborns with preaxial and bilateral intercalary LRD came
into this category, as these are already well established in the
literature as TE sentinel phenotypes [15,22]. Also, individuals that
presented amelia were included, since it is a defect frequently
observed in TE [25]. However, defects were included regardless of
laterality, since this is information that can be lost during
registration. This surveillance sentinel phenotype was called TEP.
The following LRD classification, adapted from [26], was
adopted:
NAmelia: complete absence of one or more limbs;
NDefect of intercalary transverse limb reduction: absence or
severe hypoplasia of proximal limb parts (humerus, femur,
radius, ulna, tibia, and fibula, also in combination) with
normal or approximately normal hands and feet. This group
included phocomelia.
NDefect of preaxial longitudinal limb reduction: total or partial
absence of thumbs, first metacarpus or radius; or hallux, first
metatarsus, and tibia;
Limb defects that did not fit into any of these classifications were
not included in the analysis.
Whenever TEP was identified, photographs and radiographs
were requested, and a detailed maternal interview was conducted
with the aim of investigating a possible exposure to thalidomide,
including questions such as the use of medications during
pregnancy, family history of congenital abnormalities, abortion
attempt, and a diagnosis (in herself or in a close relative) of leprosy
or other disease for which thalidomide use is approved in Brazil.
Thalidomide Embryopathy Surveillance in Brazil
PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e21735
All newborns with TEP were also assessed according to
compatibility with TE based on the following criteria:
NPresence or absence of congenital defects described in the
literature relating to TE.
NPresence or absence of another known etiological syndrome
that shows the same defects.
Maternal history of thalidomide use or of another associated risk
factor: patient or close relative affected by leprosy, or another
disease for which thalidomide has been employed: multiple
myeloma, AIDS, lupus, graft-host reaction.
Acknowledgments
We are indebted to these following persons that helped us to identify and to
follow the patients studied here: Rosa Castalia and Expedito Luna (from
Brazilian Ministry of Health), Claudia Maximino (ABPST - Brazilian
Association of the Thalidomide Victims), Artur Custodio de Sousa
(Morhan – Movement for Reintegration of People affected by Leprosy,
Brazil), Beatriz B Silva and Maria Auxiliadora Villar (ECLAMC -
American Collaborative Study of Congenital Malformations).
Author Contributions
Conceived and designed the experiments: LSF FSLV EEC JSLC MGD.
Performed the experiments: FSLV JCLL MGD MTVS. Analyzed the
data: LSF JSLC JCLL MTVS MGD.
References
1. Lenz W (1988) A short history of thalidomide embryopathy. Teratology 38:
203–215.
2. Trent S, Rock B (2001) Dark Remedy: The impact of thalidomide and its revival
as a vital medicine. CambridgeMassachusetts: Perseus Publishing.
3. Neuhaus G, Ibe K (1960) [Clinical observations on a suicide attempt with 144
tablets of contergan forte (N-phthalylglutamimide).]. Med Klin 55: 544–545.
4. McBride (1961) Thalidomide and congenital abnormalities. Lancet.
5. Lenz W (1961) Diskussionsbemerkung zu dem Vortrag von R.A. Pfeiffer und K.
Kosenow:zur Frage der exogenen Entstehung schwereExtre
¨mitatenmissbildungen.
Tagung Rheinischwestfal Kinderarztevere Dusseldorf. Tagung Rheinischwestfal
Kinderarztevere Dusseldorf.
6. Lenz W (1961) Fragen aus der Praxis: kindliche Missbildungen nach
Medikament Einnahme wa
¨hrend der Graviditat? : Dtsch MedWochenschr. pp
2555–2556.
7. Smithells RW, Newman CG (1992) Recognition of thalidomide defects. J Med
Genet 29: 716–723.
8. Sheskin J (1965) Thalidomide in the treatment of lepra reactions. Clin
Pharmacol Ther 6: 303–306.
9. Sheskin J, Convit J (1969) Results of a double blind study of the influence of
thalidomide on the lepra reaction. Int J Lepr Other Mycobact Dis 37: 135–146.
10. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide
selectively inhibits tumor necrosis factor alpha production by stimulated human
monocytes. J Exp Med 173: 699–703.
11. Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, et al. (1993)
Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by
enhancing mRNA degradation. J Exp Med 177: 1675–1680.
12. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an
inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91: 4082–4085.
13. Uhl K, Cox E, Rogan R, Zeldis JB, Hixon D, et al. (2006) Thalidomide use in
the US : experience with pregnancy testing in the S.T.E.P.S. programme. Drug
Saf 29: 321–329.
14. Oliveira MA, Bermudez JAZ, Souza ACMd (1999) Talidomida no Brasil:
vigilaˆ ncia com responsabilidade compartilhada? Cadernos de Sau´de Pu´ blica 15:
99–112.
15. Castilla EE, Ashton-Prolla P, Barreda-Mejia E, Brunoni D, Cavalcanti DP, et al.
(1996) Thalidomide, a current teratogen in South America. Teratology 54:
273–277.
16. ANVISA ANdVS (2003) Law 10651/03. Brası
´lia, Brazil: DOU, Dia´ rio Oficial
da Unia˜o.
17. Schuler-Faccini L, Soares RC, de Sousa AC, Maximi no C, Luna E, et al. (2007)
New cases of thalidomide embryopathy in Brazil. Birth Defects Res A Clin Mol
Teratol 79: 671–672.
18. Sau´de Md (2008) Vigilaˆ ncia em Sau´de: situac¸a˜ o epidemiolo´gica da hansenı
´ase
no Brasil.
19. Castilla EE, Oriol i IM (2004) ECLAMC: the Latin-American collaborative
study of congenital malformations. Community Genet 7: 76–94.
20. Magalha˜es MdCC, Rojas LI (2007) Diferenciac¸a˜ o territorial da hansenı
´ase no
Brasil. Epidemiologia e Servic¸os de Sau´ de 16: 75–84.
21. JML (1985) Couted Data CUSUM’s. Technometrics.
22. Yang Q, Khoury MJ, James LM, Olney RS, Paulozzi LJ, et al. (1997) The
return of thalidomide: are birth defects surveillance systems ready? Am J Med
Genet 73: 251–258.
23. Castilla EE, Orioli IM, Lopez-Camelo JS, Dutra Mda G, Nazer-Herrera J
(2003) Preliminary data on changes in neural tube defect prevalence rates after
folic acid fortification in South America. Am J Med Genet A 123A: 123–128.
24. Babcock GD, Talbot TO, Rogerson PA, Forand SP (2005) Use of CUSUM and
Shewhart charts to monitor regional trends of birth defect reports in New York
State. Birth Defects Res A Clin Mol Teratol 73: 669–678.
25. Newman CG (1986) The thalidomide syndrome: risks of exposure and spectrum
of malformations. Clin Perinatol 13: 555–573.
26. Rosano A, Botto LD, Olney RS, Khoury MJ, Ritvanen A, et al. (2000) Limb
defects associated with major congenital anomalies: clinical and epidemiological
study from the International Clearinghouse for Birth Defects Monitoring
Systems. Am J Med Genet 93: 110–116.
27. Dia´rio-Oficial-da-Unia˜o-D.O.U (22 de marc¸o de2011.) Resoluc¸a˜ o RDC Nu11
de 22 de marc¸o de 2011.
Thalidomide Embryopathy Surveillance in Brazil
PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e21735
... With thalidomide in clinical use and its teratogenic effects still present, great care must be taken when administering the drug to patients; patient protection schemes are in place in many areas of the world to ensure it is taken and used safely (Mueller and Lewis, 2021). The need for such schemes is emphasized by recent reports of cases of thalidomide embryopathy in Brazil, where thalidomide is used to treat endemic leprosy (Vianna et al., 2011). ...
