ArticlePDF AvailableLiterature Review

Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: A systematic review

Authors:

Abstract and Figures

Modafinil is an FDA-approved eugeroic that directly increases cortical catecholamine levels, indirectly upregulates cerebral serotonin, glutamate, orexin, and histamine levels, and indirectly decreases cerebral gamma-amino-butrytic acid levels. In addition to its approved use treating excessive somnolence, modafinil is thought to be used widely off-prescription for cognitive enhancement. However, despite this popularity, there has been little consensus on the extent and nature of the cognitive effects of modafinil in healthy, non-sleep-deprived humans. This problem is compounded by methodological discrepancies within the literature, and reliance on psychometric tests designed to detect cognitive effects in ill rather than healthy populations. In order to provide an up-to-date systematic evaluation that addresses these concerns, we searched MEDLINE with the terms "modafinil" and "cognitive", and reviewed all resultant primary studies in English from January 1990 until December 2014 investigating the cognitive actions of modafinil in healthy non-sleep-deprived humans. We found that whilst most studies employing basic testing paradigms show that modafinil intake enhances executive function, only half show improvements in attention and learning and memory, and a few even report impairments in divergent creative thinking. In contrast, when more complex assessments are used, modafinil appears to consistently engender enhancement of attention, executive functions, and learning. Importantly, we did not observe any preponderances for side effects or mood changes. Finally, in light of the methodological discrepancies encountered within this literature, we conclude with a series of recommendations on how to optimally detect valid, robust, and consistent effects in healthy populations that should aid future assessment of neuroenhancement.
Content may be subject to copyright.
REVIEW
Modanil for cognitive neuroenhancement
in healthy non-sleep-deprived
subjects: A systematic review
R.M. Battleday
a,
n
, A.-K. Brem
a,b
a
Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
b
Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of
Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
Received 29 January 2015; received in revised form 27 July 2015; accepted 30 July 2015
KEYWORDS
Neuroenhancement;
Modanil;
Cognitive;
Psychometric;
Enhancement;
Nootropic
Abstract
Modanil is an FDA-approved eugeroic that directly increases cortical catecholamine levels, indirectly
upregulates cerebral serotonin, glutamate, orexin, and histamine levels, and indirectly decreases
cerebral gamma-amino-butrytic acid levels. In addition to its approved use treating excessive
somnolence, modanil is thought to be used widely off-prescription for cognitive enhancement.
However, despite this popularity, there has been little consensus on the extent and nature of the
cognitive effects of modanil in healthy, non-sleep-deprived humans. This problem is compounded by
methodological discrepancies within the literature, and reliance on psychometric tests designed to
detect cognitive effects in ill rather than healthy populations. In order to provide an up-to-date
systematic evaluation that addresses these concerns, we searched MEDLINE with the terms modanil
and cognitive, and reviewed all resultant primary studies in English from January 1990 until
December 2014 investigating the cognitive actions of modanil in healthy non-sleep-deprived humans.
We found that whilst most studies employing basic testing paradigms show that modanil intake
enhances executive function, only half show improvements in attention and learning and memory, and
a few even report impairments in divergent creative thinking. In contrast, when more complex
assessments are used, modanil appears to consistently engender enhancement of attention, executive
functions, and learning. Importantly, we did not observe any preponderances for side effects or mood
changes. Finally, in light of the methodological discrepancies encountered within this literature, we
conclude with a series of recommendations on how to optimally detect valid, robust, and consistent
effects in healthy populations that should aid future assessment of neuroenhancement.
&2015 Elsevier B.V. and ECNP. All rights reserved.
www.elsevier.com/locate/euroneuro
http://dx.doi.org/10.1016/j.euroneuro.2015.07.028
0924-977X/&2015 Elsevier B.V. and ECNP. All rights reserved.
n
Correspondence to: Helen Wills Neuroscience Institute, 175 Li Ka Shing Center MC#3370, UC Berkeley, Berkeley, CA 94720, USA.
E-mail address: ruairidh.battleday@gmail.com (R.M. Battleday).
European Neuropsychopharmacology (2015) 25, 18651881
1. Introduction
Neuroenhancementrefers to the targeted enhancement and
extension of cognitive and affective abilities based on an
understanding of their underlying neurobiology, and is increas-
ingly represented by the media as an eventuality, usually in a
desirable context. In reality, most contemporary strategies for
neuroenhancement comprising invasive and non-invasive brain
stimulation and pharmacological manipulation remain in their
infancy. However, one agent, the FDA-approved eugeroic
modanil, has been extensively evaluated for cognitive mod-
ulation in healthy humans, and appears safe for widespread
use. Unfortunately, discrepancies in methodology and outcomes
within the literature have precluded consensus on the nature
anddegreeofmodanil's effects on cognition, and continue to
undermine discussions on the suitability of its off-label use as a
cognitive enhancer, which is already thought to be extensive
(Franke et al., 2013;Maher, 2008). In particular, studies using
simple psychometric assessments derived from assessments of
animal cognition or clinical populations have tended to report
variable outcomes following modanil intake (see, for example,
Randall et al. (2003,2004,2005a,2005b)), whereas more
recent studies using complex testing paradigms have tended to
report benecial effects (see, for example, Finke et al. (2010)).
