Article

Psychoplastogenic DYRK1A Inhibitors with Therapeutic Effects Relevant to Alzheimer’s Disease

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Alzheimer’s disease (AD) involves pathological processing of amyloid precursor protein (APP) into amyloid-β and microtubule associated protein Tau (MAPT) into hyperphosphorylated Tau tangles leading to neurodegeneration. Only 5% of AD cases are familial making it difficult to predict who will develop the disease thereby hindering our ability to treat the causes of the disease. A large population who almost certainly will, are those with Down syndrome (DS), who have a 90% lifetime incidence of AD. DS is caused by trisomy of chromosome 21 resulting in three copies of APP and other AD-associated genes, like dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) overexpression. This implies that DYRK1a inhibitors may have therapeutic potential for DS and AD, however It is not clear how overexpression of each of these genes contributes to the pathology of each disease as well as how effective a DYRK1A inhibitor would be at suppressing any of these. To address this knowledge gap, we used Drosophila models with human Tau, human amyloid-β or fly DYRK1A (minibrain (mnb)) neuronal overexpression resulting in photoreceptor neuron degeneration, premature death, decreased locomotion, sleep and memory loss. DYRK1A small molecule Type 1 kinase inhibitors (DYR219 and DYR533) were effective at suppressing these disease relevant phenotypes confirming their therapeutic potential.
Article
Full-text available
The increasing population will challenge healthcare, particularly because the worldwide population has never been older. Therapeutic solutions to age-related disease will be increasingly critical. Kinases are key regulators of human health and represent promising therapeutic targets for novel drug candidates. The dual-specificity tyrosine-regulated kinase (DYRKs) family is of particular interest and, among them, DYRK1A has been implicated ubiquitously in varied human diseases. Herein, we focus on the characteristics of DYRK1A, its regulation and functional role in different human diseases, which leads us to an overview of future research on this protein of promising therapeutic potential.
Article
Full-text available
Alzheimer’s disease (AD) is the most common neurodegenerative disease which is becoming increasingly prevalent due to ageing populations resulting in huge social, economic, and health costs to the community. Despite the pathological processing of genes such as Amyloid Precursor Protein (APP) into Amyloid-β and Microtubule Associated Protein Tau (MAPT) gene, into hyperphosphorylated Tau tangles being known for decades, there remains no treatments to halt disease progression. One population with increased risk of AD are people with Down syndrome (DS), who have a 90% lifetime incidence of AD, due to trisomy of human chromosome 21 (HSA21) resulting in three copies of APP and other AD-associated genes, such as DYRK1A (Dual specificity tyrosine-phosphorylation-regulated kinase 1A) overexpression. This suggests that blocking DYRK1A might have therapeutic potential. However, it is still not clear to what extent DYRK1A overexpression by itself leads to AD-like phenotypes and how these compare to Tau and Amyloid-β mediated pathology. Likewise, it is still not known how effective a DYRK1A antagonist may be at preventing or improving any Tau, Amyloid-β and DYRK1a mediated phenotype. To address these outstanding questions, we characterised Drosophila models with targeted overexpression of human Tau, human Amyloid-β or the fly orthologue of DYRK1A, called minibrain (mnb). We found targeted overexpression of these AD-associated genes caused degeneration of photoreceptor neurons, shortened lifespan, as well as causing loss of locomotor performance, sleep, and memory. Treatment with the experimental DYRK1A inhibitor PST-001 decreased pathological phosphorylation of human Tau [at serine (S) 262]. PST-001 reduced degeneration caused by human Tau, Amyloid-β or mnb lengthening lifespan as well as improving locomotion, sleep and memory loss caused by expression of these AD and DS genes. This demonstrated PST-001 effectiveness as a potential new therapeutic targeting AD and DS pathology.
Article
Full-text available
Psychosis is a common and distressing symptom in people with Alzheimer disease, and few safe and effective treatments are available. However, new approaches to symptom assessment and treatment are beginning to drive the field forward. New nosological perspectives have been provided by incorporating the emergence of psychotic symptoms in older adults — even in advance of dementia — into epidemiological and neurobiological frameworks as well as into diagnostic and research criteria such as the International Psychogeriatric Association criteria for psychosis in neurocognitive disorders, the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment (ISTAART) research criteria for psychosis in neurodegenerative disease, and the ISTAART criteria for mild behavioural impairment. Here, we highlight the latest findings in genomics, neuroimaging and neurobiology that are informing approaches to drug discovery and repurposing. Current pharmacological and non-pharmacological treatment options are discussed, with a focus on safety and precision medicine. We also explore trial data for pimavanserin, a novel agent that shows promise for the treatment of psychosis in people with dementia, and discuss existing agents that might be useful but need further exploration such as escitalopram, lithium, cholinesterase inhibitors and vitamin D. Although the assessment and management of psychosis in people with dementia remain challenging, new opportunities are providing direction and hope to the field.
Article
Full-text available
Down syndrome (DS) is a complex genetic disorder associated with substantial physical, cognitive, and behavioral challenges. Due to better treatment options for the physical co-morbidities of DS, the life expectancy of individuals with DS is beginning to approach that of the general population. However, the cognitive deficits seen in individuals with DS still cannot be addressed pharmacologically. In young individuals with DS, the level of intellectual disability varies from mild to severe, but cognitive ability generally decreases with increasing age, and all individuals with DS have early onset Alzheimer’s disease (AD) pathology by the age of 40. The present study introduces a novel inhibitor for the protein kinase DYRK1A, a key controlling kinase whose encoding gene is located on chromosome 21. The novel inhibitor is well characterized for use in mouse models and thus represents a valuable tool compound for further DYRK1A research.
Article
Full-text available
Clinical evidence suggests that rapid and sustained antidepressant action can be attained with a single exposure to psychedelics. However, the biological substrates and key mediators of psychedelics' enduring action remain unknown. Here, we show that a single administration of the psychedelic DOI produces fast-acting effects on frontal cortex dendritic spine structure and acceleration of fear extinction via the 5-HT2A receptor. Additionally, a single dose of DOI leads to changes in chromatin organization, particularly at enhancer regions of genes involved in synaptic assembly that stretch for days after the psychedelic exposure. These DOI-induced alterations in the neuronal epigenome overlap with genetic loci associated with schizophrenia, depression, and attention deficit hyperactivity disorder. Together, these data support that epigenomic-driven changes in synaptic plasticity sustain psychedelics' long-lasting antidepressant action but also warn about potential substrate overlap with genetic risks for certain psychiatric conditions.