... This article attempts to provide a multi-disciplinary view on thalidomide upper limb embryopathy, combining the perspectives of scientists, paediatric and adult upper limb surgeons. Understanding how thalidomide affected the embryo is important for several key reasons: it aids identification of survivors who may not be currently recognized as victims of the tragedy (Mansour et al., 2019;Vargesson, 2019); it helps identify new forms of thalidomide that retain clinical benefits (for example in the treatment of leprosy and multiple myeloma) without the risk of inducing birth differences (Vianna et al., 2011); and by understanding the complete mechanism of thalidomide embryopathy it is hoped that similar work will be stimulated for genetic and chromosomal induced syndromes in which the genes or chromosomes have been identified, but the mechanism by which the variation causes the birth differences remains unknown. Ultimately, this may lead to common mechanisms of birth differences being uncovered and the identification of suitable and more appropriate therapeutic strategies. ...
Article
Full-text available
This review article provides a comprehensive overview of thalidomide upper limb embryopathy including updates about its pathogenesis, a historical account of the management of the paediatric thalidomide patient, experience with management of the adult patient, as well as creating awareness about early onset age-related changes associated with limb differences. Despite its withdrawal from the market in November 1961, novel discoveries have meant thalidomide is licensed again and currently still in use to treat a variety of conditions, including inflammatory disorders and some cancers. Yet, if not used safely, thalidomide still has the potential to cause damage to the embryo. Recent work identifying thalidomide analogues that retain clinical benefits yet without the harmful effects are showing great promise. Understanding the problems thalidomide survivors face as they age can allow surgeons to support their unique healthcare issues and translate these principles of care to other congenital upper limb differences.
... At the moment, thalidomide is used to treat an inflammatory condition called Erythema Nodosum Leprosum (ENL), a complication of Leprosy, multiple myeloma, graft versus host disease, and many other conditiosClique ou toque aqui para inserir o texto. (Sheskin 1965;Rajkumar and Blood 2006;Vianna et al. 2011). Unfortunately, despite strict regulations, the use of thalidomide is still leading to report of recent cases of TE in Brazil (Castilla et al. 1996;Schuler-Faccini et al. 2007;Vianna et al. 2013a; Secretaria de Vigilância em Saúde 2021). ...
Article
Full-text available
Thalidomide is a known teratogen that causes malformations especially in heart and limbs. Its mechanism of teratogenicity is still not fully elucidated. Recently, a new target of thalidomide was described, TBX5, and was observed a new interaction between HAND2 and TBX5 that is disrupted in the presence of thalidomide. Therefore, our study aimed to raise potential candidates for thalidomide teratogenesis, through systems biology, evaluating HAND2 and TBX5 interaction and heart and limbs malformations of thalidomide. Genes and proteins related to TBX5 and HAND2 were selected through TF2DNA, REACTOME, Human Phenotype Ontology, and InterPro databases. Networks were assembled using STRING © database. Network analysis were performed in Cytoscape © and R v3.6.2. Differential gene expression (DGE) analysis was performed through gene expression omnibus. We constructed a network for HAND2 and TBX5 interaction; a network for heart and limbs malformations of TE; and the two joined networks. We observed that EP300 protein seemed to be important in all networks. We also looked for proteins containing C2H2 domain in the assembled networks. ZIC3, GLI1, GLI3, ZNF148, and PRDM16 were the ones present in both heart and limbs malformations of TE networks. Furthermore, in the DGE analysis after treatment with thalidomide, we observed that FANCB, ESCO2, and XRCC2 were downregulated and present both in heart and limbs networks. Through systems biology, we were able to point to different new proteins and genes, and selected specially EP300, which was important in all the analyzed networks, to be further evaluated in the TE teratogenicity.
... However, in a few instances pregnant women took thalidomide prescribed for someone else. 32 A need to educate health professionals about the importance of formally reporting adverse effects was identified. 35 In India, national regulations appear to be adequate, 4,36 although anecdotal evidence suggests that some private practitioners may be less cautious in prescribing thalidomide than are referral centres under the National Leprosy Eradication Programme (Butlin CR. ...