Thus,weaimtoprovideanevaluationofmodanil as a
neuroenhancement agent that addresses these discrepancies.
To d o s o , w e rst introduce modanil's molecular actions in the
context of its pharmacological contemporaries, as well as the
basic psychometric tests commonly employed to detect any
alteration of cognition by these agents, before reporting the
results of a systematic review on the cognitive effects of
modanil. We then follow this with methodological criticism
of study designs employed to date, and offer a set of criteria
that builds these observations into guidance for future study of
neuroenhancement.
1.1. Modanil and other pharmacological
neuroenhancement agents
Pharmacological neuroenhancement agents may target online
cognitive processes, such as attention and executive function,
ofine processes, such as memory consolidation, or a combina-
tion of the two. The stimulant methylphenidate (Ritalin
©
),
which increases central catecholamine levels, appears to
mainly target online processes, with some studies observing
improvements in working memory, speed of processing, verbal
learning and memory, and various attentional functions includ-
ing vigilance (see Linssen et al. (2014);butseeRepantis et al.
(2010)). Despite the extensive attention that methylphenidate
has received for cognitive enhancement, the signicant side
effect prole and high abuse potential that accompanies its use
have curtailed discussions about wider societal use (Linssen
et al., 2014). Conversely, piracetam, a racetam drug that
may ameliorate cognitive decline in clinical populations
(Waegemans et al., 2002), appears to target ofine properties
via modulation of acetylcholinergic and glutamatergic systems
and increases in membrane permeability (Winblad, 2006), but
appears to have limited effects in healthy humans (Dimond and
Brouwers, 1976;Mindus et al., 1976). In addition, several
herbal substances namely Panax ginseng,Ginkgo biloba,and
Bacopa monneri, all of which contain a mixture of neuroactive
compounds attributed with pleiotropic molecular and cognitive
effects have been investigated for their potentiation of both
online and ofine processes (Aguiar and Borowski, 2013;
Farooqui, 2012; et al., 2009;Neale et al., 2013). However,
methodological and evidential inconsistency within this corpus
of research has obviated the demonstration of any robust
effects on cognition.
Modanil shares features with all of these agents: it is a
stimulant drug, like methylphenidate; and, like the herbal
substances and piracetam, exerts a complex neurochemical
prole affecting both online and ofine processes. Modanil
was rst marketed in France in the 1990s as a eugeroic
treatment for narcolepsy, and has since been FDA-approved
for the treatment of excessive somnolence in narcolepsy,
obstructive sleep apnoea, and shift work sleep disorder
(Kumar, 2008). Modanil directly inhibits central dopamine
and noradrenaline uptake transporters, causing an elevation
in catecholamine levels (Qu et al., 2008); these effects in
turn elevate extracellular concentrations of serotonin, glu-
tamate, histamine, and orexin, and reduce concentrations of
gamma-amino-butrytic acid. Arousal- and wakefulness-
promoting actions are thought to arise from these increases
in dopaminergic and adrenergic transmission, and interac-
tions with the orexin/hypocretin axis (Minzenberg and Carter,
2008). Although modanil effects are thought to arise
primarily from alterations in cortical neurotransmitter sys-
tems, similar neurochemical modulations have been reported
in the hippocampus, thalamus, hypothalamus, amygdala,
caudate, and midbrain (see Scoriels et al. (2013)).
1.2. Imaging studies
Modanil does not appear to diffusely increase cortical
activation (Ellis et al., 1999); rather, selective brain net-
works and inter-areal functional connectivity are altered.
Resting-state imaging studies have shown that modanil
intake increases regional blood ow in bilateral precentral
gyri, left hippocampus, left fusiform gyrus, bilateral lingual
gyri, and cerebellum in narcoleptic and healthy participants
(Joo et al., 2008). When Esposito and colleagues examined
the activity of seven resting-state cortical networks, they
found that in the absence of structural changes modanil
intake increases activity in the Dorsal Attention Network
thought to modulate externally-directed attention by
amplifying or attenuating the saliency of relevant and
irrelevant cues and increased connectivity in the anterior
cingulate cortex (ACC) node of the left Frontal Parietal
Control network (Esposito et al., 2013)which may mediate
planning across domains (Spreng et al., 2010). On further
analysis, this group found that although overall activity in
the Saliency Network which orients attention towards key
environmental stimuli and helps guide behaviour was
unchanged, functional coupling between the right posterior
insula, a key network node, and the rest of the network was
strengthened (Cera et al., 2014).
1.3. Psychometric assessment
of neuroenhancement
Research groups typically rely on two types of psychometric
tests to assess altered neuropsychiatric states and provide
R.M. Battleday, A.-K. Brem1866
cognitive information to complement the type of biochemical
changes outlined above: 1) simple tasks, which involve basic
cognitive exercises targeting discrete sub-components of
cognitive functions; and, 2) more complex tasks, which
incorporate multiple difculty levels and test more inte-
grated features of cognition. The former are typically devel-
oped for single-dose studies examining many subjects, and
have been well-validated for the detection of specic
cognitive decits in clinical populations (tests presented in
glossary form in Tab l e 2 ). In particular, sub-tasks of the
CANTAB test battery a test series developed at the
University of Cambridge in 1986 from popular tests of non-
human primate cognition (Owen et al., 1990)dominate this
literature. Conversely, the latter tend to be designed by
individual groups in order to assess more global functions.