Article
Full-text available
Background: Patients with dementia due to neurodegenerative disease can have dementia-related psychosis. The effects of the oral 5-HT2A inverse agonist and antagonist pimavanserin on psychosis related to various causes of dementia are not clear. Methods: We conducted a phase 3, double-blind, randomized, placebo-controlled discontinuation trial involving patients with psychosis related to Alzheimer's disease, Parkinson's disease dementia, dementia with Lewy bodies, frontotemporal dementia, or vascular dementia. Patients received open-label pimavanserin for 12 weeks. Those who had a reduction from baseline of at least 30% in the score on the Scale for the Assessment of Positive Symptoms-Hallucinations and Delusions (SAPS-H+D, with higher scores indicating greater psychosis) and a Clinical Global Impression-Improvement (CGI-I) score of 1 (very much improved) or 2 (much improved) at weeks 8 and 12 were randomly assigned in a 1:1 ratio to continue receiving pimavanserin or to receive placebo for up to 26 weeks. The primary end point, assessed in a time-to-event analysis, was a relapse of psychosis as defined by any of the following: an increase of at least 30% in the SAPS-H+D score and a CGI-I score of 6 (much worse) or 7 (very much worse), hospitalization for dementia-related psychosis, stopping of the trial regimen or withdrawal from the trial for lack of efficacy, or use of antipsychotic agents for dementia-related psychosis. Results: Of the 392 patients in the open-label phase, 41 were withdrawn for administrative reasons because the trial was stopped for efficacy; of the remaining 351 patients, 217 (61.8%) had a sustained response, of whom 105 were assigned to receive pimavanserin and 112 to receive placebo. A relapse occurred in 12 of 95 patients (13%) in the pimavanserin group and in 28 of 99 (28%) in the placebo group (hazard ratio, 0.35; 95% confidence interval, 0.17 to 0.73; P = 0.005). During the double-blind phase, adverse events occurred in 43 of 105 patients (41.0%) in the pimavanserin group and in 41 of 112 (36.6%) in the placebo group. Headache, constipation, urinary tract infection, and asymptomatic QT prolongation occurred with pimavanserin. Conclusions: In a trial that was stopped early for efficacy, patients with dementia-related psychosis who had a response to pimavanserin had a lower risk of relapse with continuation of the drug than with discontinuation. Longer and larger trials are required to determine the effects of pimavanserin in dementia-related psychosis. (Funded by Acadia Pharmaceuticals; HARMONY ClinicalTrials.gov number, NCT03325556.).
Article
Full-text available
Extracellular neuritic plaques composed of amyloid‑β (Aβ) protein and intracellular neurofibrillary tangles containing phosphorylated tau protein are the two hallmark proteins of Alzheimer's disease (AD), and the separate neurotoxicity of these proteins in AD has been extensively studied. However, interventions that target Aβ or tau individually have not yielded substantial breakthroughs. The interest in the interactions between Aβ and tau in AD is increasing, but related drug investigations are in their infancy. This review discusses how Aβ accelerates tau phosphorylation and the possible mechanisms and pathways by which tau mediates Aβ toxicity. This review also describes the possible synergistic effects between Aβ and tau on microglial cells and astrocytes. Studies suggest that the coexistence of Aβ plaques and phosphorylated tau is related to the mechanism by which Aβ facilitates the propagation of tau aggregation in neuritic plaques. The interactions between Aβ and tau mediate cognitive dysfunction in patients with AD. In summary, this review summarizes recent data on the interplay between Aβ and tau to promote a better understanding of the roles of these proteins in the pathological process of AD and provide new insights into interventions against AD.
Article
Full-text available
Ligands can induce G protein-coupled receptors (GPCRs) to adopt a myriad of conformations, many of which play critical roles in determining the activation of specific signaling cascades associated with distinct functional and behavioral consequences. For example, the 5-hydroxytryptamine 2A receptor (5-HT2AR) is the target of classic hallucinogens, atypical antipsychotics, and psychoplastogens. However, currently available methods are inadequate for directly assessing 5-HT2AR conformation both in vitro and in vivo. Here, we developed psychLight, a genetically encoded fluorescent sensor based on the 5-HT2AR structure. PsychLight detects behaviorally relevant serotonin release and correctly predicts the hallucinogenic behavioral effects of structurally similar 5-HT2AR ligands. We further used psychLight to identify a non-hallucinogenic psychedelic analog, which produced rapid-onset and long-lasting antidepressant-like effects after a single administration. The advent of psychLight will enable in vivo detection of serotonin dynamics, early identification of designer drugs of abuse, and the development of 5-HT2AR-dependent non-hallucinogenic therapeutics.
Article
Full-text available
The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals¹. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine—like those of other psychedelic compounds—are long-lasting², which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog—a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.
Article
Full-text available
Tauopathies are a class of neurodegenerative disorders characterized by abnormal deposi-tion of post-translationally modified tau protein in the human brain. Tauopathies are associated with Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), and other diseases. Hyperphosphorylation increases tau tendency to aggregate and form neurofibril-lary tangles (NFT), a pathological hallmark of AD. In this study, okadaic acid (OA, 100 nM), a protein phosphatase 1/2A inhibitor, was treated for 24h in mouse neuroblastoma (N2a) and differentiated rat primary neuronal cortical cell cultures (CTX) to induce tau-hyperpho-sphorylation and oligomerization as a cell-based tauopathy model. Following the treatments , the effectiveness of different kinase inhibitors was assessed using the tauopathy-relevant tau antibodies through tau-immunoblotting, including the sites: pSer202/pThr205 (AT8), pThr181 (AT270), pSer202 (CP13), pSer396/pSer404 (PHF-1), and pThr231 (RZ3). OA-treated samples induced tau phosphorylation and oligomerization at all tested epitopes, forming a monomeric band (46-67 kDa) and oligomeric bands (170 kDa and 240 kDa). We found that TBB (a casein kinase II inhibitor), AR and LiCl (GSK-3 inhibitors), cyclosporin A (calcineurin inhibitor), and Saracatinib (Fyn kinase inhibitor) caused robust inhibition of OA-induced monomeric and oligomeric p-tau in both N2a and CTX culture. Additionally, a cyclin-dependent kinase 5 inhibitor (Roscovitine) and a calcium chelator (EGTA) showed contrasting results between the two neuronal cultures. This study provides a comprehensive view of potential drug candidates (TBB, CsA, AR, and Saracatinib), and their efficacy against tau hyperphosphorylation and oligomerization processes. These findings warrant further experimentation, possibly including animal models of tauopathies, which may provide a putative Neurotherapy for AD, CTE, and other forms of tauopathy-induced neurode-generative diseases.