... Выяснилось, что талидомид является ингибитором фактора некроза опухоли (tumor necrosis factor, TNF). Благодаря этому факту в 1965 году израильский дерматолог Sheskin сообщил об эффективности препарата в лечении лепронозной узловатой эритемы (erythema nodosum leprosum, ENL) [18]. ...
Article
The article is presented in the format of a lecture. The material presents data on the etiology and pathogenesis of Kaposi’s sarcoma, the clinical picture of dermatosis, and modern methods of therapy.
Chapter
Reshaping Environments: An Interdisciplinary Approach to Sustainability in a Complex World draws together a team of specialist authors from disciplines including urban planning, social sciences, engineering and environmental science to examine the diverse influences humans have upon the natural environment. This interdisciplinary approach presents multifaceted responses for complex environmental issues. The book explores current environmental science theories to provide a solid foundation of theoretical knowledge. Drawing on a range of case studies, it develops core analytical skills for application to real-world environmental issues. Reshaping Environments gives environmental science students the tools and insight to comprehend the range of influences society imposes on the natural environment. It is essential reading for those interested in creating a mutually beneficial future for human society and the natural environment.
Chapter
Reshaping Environments: An Interdisciplinary Approach to Sustainability in a Complex World draws together a team of specialist authors from disciplines including urban planning, social sciences, engineering and environmental science to examine the diverse influences humans have upon the natural environment. This interdisciplinary approach presents multifaceted responses for complex environmental issues. The book explores current environmental science theories to provide a solid foundation of theoretical knowledge. Drawing on a range of case studies, it develops core analytical skills for application to real-world environmental issues. Reshaping Environments gives environmental science students the tools and insight to comprehend the range of influences society imposes on the natural environment. It is essential reading for those interested in creating a mutually beneficial future for human society and the natural environment.
Chapter
Reshaping Environments: An Interdisciplinary Approach to Sustainability in a Complex World draws together a team of specialist authors from disciplines including urban planning, social sciences, engineering and environmental science to examine the diverse influences humans have upon the natural environment. This interdisciplinary approach presents multifaceted responses for complex environmental issues. The book explores current environmental science theories to provide a solid foundation of theoretical knowledge. Drawing on a range of case studies, it develops core analytical skills for application to real-world environmental issues. Reshaping Environments gives environmental science students the tools and insight to comprehend the range of influences society imposes on the natural environment. It is essential reading for those interested in creating a mutually beneficial future for human society and the natural environment.
Chapter
Reshaping Environments: An Interdisciplinary Approach to Sustainability in a Complex World draws together a team of specialist authors from disciplines including urban planning, social sciences, engineering and environmental science to examine the diverse influences humans have upon the natural environment. This interdisciplinary approach presents multifaceted responses for complex environmental issues. The book explores current environmental science theories to provide a solid foundation of theoretical knowledge. Drawing on a range of case studies, it develops core analytical skills for application to real-world environmental issues. Reshaping Environments gives environmental science students the tools and insight to comprehend the range of influences society imposes on the natural environment. It is essential reading for those interested in creating a mutually beneficial future for human society and the natural environment.
Chapter
Reshaping Environments: An Interdisciplinary Approach to Sustainability in a Complex World draws together a team of specialist authors from disciplines including urban planning, social sciences, engineering and environmental science to examine the diverse influences humans have upon the natural environment. This interdisciplinary approach presents multifaceted responses for complex environmental issues. The book explores current environmental science theories to provide a solid foundation of theoretical knowledge. Drawing on a range of case studies, it develops core analytical skills for application to real-world environmental issues. Reshaping Environments gives environmental science students the tools and insight to comprehend the range of influences society imposes on the natural environment. It is essential reading for those interested in creating a mutually beneficial future for human society and the natural environment.