Although more sensitive at detecting the cognitive changes of
specic interventions, they are more tasking to design and
administer, and, as they are less standardised, impose
difculties on the comparison of results between studies.
2. Procedure
In order to evaluate the cognitive effect of modanil on
healthy adults, we conducted a systematic review of
relevant literature by searching MEDLINE with the terms
modaniland cognitivefrom January 1990 until
December 2014, and reviewed all resultant eligible studies.
We included studies for analysis if they were written in
English, prospective, conducted on healthy humans that
were not sleep-deprived, compared performance on mod-
anil to placebo, included randomisation protocols, and
contained at least one cognitive test (see Figure 1).
3. Results
Our search of the literature and subsequent selection
process resulted in 24 eligible studies, including both
parallel and cross-over designs. Within these studies, sev-
eral cognitive domains were well-represented, namely,
attention, executive function, learning and memory, and
creativity. The results of studies that employed simple
psychometric assessments to analyse these functions are
presented in Table 1, and reviewed by cognitive domain
below; a brief description of the tasks themselves may be
found in Table 2. The results of studies using more compli-
cated testing paradigms spanning multiple domains are also
presented in Table 1, and described at the end of this
section.
3.1. Attention
Attention is the cognitive function that allocates cognitive
resources to space, time, sense, and task (Posner, 2012): it
drives enhancement and suppression of relevant and
irrelevant sensory information, respectively, with the goal
of processing relevant information more accurately. The
most basic attentional sub-component is arousal, which is
associated to the intensity of attention (Berlyne, 1960),
and given modanil is licensed for its arousal-promoting
properties, it is unsurprising that many studies have
investigated its ability to promote or sustain various
attentional functions. Simple psychometric assessments
isolate and test alertness reaction toward isolated stimuli
either without (tonic alertness) or with (phasic alertness) a
preceding warning stimulus; selective attention the
ability to detect specic stimuli within an environment
containing distractors; sustained attention the mainte-
nance of a consistent behavioural response during contin-
uous or repetitive activity; and, divided attention the
ability to allocate cognitive resources to two or more
stimulus features or separate tasks (see Table 2;Sohlberg
and Mateer, 1987).
Although two studies demonstrated increased alertness
following modanil intake (Baranski et al., 2004;Randall
et al., 2005a,2005b), in the majority of studies no effect on
this sub-function was found (Baranski et al., 2004;Gilleen
et al., 2014;Liepert et al., 2004;Minzenberg et al., 2011;
Randall et al., 2003). Modanil intake had no effect on most
simple measures of selective attention (Marchant et al.,
2009;Müller et al., 2004;Randall et al., 2003,2004,2005a,
2005b), with the exception of one small study that showed
decreased reaction time with similar accuracy on the digit-
symbol substitution task (Makris et al., 2007). In terms of
sustained attention, again the majority of studies failed to
detect any improvement (Liepert et al., 2004;Müller et al.,
2004;Randall et al., 2003,2004;Theunissen et al., 2009;
Turner et al., 2003;Winder-Rhodes et al., 2010), with only
two studies reporting an improvement in performance with
modanil: one using the detection of repeated numbers task
(Baranski et al., 2004), and one the rapid visual information
processing task (Randall et al., 2005a,2005b). Finally, no
benets were found for divided attention following mod-
anil intake (Theunissen et al., 2009). In summary, studies
relying on simple tests of attention did not nd consistent
benets to modanil intake.
3.2. Executive function
Executive functions mediate the selection and manipulation
of incoming information, use of that information to con-
struct and initiate action plans, and enlistment of other
cognitive functions and brain regions into complex task-
oriented networks (Diamond, 2013). Enhancement of execu-
tive functions is the primary aim of many people seeking
and developing neuroenhancement, and modanil has anec-
dotally been thought to exert the largest effect on them.
Three core executive functions have been proposed,
namely, the inhibition of irrelevant information (inhibitory
control), the ability to alternate the focus of attention in
order to meet shifting task demands (cognitive exibility),
and the ability to hold and manipulate external and internal
information (working memory). Higher order executive
functions such as adaptive reasoning, problem solving,
planning, and decision making are hypothesised to evolve
from the interactions of these systems, as is uid intelli-
gence (Au et al., 2014).
3.2.1. Inhibitory control
Intermsofsimpletasks,Rycroft and colleagues (2007)
found that modanil intake improved inhibitory control on
an anti-saccade task, and one large between-subjects trial
demonstrated a benecial effect on the stop signal task
1867Modanil for cognitive neuroenhancement
Table 1 Results of literature review on cognitive effects of modanil in healthy non-sleep-deprived subjects.
Authors Number of
Participants
Study
Design
Dose Side
effects
Mood
changes
Cognitive domains assessed Effects observed
Baranski
et al.,
2004
18M PC;
DB; R;
WS
4 mg/
kg
–– Attention (DRN); executive function: logical reasoning
(LR) and mental addition (MA); motor: (SRT);
visuomotor/arousal; self-monitoring.