Article
Full-text available
The abnormal accumulation of amyloid-β (Aβ) in the central nervous system is a hallmark of Alzheimer’s disease (AD). The regulation of the processing of the single- transmembrane amyloid precursor protein (APP) plays an important role in the generation of Aβ in the brain. The phosphorylation of APP and key enzymes involved in the proteolytic processing of APP has been demonstrated to be critical for modulating the generation of Aβ by either altering the subcellular localization of APP or changing the enzymatic activities of the secretases responsible for APP processing. In addition, the phosphorylation may also have an impact on the physiological function of these proteins. In this review, we summarize the kinases and signaling pathways that may participate in regulating the phosphorylation of APP and secretases and how this further affects the function and processing of APP and Aβ pathology. We also discuss the potential of approaches that modulate these phosphorylation-signaling pathways or kinases as interventions for AD pathology.
Article
Full-text available
Dual‐specificity tyrosine phosphorylation‐regulated kinase‐1A (DYRK1A) is known to phosphorylate the microtubule‐associated tau protein. Overexpression is correlated with tau hyperphosphorylation and neurofibrillary tangle (NFT) formation in Alzheimer's disease (AD). This study assessed the potential of SM07883, an oral DYRK1A inhibitor, to inhibit tau hyperphosphorylation, aggregation, NFT formation, and associated phenotypes in mouse models. Exploratory neuroinflammatory effects were also studied. SM07883 specificity was tested in a kinase panel screen and showed potent inhibition of DYRK1A (IC50 = 1.6 nM) and GSK‐3β (IC50 = 10.8 nM) kinase activity. Tau phosphorylation measured in cell‐based assays showed a reduction in phosphorylation of multiple tau epitopes, especially the threonine 212 site (EC50 = 16 nM). SM07883 showed good oral bioavailability in multiple species and demonstrated a dose‐dependent reduction of transient hypothermia‐induced phosphorylated tau in the brains of wild‐type mice compared to vehicle (47%, p < 0.001). Long‐term efficacy assessed in aged JNPL3 mice overexpressing the P301L human tau mutation (3 mg/kg, QD, for 3 months) exhibited significant reductions in tau hyperphosphorylation, oligomeric and aggregated tau, and tau‐positive inclusions compared to vehicle in brainstem and spinal cord samples. Reduced gliosis compared to vehicle was further confirmed by ELISA. SM07883 was well tolerated with improved general health, weight gain, and functional improvement in a wire‐hang test compared to vehicle‐treated mice (p = 0.048). SM07883, a potent, orally bioavailable, brain‐penetrant DYRK1A inhibitor, significantly reduced effects of pathological tau overexpression and neuroinflammation, while functional endpoints were improved compared to vehicle in animal models. This small molecule has potential as a treatment for AD.
Article
Full-text available
Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders.
Article
Full-text available
Significance In Alzheimer’s disease, the microtubule-associated protein Tau is invariably found in a hyperphosphorylated and aggregated form. Whether (hyper)phosphorylation can drive aggregation is less clear, and no precise phosphorylation pattern leading to aggregation has been described. Combining in vitro phosphorylation assays with purified kinases and a rat brain extract with the analytical power of NMR spectroscopy, we unravel here the phosphorylation pattern of Tau that drives its aggregation. The results point to the importance of this posttranslational modification in Tau's aggregation and suggest orienting therapeutic strategies toward phosphorylated Tau.
Article
Full-text available
There is an urgent need for the development of new therapeutic strategies for Alzheimer's disease (AD). The dual-specificity tyrosine phosphorylation-regulated kinase-1A (Dyrk1a) is a protein kinase that phosphorylates the amyloid precursor protein (APP) and tau and thus represents a link between two key proteins involved in AD pathogenesis. Furthermore, Dyrk1a is upregulated in postmortem human brains, and high levels of Dyrk1a are associated with mental retardation. Here, we sought to determine the effects of Dyrk1 inhibition on AD-like pathology developed by 3xTg-AD mice, a widely used animal model of AD. We dosed 10-month-old 3xTg-AD and nontransgenic (NonTg) mice with a Dyrk1 inhibitor (Dyrk1-inh) or vehicle for eight weeks. During the last three weeks of treatment, we tested the mice in a battery of behavioral tests. The brains were then analyzed for the pathological markers of AD. We found that chronic Dyrk1 inhibition reversed cognitive deficits in 3xTg-AD mice. These effects were associated with a reduction in amyloid-β (Aβ) and tau pathology. Mechanistically, Dyrk1 inhibition reduced APP and insoluble tau phosphorylation. The reduction in APP phosphorylation increased its turnover and decreased Aβ levels. These results suggest that targeting Dyrk1 could represent a new viable therapeutic approach for AD.
Article
Full-text available
DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high affinity inhibitor of DYRK1A but suffers from the drawback of inhibiting monoamine oxidase A (MAO-A) with even higher potency. Here we characterized a series of novel harmine analogs with minimal or absent MAO-A inhibitory activity. We identified several inhibitors with submicromolar potencies for DYRK1A and selectivity for DYRK1A and DYRK1B over the related kinases DYRK2 and HIPK2. An optimized inhibitor, AnnH75, inhibited CLK1, CLK4, and haspin/GSG2 as the only off-targets in a panel of 300 protein kinases. In cellular assays, AnnH75 dose-dependently reduced the phosphorylation of three known DYRK1A substrates (SF3B1, SEPT4, and tau) without negative effects on cell viability. AnnH75 inhibited the cotranslational tyrosine autophosphoryla-tion of DYRK1A and threonine phosphorylation of an exogenous substrate protein with similar potency. In conclusion, we have characterized an optimized β-carboline inhibitor as a highly selective chemical probe that complies with desirable properties of drug-like molecules and is suitable to interrogate the function of DYRK1A in biological studies.
Article
Full-text available
Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-hour exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient andcritically depended on the activation of 5-HT2c serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of theselective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory.These findings suggest that passive exposure to a combination of physical and sensory stressorscausesa reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. Copyright © 2015. Published by Elsevier Ltd.