Chapter
Reshaping Environments: An Interdisciplinary Approach to Sustainability in a Complex World draws together a team of specialist authors from disciplines including urban planning, social sciences, engineering and environmental science to examine the diverse influences humans have upon the natural environment. This interdisciplinary approach presents multifaceted responses for complex environmental issues. The book explores current environmental science theories to provide a solid foundation of theoretical knowledge. Drawing on a range of case studies, it develops core analytical skills for application to real-world environmental issues. Reshaping Environments gives environmental science students the tools and insight to comprehend the range of influences society imposes on the natural environment. It is essential reading for those interested in creating a mutually beneficial future for human society and the natural environment.
Article
Although limb defects associated with other congenital anomalies are rarely studied, they may provide insights into limb development that may be useful for etiologic studies and public health monitoring. We pooled data from 11 birth defect registries that are part of the International Clearinghouse for Birth Defects Monitoring Systems. We identified 666 infants, born from 1983 through 1993, who had a non-syndromal limb defect plus at least one other major malformation (rate 12.9/100,000 population). We used observed/expected ratios and log-linear models to detect association patterns. We found that specific limb defects occurred with relatively distinct sets of malformations. Preaxial limb defects occurred more frequently with microtia, esophageal atresia, anorectal atresia, heart defects, unilateral kidney dysgenesis, and some axial skeleton defects; postaxial defects with hypospadias; transverse defects with craniofacial defects, micrognathia, ring constrictions, and muscular defects; intercalary defects with omphalocele; split hand/foot with encephalocele; and amelia with anorectal atresia, omphalocele, severe genitalia defects, unilateral kidney dysgenesis, gastroschisis, and ring constriction. Log-linear modeling identified higher order associations among some of these same malformations.
Article
Thalidomide is a potent teratogen causing dysmelia (stunted limb growth) in humans. We have demonstrated that orally administered thalidomide is an inhibitor of angiogenesis induced by basic fibroblast growth factor in a rabbit cornea micropocket assay. Experiments including the analysis of thalidomide analogs revealed that the antiangiogenic activity correlated with the teratogenicity but not with the sedative or the mild immunosuppressive properties of thalidomide. Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature of thalidomide-treated embryos. These experiments shed light on the mechanism of thalidomide's teratogenicity and hold promise for the potential use of thalidomide as an orally administered drug for the treatment of many diverse diseases dependent on angiogenesis.
Article
Thalidomide selectively inhibits the production of human monocyte tumor necrosis factor alpha (TNF-alpha) when these cells are triggered with lipopolysaccharide and other agonists in culture. 40% inhibition occurs at the clinically achievable dose of the drug of 1 micrograms/ml. In contrast, the amount of total protein and individual proteins labeled with [35S]methionine and expressed on SDS-PAGE are not influenced. The amounts of interleukin 1 beta (IL-1 beta), IL-6, and granulocyte/macrophage colony-stimulating factor produced by monocytes remain unaltered. The selectivity of this drug may be useful in determining the role of TNF-alpha in vivo and modulating its toxic effects in a clinical setting.
Article
Introduction: In 1998, thalidomide (Thalomid®), a known human teratogen, was approved by the US FDA for the treatment of erythema nodosum leprosum. To prevent fetal exposure to thalidomide, a restricted distribution risk management programme, the System for Thalidomide Education and Prescribing Safety (S.T.E.P.S.®), was implemented. All clinicians, pharmacists and patients who prescribe, dispense and receive thalidomide, respectively, are required to enrol in S.T.E.P.S.®. Sexually active females of childbearing potential must use two methods of birth control before, during and after treatment. These patients must also have a negative pregnancy test within 24 hours before beginning therapy and periodically while on therapy. The objective of this report is to summarise the patterns of thalidomide use and to describe the occurrence of positive pregnancy tests in females of childbearing potential while they were using thalidomide in the S.T.E.P.S.® programme in the US.
Article
Sir,—Congenital abnormalities are present in approximately 1.5% of babies. In recent months I have observed that the incidence of multiple severe abnormalities in babies delivered of women who were given the drug thalidomide (‘Distaval’) during pregnancy, as an anti-emetic or as a sedative, to be almost 20%.