Improved accuracy on DRN; faster reaction time on
SRT. No effect on other domains.
Esposito
et al.,
2013
26M PC;
DB; R;
BS
100 mg None Executive function: uid intelligence (RAPM). No effect of group. Individuals taking modanil
demonstrated signicant improvement on medium
difculty trials, whereas those on placebo did not.
Finke et al.,
2010
18 (9M) PC;
DB; R;
WS
400 mg Yes Attention (complex-TVA task). Improvement in visual attention of low baseline
performers: more objects processed, and increased
visual short-term memory storage capacity.
Geng et al.,
2013
26 (10M) PC;
DB; R;
WS
200 mg –– Spatial attention and cognitive control. Increased successful selective spatial attention in low
probability conditions; increased attention/vigilance in
combination with enhanced cognitive control
mechanisms.
Gilleen
et al.,
2014
33 (13M) PC;
DB; R;
BS.
200 mg
(12
days)
Yes No Memory: language/implicit learning (complex multi-
day task, involving 10 days of cognitive training) and
short-term verbal memory (LM); transfer to measures
of general cognitive performance; motor: reaction
time (CCI).
Faster improvements in early training period of
language learning task; superior performance
maintained over ten day training period and at two
week follow up. Performance of high IQ group
improved to a greater extent than low IQ. No effect on
other measures.
Liepert and
Weiller,
2004
10 (10M) PC;
DB; R;
WS
200 mg –– Attention (DC); motor: reaction time, dexterity (NPH)
and excitability (TMS-based).
No effect found.
Makris
et al.,
2007
11(5M) PC;
DB; R;
WS
1.75/
3.5/7
mg/kg
Yes Attention (DSS); memory: short-term verbal memory
(SNR) and learning and rule acquisition (RA).
Improved performance on DSS and RA. Decreased
reaction time on SNR.
Marchant
et al.,
2009
24 (7M) PC;
DB; R;
BS
200 mg Yes Attention (DSS); executive function: cognitive
exibility and working memory (complex task);
memory: prospective memory (PM) and short-term
verbal memory (FR).
Increased accuracy on complex attentional set shifting
task. No effect on DSS, PM, or FR.
Minzenberg
et al.,
2008
21 (12M) PC;
DB; R;
WS
200 mg None Yes Executive function: inhibitory control (POP). No effect on POP when whole group analysed; sub-
group with sub-ceiling performance exhibited
improved accuracy.
Minzenberg
et al.,
2011
18 (10M) PC;
DB; R;
WS
200 mg None No Visuomotor/arousal. Trend towards faster reaction time on arousal task.
Minzenberg
et al.,
2014
22 (12M) PC;
DB; R;
WS
200 mg –– Executive function: inhibitory control (POP). No effect.
Mohamed,
2014
64 (31M)
(same
200 mg Yes Marginally signicant improvement on GEF. No main
effect on ReA (but participants low in creativity
R.M. Battleday, A.-K. Brem1868
population
as below)
PC;
DB; R;
BS
Short-term verbal (fDS) and visual (PAL) memory;
creativity: convergent (GEF, ReA) and divergent (AT,
LD, PM).
personality trait scored signicantly higher than those
high in creativity personality trait in modanil group
only). Reduced performance on exibility scores on the
AT. No effect on other tasks.
Mohamed
and
Lewis,
2014
64 (31M) PC;
DB; R;
BS
200 mg None None Executive function: inhibitory control (HSC);
convergent thinking (HSC).
No effect on accuracy of HSC (slower reaction times in
inhibition section).
Müller
et al.,
2004
16 (10M) PC;
DB; R;
WS
200 mg None No Attention (TMT-A, DC); numeric manipulation/working
memory (NWM); short-term visual memory (DMTS).
Fewer errors on NWM when difcult manipulation
required only; poorbaseline manipulators benetted
more than good. Decrease in error rates after long
delays only in DMTS. No effect on DC or TMT-A.
Müller
et al.,
2013
64 (31M) PC;
BD; R;
BS
200 mg Yes Yes Executive function: planning (SOC) and working
memory (SWM, bDS); short-term memory (fDS, PAL);
creative thinking: convergent (LD, GEF) and divergent
(AT).
Improved performance on SOC, SWM, and PRM (delayed
only). No effect on other tasks.
Pringle
et al.,
2013
34 (17M) PC;
DB; R;
BS
100 mg Yes Executive function: working memory and cognitive
exibility (complex task), working memory (bDS);
short-term verbal memory (fDS).
Enhanced learning rate in complex learning task (rule
acquisition and set shifting): reects executive
function (working memory and cognitive exibility). No
effect on DS.
Randall
et al.,
2003
30 (19M) PC;
DB; R;
BS
100/
200 mg
No Attention (TMT-A); executive function: inhibitory
control (Stroop), cognitive exibility (TMT-B), and
planning (SOC); short-term verbal (LM) and visual
memory (DMTS); clock drawing (CD); creativity
(COWA).
No effect found on any task.