Article
Full-text available
Background and purpose: Designer β-keto amphetamines (e.g. cathinones, 'bath salts' and 'research chemicals') have become popular recreational drugs, but their pharmacology is poorly characterized. Experimental approach: We determined the potencies of cathinones to inhibit DA, NA and 5-HT transport into transporter-transfected HEK 293 cells, DA and 5-HT efflux from monoamine-preloaded cells, and monoamine receptor binding affinity. Key results: Mephedrone, methylone, ethylone, butylone and naphyrone acted as non-selective monoamine uptake inhibitors, similar to cocaine. Mephedrone, methylone, ethylone and butylone also induced the release of 5-HT, similar to 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and other entactogens. Cathinone, methcathinone and flephedrone, similar to amphetamine and methamphetamine, acted as preferential DA and NA uptake inhibitors and induced the release of DA. Pyrovalerone and 3,4-methylenedioxypyrovalerone (MDPV) were highly potent and selective DA and NA transporter inhibitors but unlike amphetamines did not evoke the release of monoamines. The non-β-keto amphetamines are trace amine-associated receptor 1 ligands, whereas the cathinones are not. All the cathinones showed high blood-brain barrier permeability in an in vitro model; mephedrone and MDPV exhibited particularly high permeability. Conclusions and implications: Cathinones have considerable pharmacological differences that form the basis of their suggested classification into three groups. The predominant action of all cathinones on the DA transporter is probably associated with a considerable risk of addiction.
Article
Full-text available
Two groups of tau, 3R- and 4R-tau, are generated by alternative splicing of tau exon 10. Normal adult human brain expresses equal levels of them. Disruption of the physiological balance is a common feature of several tauopathies. Very early in their life, individuals with Down syndrome (DS) develop Alzheimer-type tau pathology, the molecular basis for which is not fully understood. Here, we demonstrate that Dyrk1A, a kinase encoded by a gene in the DS critical region, phosphorylates alternative splicing factor (ASF) at Ser-227, Ser-234, and Ser-238, driving it into nuclear speckles and preventing it from facilitating tau exon 10 inclusion. The increased dosage of Dyrk1A in DS brain due to trisomy of chromosome 21 correlates to an increase in 3R-tau level, which on abnormal hyperphosphorylation and aggregation of tau results in neurofibrillary degeneration. Imbalance of 3R- and 4R-tau in DS brain by Dyrk1A-induced dysregulation of alternative splicing factor-mediated alternative splicing of tau exon 10 represents a novel mechanism of neurofibrillary degeneration and may help explain early onset tauopathy in individuals with DS.
Article
Full-text available
The gene encoding the minibrain kinase/dual-specificity tyrosine phosphorylated and regulated kinase 1A (DYRK1A) is located in the Down syndrome (DS) critical region of chromosome 21. The third copy of DYRK1A is believed to contribute to abnormal brain development in patients with DS. In vitro studies showing that DYRK1A phosphorylates tau protein suggest that this kinase is also involved in tau protein phosphorylation in the human brain and contributes to neurofibrillary degeneration, and that this contribution might be enhanced in patients with DS. To explore this hypothesis, the brain tissue from 57 subjects including 16 control subjects, 21 patients with DS, and 20 patients with sporadic Alzheimer's disease (AD) was examined with two antibodies to the amino-terminus of DYRK1A (7F3 and G-19), as well as two polyclonal antibodies to its carboxy-terminus (X1079 and 324446). Western blots demonstrated higher levels of full-length DYRK1A in the brains of patients with DS when compared to control brains. Immunocytochemistry revealed that DYRK1A accumulates in neurofibrillary tangles (NFTs) in subjects with sporadic AD and in subjects with DS/AD. Overexpression of DYRK1A in patients with DS was associated with an increase in DYRK1A-positive NFTs in a gene dosage-dependent manner. Results support the hypothesis that overexpressed DYRK1A contributes to neurofibrillary degeneration in DS more significantly than in subjects with two copies of the DYRK1A gene and sporadic AD. Immunoreactivity with antibodies against DYRK1A not only in NFTs but also in granules in granulovacuolar degeneration and in corpora amylacea suggests that DYRK1A is involved in all three forms of degeneration and that overexpression of this kinase may contribute to the early onset of these pathologies in DS.
Article
Full-text available
Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Article
Full-text available
Down syndrome (DS) is the most common genetic disorder associated with mental retardation (MR). It is believed that many of the phenotypic features of DS stem from enhanced expression of a set of genes located within the triplicated region on chromosome 21. Among those genes is DYRK1A encoding dual-specificity proline-directed serine/treonine kinase, which, as documented by animal studies, can potentially contribute to cognitive deficits in DS. Whether this contribution can be exerted through elevated levels of DYRK1A protein in the brain of DS subjects was the main goal of the present study. The levels of DYRK1A protein were measured by Western blotting in six brain structures that included cerebral and cerebellar cortices and white matter. The study involved large cohorts of DS subjects and age-matched controls representing infants and adults of different age, gender and ethnicity. Trisomic Ts65Dn mice, an animal model of DS, were also included in the study. Both in trisomic mice and in DS subjects, the brain levels of DYRK1A protein were increased approximately 1.5-fold, indicating that this protein is overexpressed in gene dosage-dependent manner. The exception was an infant group, in which there was no enhancement suggesting the existence of a developmentally regulated mechanism. We found DYRK1A to be present in every analyzed structure irrespective of age. This widespread occurrence and constitutive expression of DYRK1A in adult brain suggest an important, but diverse from developmental role played by this kinase in adult central nervous system. It also implies that overexpression of DYRK1A in DS may be potentially relevant to MR status of these individuals during their entire life span.
Article
Full-text available
Most individuals with Down syndrome show early onset of Alzheimer disease (AD), resulting from the extra copy of chromosome 21. Located on this chromosome is a gene that encodes the dual specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). One of the pathological hallmarks in AD is the presence of neurofibrillary tangles (NFTs), which are insoluble deposits that consist of abnormally hyperphosphorylated Tau. Previously it was reported that Tau at the Thr-212 residue was phosphorylated by Dyrk1A in vitro. To determine the physiological significance of this phosphorylation, an analysis was made of the amount of phospho-Thr-212-Tau (pT212) in the brains of transgenic mice that overexpress the human DYRK1A protein (DYRK1A TG mice) that we recently generated. A significant increase in the amount of pT212 was found in the brains of DYRK1A transgenic mice when compared with age-matched littermate controls. We further examined whether Dyrk1A phosphorylates other Tau residues that are implicated in NFTs. We found that Dyrk1A also phosphorylates Tau at Ser-202 and Ser-404 in vitro. Phosphorylation by Dyrk1A strongly inhibited the ability of Tau to promote microtubule assembly. Following this, using mammalian cells and DYRK1A TG mouse brains, it was demonstrated that the amounts of phospho-Ser-202-Tau and phospho-Ser-404-Tau are enhanced when DYRK1A amounts are high. These results provide the first in vivo evidence for a physiological role of DYRK1A in the hyperphosphorylation of Tau and suggest that the extra copy of the DYRK1A gene contributes to the early onset of AD.
Article
Recently, our group identified that harmine is able to induce β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from lack of selectivity, both against other kinases and CNS off-targets, therefore, we sought to expand structure-activity relationships for harmine’s DYRK1A activity, to enhance selectivity for off-targets, while retaining human β-cell proliferation activity. We carried out optimization of the 9-N-position of harmine to synthesize 29 harmine-based analogs. Several novel inhibitors showed excellent DYRK1A inhibition and human β-cell proliferation capability. An optimized DYRK1A inhibitor, 2-2c, was identified as a novel, efficacious in vivo lead candidate. 2-2c also demonstrates improved selectivity for kinases and CNS off-targets, as well as in vivo efficacy for β-cell proliferation and regeneration at lower doses than harmine. Collectively, these findings demonstrate that 2-2c is a much-improved in vivo lead candidate as compared to harmine, for the treatment of diabetes.
Article
Ketamine, N,N-dimethyltryptamine (DMT), and other psychoplastogens possess enormous potential as neurotherapeutics due to their ability to potently promote neuronal growth. Here, we report the first-ever structure-activity relationship study with the explicit goal of identifying novel psychoplastogens. We have discovered several key features of the psychoplastogenic pharmacophore and used this information to develop N,N-dimethylaminoisotryptamine (isoDMT) psychoplastogens that are easier to synthesize, have improved physicochemical properties, and possess reduced hallucinogenic potential as compared to their DMT counterparts.
Article
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a member of an evolutionarily conserved family of protein kinases that belongs to the CMGC group of kinases. DYRK1A, encoded by a gene located in the human chromosome 21q22.2 region, has attracted attention due to its association with both neuropathological phenotypes and cancer susceptibility in patients with Down syndrome (DS). Inhibition of DYRK1A attenuates cognitive dysfunctions in animal models for both DS and Alzheimer's disease (AD). Furthermore, DYRK1A has been studied as a potential cancer therapeutic target because of its role in the regulation of cell cycle progression by affecting both tumor suppressors and oncogenes. Consequently, selective synthetic inhibitors have been developed to determine the role of DYRK1A in various human diseases. Our perspective includes a comprehensive review of potent and selective DYRK1A inhibitors and their forthcoming therapeutic applications.
Article
Background: Pimavanserin is a selective 5-HT2Areceptor inverse agonist and antagonist approved in the USA for the treatment of hallucinations and delusions associated with Parkinson's disease psychosis. No safe or effective pharmacological treatment is approved for psychosis in patients with Alzheimer's disease. Therefore, we aimed to evaluate the safety, tolerability, and efficacy of pimavanserin versus placebo in patients with Alzheimer's disease psychosis. Methods: We did a phase 2, randomised, double-blind, placebo-controlled, single-centre (with multiple affiliated nursing home sites across the UK) study. We included participants of either sex who were aged 50 years or older with possible or probable Alzheimer's disease and psychotic symptoms including visual or auditory hallucinations, delusions, or both. Participants were randomly assigned (1:1) to 12 weeks of oral treatment with either pimavanserin (two 17 mg tablets daily) or placebo, with use of permuted block sizes of four and stratified by baseline Mini-Mental State Examination (MMSE) total score (<6 or ≥6) and Neuropsychiatric Inventory-Nursing Home version (NPI-NH) psychosis score (<12 or ≥12). Participants, caregivers, the study sponsor, and study personnel at the clinic site were masked to treatment assignment. The primary endpoint was mean change from baseline to week 6 in the NPI-NH psychosis score for pimavanserin versus placebo in the modified intention-to-treat population. Sustained benefit and safety of pimavanserin were assessed through week 12. This study is registered at ClinicalTrials.gov, number NCT02035553. Findings: Between Jan 16, 2014, and Oct 27, 2016, 345 participants across 133 nursing homes were screened, of whom 181 were randomly assigned treatment (n=90 pimavanserin and n=91 placebo). 178 participants were included in the modified intention-to-treat population. Mean total baseline NPI-NH psychosis scores were 9·5 (SD 4·8) for the pimavanserin group and 10·0 (5·6) for the placebo group. Mean change in the NPI-NH psychosis score at week 6 was -3·76 points (SE 0·65) for pimavanserin and -1·93 points (0·63) for placebo (mean difference -1·84 [95% CI -3·64 to -0·04], Cohen's d=-0·32; p=0·045). By week 12, no significant advantage for pimavanserin versus placebo was observed for the overall study population (treatment difference -0·51 [95% CI -2·23 to 1·21]; p=0·561). Common adverse events were falls (21 [23%] of 90 participants in the pimavanserin group vs 21 [23%] of 91 in the placebo group), urinary tract infections (20 [22%] vs 25 [28%]), and agitation (19 [21%] vs 13 [14%]). Eight (9%) participants on pimavanserin and 11 (12%) on placebo discontinued treatment because of adverse events. No detrimental effect was observed on cognition or motor function in either group. Interpretation: Pimavanserin showed efficacy in patients with Alzheimer's disease psychosis at the primary endpoint (week 6) with an acceptable tolerability profile and without negative effect on cognition. Further follow-up to week 12 did not show significant advantage for pimavanserin versus placebo. Funding: ACADIA Pharmaceuticals.
Article
DYRK1A is an emerging biological target with implications in diverse therapeutic areas such as neurological disorders (Down syndrome in particular), metabolism, and oncology. Harmine, a natural product that selectively inhibits DYRK1A amongst kinases could serve as a tool compound to better understand the biological processes that arise from DYRK1A inhibition. On the other hand harmine is also a potent inhibitor of monoamine oxidase A (MAO-A). Using structure-based design we have synthesized a collection of harmine analogs with tunable selectivity towards these two enzymes. Modifications in position 7 typically decreased affinity for DYRK1A while substitution in position 9 had a similar effect on MAO-A inhibition while maintaining DYRK1A inhibition. The resulting collection of compounds can help to understand the biological role of DYRK1A and also to assess the interference in the biological effect originating in MAO-A inhibition.
Article
Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism.