Randall
et al.,
2004
45 (20M) PC;
DB; R;
BS
100/
200 mg
No Attention (TMT-A, RVIP); executive function: inhibitory
control (Stroop), cognitive exibility (TMT-B, IEDSS),
and planning (SOC); short-term verbal (LoM) and visual
(DMTS) memory; clock drawing (CD); creativity
(COWA).
200 mg group scored better on CD. 200 mg were faster
on congruent Stroop task (i.e., to name colour); No
effect on TMT-A, RVIP, SOC, TMT B, DMTS.), LoM, or
COWA. 200 mg scored worse on IEDSS.
Randall
et al.,
2005a,
2005b
60 (29M) PC;
BD; R;
BS
100/
200 mg
No Attention (TMT-A, DSS, DC, PASAT, RVIP); executive
function: inhibitory control (Stroop), cognitive
exibility (TMT-B, IEDSS), working memory (DST, SWM),
and planning (SOC); short-term verbal (fDS, LM) and
visual (PRM) memory; clock drawing (CD); creativity
(COWA); motor (RT).
Improved performance on PRM (200 mg were slower
during accurate trials). 200 mg more accurate and
sensitive on RVIP. 100 mg showed improved digit span.
200 mg group faster on congruent Stroop trials. No
effect on other trials, although drug group were faster
on easy trials, and slower on harder trials in the SOC.
Rasetti
et al.,
2010
38 (18M) PC;
DB; R;
WS
100 mg
(7 days)
None No Attention (complex VAC task); executive function:
working memory (2-Back); visuomotor (VPC); emotion
(FMT).
No effect.
Rycroft
et al.,
2007
44 (44M) PC;
DB; R;
BS
200 mg None No Executive function: inhibitory control (antisaccade
task).
Faster correct movements on an antisaccade task, did
not decrease (incorrect) prosaccades.
Theunissen
et al.,
2009
16 (5M) PC;
DB; R;
WS
200 mg –– Attention (CT, MC, DA); executive function: inhibitory
control (SST).
Faster reaction time on MC. No effect on other tests.
1869Modanil for cognitive neuroenhancement
Table 1 (continued )
Authors Number of
Participants
Study
Design
Dose Side
effects
Mood
changes
Cognitive domains assessed Effects observed
Turner
et al.,
2003
60 (60M) PC;
DB; R;
BS
100/
200 mg
Yes Attention (RVIP); executive function: inhibitory control
(SS), cognitive exibility (IEDSS), working memory
(bDS, SWM); short-term verbal (fDS) and visual (PAL,
DMTS, SpS) memory; creative problem solving (CGT).
Improved performance on SOC, SST, and DS, PRM.
Longer latency/deliberation time in DMTS and CGT,
with similar accuracy. No effect on other tests.
Winder-
Rhodes
et al.,
2010
12 (12M) PC;
DB; R;
WS
300 mg –– Attention (RVIP); executive function: inhibitory control
(SS), planning (SOC) and working memory (DO); short-
term visual memory (PRM); noradrenergic activity
(salivary alpha-amylase).
Fewer moves required on hardest difculty of SOC. No
difference on other measures.
Studies are single-dose unless otherwise indicated. Abbreviations: M=male; PC =placebo-controlled; DB =double-blind; R=randomised; WS =within-subjects (i.e., crossover);
BW=between-subjects; TVA =theory of visual attention; IQ =intelligence quotient; TMS =transcranial magnetic stimulation; VAC =variable attentional control. For all other task
abbreviations see Table 2.
Table 2 Glossary of simple psychometric tests used in the assessment of modanil in healthy non-sleep-deprived humans.
Domain and Task Description
Attention
Selective attention
Trail-making task A (TMT-A) Participants sequentially connect 25 encircled numbers distributed on a sheet of paper by drawing straight lines between
them.
Digital-symbol substitution task (DSS) Participants use a table showing pairs of digits and hieroglyphic-like symbols to translatea series of symbol strings.
Symbol copying task (SC) Participants are presented with a sheet with 200 randomised symbols from the DSS (see above), and must copy as many
symbols as possible in the space and time provided.
Digit cancellation task (DC) The time taken to score out a given digit from random digit sequences is recorded, with errors.
Sustained attention
Critical tracking task (CT) Participants must reverse the horizontal deviation of a cursor from the midpoint of a horizontal line segment with
compensatory joystick movements.
Mackworth clock task (MC) Participants must detect a skip in the clockwise illumination of 60 grey dots on a computer screen.
Rapid visual information processing task (RVIP) Participants must detect letters/numbers and then determine whether they are immediately followed by another,
related, letter or number.
Detection of repeated numbers task (DRN) Participants must detect repeated numbers in a sequence of three-digit numbers, and write down the appropriate
number.
R.M. Battleday, A.-K. Brem1870
Divided attention
Divided attention task (DA) Participants perform the CT (see above) with the difculty level xed at 50% of their maximum, but must remove their
foot from a pedal if a target number (e.g., 2) appears as one of 24 single digits (0 to 9) that change asynchronously
every 5 seconds in the 4 corners of the computer screen (6 digits per corner).
Executive function
Inhibitory control
Stroop task Participants must press a button signalling a colour named by a visually presented word. In the experimental condition,
the colour of the letters making up the name differs from the colour the word describes, and participants typically take
longer to react appropriately.