Article
Significant progress has been made in prospectively designing molecules using the CNS MPO desirability tool, as evidenced by the analysis reported herein of a second wave of drug candidates that originated after the development and implementation of this tool. This simple to use design algorithm has expanded design space for CNS candidates, and has further demonstrated the advantages of utilizing a flexible, multi-parameter approach in drug discovery, rather than individual parameters and hard cutoffs of physicochemical properties. The CNS MPO tool has helped increase the percentage of compounds nominated for clinical development that exhibit alignment of ADME attributes, cross the blood-brain barrier, and reside in lower-risk safety space (low ClogP and high TPSA). The use of this tool has played a role in reducing the number of compounds submitted to exploratory toxicity studies and increasing the survival of our drug candidates through regulatory toxicology into First in Human (FIH) studies. Overall, the CNS MPO algorithm has helped to improve the prioritization of design ideas and the quality of the compounds nominated for clinical development.
Article
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) are implicated in the onset and progression of Down syndrome (DS) and Alzheimer's disease (AD). DYRK1A has emerged as a possible link between amyloid-β (Aβ) and Tau, the major pathological proteins in AD. We here assessed the neuroprotective potential of a novel inhibitor of DYRKs/CLKs. The Leucettine L41, acting preferentially on DYRK1A, was tested in Aβ25-35-treated mice, a nontransgenic model of AD-like toxicity. We co-injected intracerebroventricularly oligomeric Aβ25-35 peptide and L41 in Swiss male mice. After 7 days, they were submitted to behavioral tests addressing spatial and non-spatial, short- and long-term memories. The oxidative stress, apoptotic markers, kinases involved in Tau phosphorylation, and synaptic integrity were analyzed by western blot and ELISA in the hippocampus. L41, tested at 0.4, 1.2, 4 µg, prevented the Aβ25-35-induced memory deficits in the Y-maze, passive avoidance and water-maze tests, with the most active dose being 4 µg. The inhibitor prevented the Aβ25-35-induced oxidative stress, as revealed by measures of lipid peroxidation levels and reactive oxygen species accumulation, and abolished Aβ25-35-induced expression of pro-apoptotic markers. L41 prevented the Aβ25-35-induced decrease of AKT activation and increase of glycogen synthase kinase-3β (GSK-3β) activation, resulting in a decrease of Tau phosphorylation. Finally, L41 restored Aβ25-35-reduced levels of synaptic markers. The novel DYRK1A-preferential inhibitor L41 therefore prevented Aβ25-35-induced memory impairments and neurotoxicity in the mouse hippocampus. These in vivo data highlighted particularly DYRK1A as a major kinase involved in Aβ pathology and suggested therapeutic developments for DYRK1A inhibitors in AD.
Article
DYRK1A has been associated with Down's syndrome and neurodegenerative diseases, therefore it is an important target for novel pharmacological interventions. We combined a ligand-based pharmacophore design with a structure-based protein/ligand docking using the software MOE in order to evaluate the underlying structure/activity relationship. Based on this knowledge we synthesized several novel β-carboline derivatives to validate the theoretical model. Furthermore we identified a modified lead structure as a potent DYRK1A inhibitor (IC50=130nM) with significant selectivity against MAO-A, DYRK2, DYRK3, DYRK4 & CLK2.
Article
: Microtubules and their associated proteins play a prominent role in many physiological and morphological aspects of brain function. Abnormal deposition of the microtubule-associated proteins (MAPs), MAP2 and γ, is a prominent aspect of Alzheimer's disease. MAP2 and γ are heat-stable phosphoproteins subject to high rates of phosphorylation/dephosphorylation. The phosphorylation state of these proteins modulates their affinity for tubulin and thereby affects the structure of the neuronal cytoskeleton. The dinoflagellate toxin okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A. In cultured rat cortical neurons and a human neuroblastoma cell line (MSN), okadaic acid induces increased phosphorylation of MAP2 and γ concomitant with early changes in the neuronal cytoskeleton and ultimately leads to cell death. These results suggest that the diminished rate of MAP2 and γ dephosphorylation affects the stability of the neuronal cytoskeleton. The effect of okadaic acid was not restricted to neurons. Astrocytes stained with antibodies to glial fibrillary acidic protein (GFAP) showed increased GFAP staining and changes in astrocyte morphology from a flat shape to a stellate appearance with long processes.
Article
The serotonin 5-HT(2A) receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects.
Article
Dyrk1A (dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A) is a serine/threonine kinase essential for brain development and function, and its excessive activity is considered a pathogenic factor in Down syndrome. The development of potent, selective inhibitors of Dyrk1A would help to elucidate the molecular mechanisms of normal and diseased brains, and may provide a new lead compound for molecular-targeted drug discovery. Here, we report a novel Dyrk1A inhibitor, INDY, a benzothiazole derivative showing a potent ATP-competitive inhibitory effect with IC(50) and K(i) values of 0.24 and 0.18 μM, respectively. X-ray crystallography of the Dyrk1A/INDY complex revealed the binding of INDY in the ATP pocket of the enzyme. INDY effectively reversed the aberrant tau-phosphorylation and rescued the repressed NFAT (nuclear factor of activated T cell) signalling induced by Dyrk1A overexpression. Importantly, proINDY, a prodrug of INDY, effectively recovered Xenopus embryos from head malformation induced by Dyrk1A overexpression, resulting in normally developed embryos and demonstrating the utility of proINDY in vivo.
Article
A protein determination method which involves the binding of Coomassie Brilliant Blue G-250 to protein is described. The binding of the dye to protein causes a shift in the absorption maximum of the dye from 465 to 595 nm, and it is the increase in absorption at 595 nm which is monitored. This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr. There is little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose. A small amount of color is developed in the presence of strongly alkaline buffering agents, but the assay may be run accurately by the use of proper buffer controls. The only components found to give excessive interfering color in the assay are relatively large amounts of detergents such as sodium dodecyl sulfate, Triton X-100, and commercial glassware detergents. Interference by small amounts of detergent may be eliminated by the use of proper controls.
Article
Ultrastructural studies of biopsied cortical tissue from the right frontal lobe of 8 patients with mild to moderate Alzheimer's disease (AD) revealed that the number of synapses in lamina III of Brodmann's area 9 was significantly decreased when compared with the number in age-matched control brains (n = 9; postmortem time, less than 13 hours). Further decline in synaptic number was seen in age-matched autopsied AD specimens. In the AD brains there was significant enlargement of the mean apposition length, which correlated with degree of synapse loss; as synapse density declined, synapse size increased. The enlargement of synapses, coupled with the decrease in synaptic number, allowed the total synaptic contact area per unit volume to remain stable in the patients who underwent biopsy. In autopsied subjects who had AD, there was no further enlargement of mean synaptic contact area. There was a significant correlation between synapse counts and scores on the Mini-Mental State examination in the patients who underwent biopsy. Lower mental status scores were associated with greater loss of synapses. Choline acetyltransferase activity was significantly decreased in the biopsied group and declined further in the autopsied specimens of AD. There was no relationship between choline acetyltransferase activity and scores on the Mini-Mental State examination or synapse number. There is evidence of neural plasticity in the AD neuropil; synaptic contact size increased in patients who had biopsy and possibly compensated for the numerical loss of synapses. But by end stage of the disease, the ability of the cortex to compensate was exceeded and both synapse number and synaptic contact area declined.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
Harmine, a hallucinogen with potent monoamine oxidase inhibitory properties, induced abnormal behavior, including tremor, scratching, head twitch and cage biting, in the mouse. A dose-dependent tremor was produced by all routes of administration of harmine. Although oxotremorine tremor was markedly suppressed by atropine, harmine tremor was unaffected by cholinergic drugs, remarkably inhibited by dopaminergic drugs, antidepressants and diazepam, mildly diminished by p-chlorophenylalanine, markedly augmented by 5-hydroxytryptophan and mildly increased by alpha-methyl-p-tyrosine. These findings suggest that a catecholaminergic (particularly dopaminergic) and serotonergic system imbalance plays an important role in the manifestation of harmine tremor. In view of these characteristics, harmine tremor may be useful as an effective experimental model for the evaluation of antiparkinsonism drugs, along with oxotremorine tremor because of the different mechanism of occurrence. In addition, harmine tremor appears to be useful in characterizing the properties of antidepressant drugs.
Article
We evaluated three groups of elderly individuals who were carefully screened to rule out clinically significant diseases that could affect cognition. They were matched for age and education. The groups included normals (N = 18), Alzheimer's Disease (AD) patients (N = 15), and minimally impaired individuals with memory complaints and impairments but who did not fulfill criteria for AD (N = 17). Volumetric measurements of different regions of the temporal lobe on the coronal scan as well as ratings of the perihippocampal cerebrospinal fluid (CSF) accumulation (HCSF) on the negative angle axial MR were carried out. Volume reductions were found in AD relative to the normals for both medial and lateral temporal lobe volumes. Only hippocampal volume reductions were found in the minimal group. The minimally impaired individuals had equivalent hippocampal volume reductions and significantly larger parahippocampal and lateral temporal lobe gyri than the AD group. The axial HCSF was validated using the coronal volumes. The combination of coronal hippocampal and perihippocampal CSF was the best predictor of the axial HCSF rating. The parahippocampal volume did not add to the predictive ability of the hippocampal-perihippocampal CSF combination. Future work should validate these findings with longitudinal designs as well as assess the issue of normal aging of these structures and their relationship to cognitive function.
Article
The presence of an extra copy of human chromosome 21 (trisomy 21), especially region 21q22.2, causes many phenotypes in Down syndrome, including mental retardation. To study genes potentially responsible for some of these phenotypes, we cloned a human candidate gene (DYRK) from 21q22.2 and its murine counterpart (Dyrk) that are homologous to the Drosophila minibrain (mnb) gene required for neurogenesis and to the rat Dyrk gene (dual specificity tyrosine phosphorylation regulated kinase). The three mammalian genes are highly conserved, >99% identical at the protein level over their 763-amino-acid (aa) open reading frame; in addition, the mammalian genes are 83% identical over 414 aa to the smaller 542-aa mnb protein. The predicted human DYRK and murine Dyrk proteins both contain a nuclear targeting signal sequence, a protein kinase domain, a putative leucine zipper motif, and a highly conserved 13-consecutive-histidine repeat. Fluorescence in situ hybridization and regional mapping data localize DYRK between markers D21S336 and D21S337 in the 21q22.2 region. Northern blot analysis indicated that both human and murine genes encode approximately 6-kb transcripts. PCR screening of cDNA libraries derived from various human and murine tissues indicated that DYRK and Dyrk are expressed both during development and in the adult. In situ hybridization of Dyrk to mouse embryos (13, 15, and 17 days postcoitus) indicates a differential spatial and temporal pattern of expression, with the most abundant signal localized in brain gray matter, spinal cord, and retina. The observed expression pattern is coincident with many of the clinical findings in trisomy 21. Its chromosomal locus (21q22. 2), its homology to the mnb gene, and the in situ hybridization expression patterns of the murine Dyrk combined with the fact that transgenic mice for a YAC to which DYRK maps are mentally deficient suggest that DYRK may be involved in the abnormal neurogenesis found in Down syndrome.
Article
Psilocybin, an indoleamine hallucinogen, produces a psychosis-like syndrome in humans that resembles first episodes of schizophrenia. In healthy human volunteers, the psychotomimetic effects of psilocybin were blocked dose-dependently by the serotonin-2A antagonist ketanserin or the atypical antipsychotic risperidone, but were increased by the dopamine antagonist and typical antipsychotic haloperidol. These data are consistent with animal studies and provide the first evidence in humans that psilocybin-induced psychosis is due to serotonin-2A receptor activation, independently of dopamine stimulation. Thus, serotonin-2A overactivity may be involved in the pathophysiology of schizophrenia and serotonin-2A antagonism may contribute to therapeutic effects of antipsychotics.
Article
The DYRK1A gene on human chromosome 21 encodes a protein kinase presumed to be involved in the pathogenesis of mental retardation in Down's syndrome. Here we describe a highly similar homolog, DYRK1B, which is, in contrast to DYRK1A, predominately expressed in muscle and testis. The human DYRK1B gene was mapped to chromosome 19 (19q12-13.11) by radiation hybrid analysis. The amino acid sequences of DYRK1A and DYRK1B are 84% identical in the N-terminus and the catalytic domain but show no extended sequence similarity in the C-terminal region. DYRK1B contains all motifs characteristic for the DYRK family of protein kinases. In addition, the sequence comprises a bipartite nuclear localization motif. A green fluorescent protein (GFP) fusion protein of DYRK1B was found mainly in the nucleus of transfected COS-7 cells. These data suggest that DYRK1B is a muscle- and testis-specific isoform of DYRK1A and is involved in the regulation of nuclear functions.