Stop-signal task (SST) Participants must respond rapidly to visually-presented gosignals with a key stroke, and inhibit any response when a
stopsignal is suddenly presented.
Preparing to overcome prepotency task (POP) Participants must overcome instinctive or trained responses to various aspects of stimuli, in order to make a choice that is
incongruent to these features.
Antisaccade task Participants must xate on a small red circle in the centre of a computer screen. When the circle disappears, a
peripherally located red circle appears after 200 milliseconds, simultaneous with a tone. Participants must look and
quickly and accurately to the mirror location of the circle, whilst their eye movements are monitored automatically.
Variable attentional control task Participants must indicate the direction of a subset of arrows within an image (small, medium, or big). In low-control
conditions, non-salient arrows face the same direction as salient. In high control conditions, non-salient arrows act as
distractors, and face the opposite direction.
Working memory verbal
Digit span task (backward) (bDS) Participants are required to immediately repeat a list of digits in reverse order, presented visually or verbally.
Digit ordering task (DO) Participants are read a string of numbers by an examiner, and then must repeat them, but in ascending order.
2-Back task Participants must identify the digit that occurred 2 digits ago in a series of sequentially presented digits.
Paced auditory serial addition task (PASAT) Participants must sum the two most recent digits from a serially presented set of single digits.
Numeric working number task (NWM) Participants must recognise if a four digit test sequence is ordered the same as a previously presented four digit
sequence. In the easymanipulation condition the middle two numbers have to be switched (positions 1-2-3-4 to 1-3-2-
4) and in the difcultmanipulation condition all four digits are re-ordered (positions 1-2-3-4 to 3-1-4-2).
Mental addition (MA) Participants must add a random sequence of eight numbers (between 1 and 16), presented serially.
Working memory non-verbal
Spatial working memory task (SWM) Participants must search an increasing number of boxes (38) to locate hidden tokens, which were each located in the
same box per trial. Searching any box more than once each trial results in a within search error,while returning to
search an already emptied box incurs a between search error.
Spatial span task (backward) (SpS) Participants must touch an irregularly arranged series of boxes in the reverse order that they are touched by the
examiner.
Cognitive exibility
Intra/extra dimensional set shift task (IEDSS) The participant sees two colour-lled shapes, and must learn which is correct by touching them. After six correct
responses, the stimuli and/or rules are changed. These shifts are initially intra-dimensional (e.g., colour lled shapes
remain the only relevant dimension), then later extra-dimensional (white lines become the only relevant dimension).
Trail-making test B (TMT-B) Participants must draw lines sequentially connecting 25 encircled numbers and letters alternating between numbers and
letters.
Higher executive function
Logical reasoning task (LR) Participants must identify whether a statement displayed below two letters, A and B, truthfully describes their
relationship.
One-Touch Stockings of Cambridge/Tower of
Hanoi/Tower of London (SOC)
In the Stockings of Cambridge task, participants must rearrange coloured balls in vertical columns (socks) to match a
desired nal arrangement in a specied minimum number of moves. In the Tower of London version, participants must
instead move coloured balls between three pegs(towers).
1871Modanil for cognitive neuroenhancement
Table 2 (continued )
Domain and Task Description
Raven's advanced progressive matrices (RAPM) Participants must choose the correct visuospatial pattern from a set of xed alternatives, in order to complete a set of six
patterns that are related according to various logical principles.
Cambridge Gambling Task (CGT) Participants are presented with a row of ten red and blue boxes, and must guess in which colour a randomly-hidden yellow
token is hidden by pressing the red or blue button. Participants are offered ascending or descending bets based on their
colour choice, and must attempt to increase their scoreby betting on their choice being correct. The ratio of red and
blue boxes is varied between trials to examine a subject's decision-making behaviour.
Clock drawing task (CD) Participants must indicate the positions of the minute and hour hand according to a set of test-times on pre-drawn clock
faces.
Memory
Visual short-term memory
Spatial span task (forward) (SpS) Participants must copy the sequence with which an irregularly arranged series of boxes are highlighted.
Pattern recognition memory task (PRM) Participants are presented with a series of visual patterns, and must select the pattern that has been previously
presented.
Paired associates learning task (PAL) Participants are shown a set of boxes, which are opened at random to reveal a unique pattern. Participants are then
shown a cue pattern, and must select the box that contains it.
Delayed matching to sample task (DMTS) Participants are shown a complex visual pattern (the sample) and then, after a brief delay, four similar patterns.
Participant musts touch the pattern that matches the sample. Various adaptations of this test are in use.
Prospective memory task (PM) Participants must indicate whether letter strings presented on a computer screen are real English words or not. In
addition, participants must withhold their response and press the spacebar key if they saw a PMtarget (a letter string
containing only a single Por Q)
*
.
Repeated acquisition of response sequences (RA) Participants must learn a novel 10-response sequence, only using trial and error with four keys on a keypad. If the correct
key is pressed, a counter in the corner increases by one. Incorrect keystrokes cause the screen to turn blank for one
second, but do not alter the step counter.