Article
The human homologue (MNBH/DYRK1) of the Drosophila minibrain gene maps to human chromosome 21 within the Down syndrome (DS) critical region and is within the region minimally deleted in chromosome 21-linked microcephaly. As a first step in gaining insight into the role that MNBH may have in human neurogenesis, and as a lead-up to the development of mouse models for MNBH overexpression, we have characterized the gene at the molecular level. We describe here the MNBH full-length transcript, alternative splicing, expression profile, and genomic organization. The full-length cDNA of MNBH is 5. 2 kb and is composed of 17 exons spanning 150 kb, between markers D21S335 and D21S337. Transcripts MNBHa and MNBHb arise from the use of different first exons in the 5'-UTR and are differentially expressed. MNBHa is expressed ubiquitiously in a broad spectrum of tissues and is apparently under the control of a CpG island. MNBHb is expressed only in heart and skeletal muscle and is apparently under the control of a TATA-like box. Four alternative splicing events affecting the C-terminus of the protein yield at least four isoforms of MNBH (MNBH-iso1, MNBH-iso2, MNBH-iso3, and MNBH-iso4). A PEST sequence, potentially involved in the rapid degradation of the protein, is present in all the isoforms. A histidine repeat and a serine/threonine domain are present only in the largest form of the protein (MNBH-iso1). MNBH was overexpressed 1.5-fold in DS brains and Dyrk1 about 2.1-fold in the brains of the Ts65Dn mice. The information provided here should be valuable for MNBH mutation studies and aid in the development of DS animal models.
Article
Despite their supposedly terminally-differentiated quiescent status, many neurons in Alzheimer disease display an ectopic re-expression of cell-cycle related proteins. In the highly regulated process of cell cycle, cyclin-dependent kinase 7 (Cdk7) plays a crucial role as a Cdk-activating kinase and activates all of the major Cdk-cyclin substrates. In this study, we demonstrate that Cdk7 immunoreactivity is significantly elevated in susceptible hippocampal neurons of Alzheimer disease patients in comparison with age-matched controls. Notably, the expression of Cdk7 is age-dependent, with decreased levels between the ages of 54 and 65 years and after the age of 78. While the Cdk7 levels in Alzheimer disease patients are higher than controls within each age group, the difference is greatest between ages 54-65 where disease susceptibility and/or progression is likely more related to genetic factors.
Article
We investigated the role of neurofilament (NF) proteins in Alzheimer disease (AD) neurofibrillary degeneration. The levels and degree of phosphorylation of NF proteins in AD neocortex were determined by Western blots developed with a panel of phosphorylation-dependent NF antibodies. Levels of all three NF subunits and the degree of phosphorylation of NF-H and NF-M were significantly increased in AD as compared to Huntington disease brains used as control tissue. The increase in the levels of NF-H and NF-M was 1.7- and 1.5-fold (P<0.01) as determined by monoclonal antibody SMI33, and was 1.6-fold (P<0.01) in NF-L using antibody NR4. The phosphorylation of NF-H and NF-M in AD was increased respectively at the SMI31 epitope by 1.6- and 1.9-fold (P<0.05) and at the SMI33 epitope by 2.7- and 1.3-fold (P<0.01 and P<0.05). Essentially similar effects were observed in SY5Y human neuroblastoma cells when treated with okadaic acid, an inhibitor of protein phosphatase (PP)-2A and -1. This is the first biochemical evidence which unambiguously demonstrates the hyperphosphorylation and the accumulation of NF subunits in AD brain, and shows that the inhibition of PP-2A/PP-1 activities can lead to the hyperphosphorylation of NF-H and NF-M subunits.
Article
DYRK1A, dual-specificity tyrosine-regulated kinase 1A, maps to human chromosome 21 within the Down syndrome (DS) critical region. Dyrk1 phosphorylates the human microtubule-associated protein tau at Thr212 in vitro, a residue that is phosphorylated in fetal tau and hyper-phosphorylated in Alzheimer disease (AD) and tauopathies, including Pick disease (PiD). Furthermore, phosphorylation of Thr212 primes tau for phosphorylation by glycogen synthase kinase 3 (GSK-3). The present study examines Dyrk1A in the cerebral cortex of sporadic AD, adult DS with associated AD, and PiD. Increased Dyrk1A immunoreactivity has been found in the cytoplasm and nuclei of scattered neurons of the neocortex, entorhinal cortex, and hippocampus in AD, DS, and PiD. Dyrk1A is found in sarkosyl-insoluble fractions which are enriched in phosphorylated tau in AD brains, thus suggesting a possible association of Dyrk1A with neurofibrillary tangle pathology. Yet, no clear relationship has been observed between tau phosphorylation at Thr212, and GSK-3 and Dyrk1A expression in diseased brains. Transgenic mice bearing a triple tau mutation (G272V, P301L, and R406W) and expressing hyper-phosphoyrylated tau in neurons of the entorhinal cortex, hippocampus, and cerebral neocortex show increased expression of Dyrk1A in individual neurons in the same regions. However, transgenic mice over-expressing Dyrk1A do not show increased phosphorylation of tau at Thr212, thus suggesting that Dyrk1A over-expression does not trigger per se hyper-phosphorylation of tau at Thr212 in vivo. The present observations indicate modifications in the expression of constitutive Dyrk1A in the cytoplasm and nuclei of neurons in various neurodegenerative diseases associated with tau phosphorylation.
Article
Most individuals with Down Syndrome (DS) show an early-onset of Alzheimer's disease (AD), which potentially results from the presence of an extra copy of a segment of chromosome 21. Located on chromosome 21 are the genes that encode beta-amyloid (Abeta) precursor protein (APP ), a key protein involved in the pathogenesis of AD, and dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A (DYRK1A ), a proline-directed protein kinase that plays a critical role in neurodevelopment. Here, we describe a potential mechanism for the regulation of AD pathology in DS brains by DYRK1A-mediated phosphorylation of APP. We show that APP is phosphorylated at Thr668 by DYRK1A in vitro and in mammalian cells. The amounts of phospho-APP and Abeta are increased in the brains of transgenic mice that over-express the human DYRK1A protein. Furthermore, we show that the amounts of phospho-APP as well as those of APP and DYRK1A are elevated in human DS brains. Taken together, these results reveal a potential regulatory link between APP and DYRK1A in DS brains, and suggest that the over-expression of DYRK1A in DS may play a role in accelerating AD pathogenesis through phosphorylation of APP.