Verbal short-term memory
Letter memory task (LM) Participants are told to mentally update a set of four most recent letters from a continuously presented stream of letters
and recall the last four when the stream is stopped.
Digit span task (forward) (fDS) Participants must immediately repeat a list of digits, presented visually or verbally. If they fail, a second list of the same
length is presented.
Sternberg number recognition task (SNR) Participants view a series of letters. Following a delay, participants are shown a probe letter and must indicate if it was
present in the series of letters. Various other versions of this task exist.
Immediate verbal free recall task (FR) Participants must write as many items as they remember from 20 serially-presented words.
Logical memory task (LoM) Participants are asked to recall a short story immediately after they hear it, and then 20 minutes later.
Creative thinking
Convergent thinking
Group embedded gures task (GEFT) Participants must identify a simple shape within a more complex gure.
Remote associate task (RA) Participants must give a word that has an associative linkage with three other given words.
Divergent thinking
Line drawing task (LD) Participants must list all the things they can think of when shown a series of line drawings.
Pattern meaning task (PaM) Participants must list all the things they can think of when shown a series of patterns.
Abbreviated Torrance task for adults gure
subtask (AT)
R.M. Battleday, A.-K. Brem1872
(Turner et al., 2003); although notably two smaller cross-
over studies using similar doses did not (Theunissen et al.,
2009;Winder-Rhodes et al., 2010). By contrast, no effect
wasobservedonStrooptask(Randall et al., 2004,2005a,
2005b). In two studies using two preparing-to-overcome-
pre-potency paradigms, Minzenberg and colleagues failed
to detect an effect of modanil on task performance;
however, they both reported differences in brain activity
accompanying modanil intake. In the rst study, partici-
pants exhibited increased pre-frontal cortex (PFC) activity
(task-dependent), a decrease in locus coeruleus activity
(task-independent), and an increase in functional connec-
tivity between the locus coeruleus and the PFC
(Minzenberg et al., 2008). In the second, increases in
theta, alpha, and beta power in frontal and parietal
electroencephalography (EEG) electrode subgroups during
high-control subtasks were seen (Minzenberg et al., 2014).
Finally, Rasetti and colleagues conducted a seven-day
daily-dose trial in which functional magnetic resonance
imaging was performed during a variable attentional con-
trol task. Although no behavioural differences were
observed between modanil and placebo groups, image
analysis revealed decreased ACC activity following mod-
anil intake, taken by the authors to signify an increase in
computational efciency in this area, which is richly
innervated by catecholaminergic neurons (Rasetti et al.,
2010).
3.2.2. Working memory
No effect was associated with modanil intake on many simple
tests of verbal working memory (Baranski et al., 2004;Gilleen
et al., 2014;Randall et al., 2005a,2005b;Winder-Rhodes,
2010). Studies reported mixed results using the backwards digit-
span task: three failed to show an effect (Müller et al., 2013 (a
large between-subjects study; 200 mg dose); Prin gle et al.,
2013 (a medium-sized between-subjects study; 100 mg dose);
Winder-Rhodes et al., 2010 (a small crossover study; 300 mg
dose)), whereas two trials with equivalent participant num-
bers and doses reported an increased span after modanil
intake (Randall et al., 2005a,2005b;Turner et al. 2003). Müller
and colleagues (2004) found that despite no overall improve-
ment in performance, on subtasks of the numeric working
memory task that required more manipulation, poor baseline
participants performed more accurately following modanil
ingestion. Finally, although Rasetti and colleagues found no
difference in task performance on a 2-Back task, decreased
activation was reported in right PFC during modanil sessions.
For non-verbal working memory, one large trial demonstrated
fewer between-search errors in the modanil group using the
spatial working memory task (Müller et al., 2013), whereas two
other large studies using similar doses did not (Randall et al.,
2005a,2005b;Turner et al. 2003).
3.2.3. Cognitive exibility
Most studies assessing cognitive exibility with simple tasks
reported no benet to modanil intake (Randall et al.,
2003,2005a,2005b;Turner et al. 2003), with one study
even reporting a decrease in performance on the intra/
extra dimensional set shift task (Randall et al., 2004).
Participants must complete a series of gures by adding lines and interesting shapes to them. They are instructed to try to
create unique objects and scenes, and attempt to create a picture or narrative that no other participant would think of.
Participants then have to name their drawing.
Alternative uses task (AU) Participants must state as many alternative uses as possible for a named object.
Hayling sentence completion test (HSC) Participants must listen to a sentence, then complete it by supplying the most appropriate last missing word (automatic
completion section) or by an unrelated word (inhibition section) as quickly as possible.
Motor
Nine-Hole-Peg task (NHP) Participants must place nine pegs into nine holes, and then remove them as fast as possible.
Four-choice serial reaction time (SR) Participants must move a visual pointer with a mouse to select one of four displayed letters, based on the identity of
serially presented probe letters.
CogState card identication (CCI) Participants must indicate as quickly as possible whether a card is red or not as soon as it is revealed.
Emotion
Face matching task (FM) emotional processing Participants must indicate which of two simultaneously presented matches the emotion displayed on a third face.
n
Only one study within this review uses a prospective memory task, and so its details are given here under this abbreviation. However, the reader should note that there are many tasks
that assess prospective memory, and the description given here refers only to one specic example of these tasks, and does not receive this abbreviation as standard elsewhere.
1873Modanil for cognitive neuroenhancement
3.2.4. Planning, decision-making, and uid intelligence
Many studies also examined higher executive functionality,
such as planning, decision making, and uid intelligence,
necessarily using more complicated tasks than those used
for lower functions. In terms of planning and decision
making, the Tower of London/One-Touch Stockings of Cam-
bridge tasks were well represented, with two large studies
reporting improved performance over all difculties (Müller
et al., 2013;Turner et al., 2003), and one small study
reported improved performance on harder trials only
(Winder-Rhodes et al., 2010). Interestingly, although Ran-
dall and colleagues observed an increase in speed on easier
trials in keeping with the results above, they also found that
the modanil group exhibited decreased speed on harder
trials (Randall et al., 2005a,2005b). Finally, one small study
reported no differences between modanil and control
group performance (Randall et al., 2003).
Fluid intelligence is the ability to cope with novelty, to
think rapidly and exibly, and to see relations amongst
items independent of acquired knowledge, and is predictive
of life outcomes such as income, performance at work, and
health (Au et al., 2014;Sternberg et al., 2013). Using a
logical reasoning task that probed uid intelligence,
Baranski and colleagues (2004) found that modanil
increased accuracy. Similarly, Esposito and colleagues
reported that modanil intake improved one measure of
performance on Raven's Advanced Progressive Matrices, the
best-known assessment of uid intelligence. Although mod-
anil intake did not appear to affect overall performance
between individuals' pre-drug and post-drug performance,
individuals in the modanil group exhibited greater
improvement on medium difculty trials than the control
group (Esposito et al., 2013).
In summary, modanil appears to exert a benecial effect
on executive functions, with some benets seen in inhibi-
tory control and working memory paradigms, and more
marked effects in higher executive functions such as plan-
ning, decision making, and uid intelligence.
3.3. Learning and memory
3.3.1. Non-verbal short-term memory
Makris and colleagues (2007) found that modanil increased
learning efciency in a simple repeated acquisition of
sequences task. Several studies used the delayed matching
to sample task to evaluate modanil's effects on visual
short-term memory, with mixed results: two medium-sized
between-subjects studies using 100 and 200 mg doses failed
to demonstrate an effect (Randall et al., 2003,2004), one
smaller crossover study using 200 mg doses demonstrated a
decrease in error rate after long delay conditions (Müller
et al., 2004), and one large between-subjects study using
100 and 200 mg doses showed an increase in latency with
similar accuracy (Turner et al., 2003). Interestingly, a large
between-subjects study also showed a slowing of response
times in the modanil group on a similar visual short-term
memory task: the pattern recognition memory task; this
time with an improvement in performance (Randall et al.,
2005a,2005b). On the same task, another large between-
subjects study using similar doses showed a decrease in
incorrect choices with no effect on latency (Turner et al.,
2003), and a third found improved performance on delayed
but not immediate trials (Müller et al., 2013); by contrast, a
fourth small crossover study failed to reveal any effect from
300 mg of modanil (Winder-Rhodes et al., 2010). No effect
was observed on several other tasks (Mohamed, 2014;Müller
et al., 2013;Turner et al., 2003).
3.3.2. Verbal short-term memory
The results from studies assessing verbal short-term memory
were broadly similar: Markis and colleagues again showed
that modanil intake improved performance, this time on a
Sternberg number recognition task, with a concomitant
decrease in reaction time at 4 and 5 h (Makris et al.,
2007). Although several studies failed to show an effect
on the forward component of the digit span (Mohamed,
Figure 1 Flowchart of systematic search and selection protocol.
R.M. Battleday, A.-K. Brem1874
2014;Müller et al., 2013;Pringle et al., 2013;Winder-
Rhodes et al., 2010), two large trials did report a positive
effect (Randall et al., 2005a,2005b;Turner et al. 2003). No
effect was seen on several other measures (Marchant et al.,
2009;Randall et al., 2003,2004,2005a,2005b).
In summary, some benets were seen with modanil on
simple assessments on learning and memory, including both
early and delayed performance. However, an equal number
of studies failed to observe any effect.
3.4. Creativity
In cognitive science, creativity is formally dened as the
production of ideas and work that is both novel and
appropriate (Dietrich, 2004), and has traditionally been
thought to arise from cognitive and neural systems distinct
from the domains involved with classical intelligence
outlined above (although see Nusbaum and Silvia (2011)).
Further, there is consensus that two broad creative sub-
functions exist: convergent and divergent thinking. Con-
vergent thinking underlies problem-solving abilities: arriving
at a particular strategy and solution to link two disparate
concepts (Mohamed, 2014). Modanil intake did not affect
convergent thinking in most studies (Mohamed and Lewis,
2014;Mohamed, 2014;Müller et al., 2013); however, when
participants were separated into low- and high-creativity
personalities in Mohamed's study based on a pre-
assessment personality questionnaire participants with
low creativity personalities were seen to score signicantly
higher than those with high baseline creativity in the
modanil group only (Mohamed, 2014). In contrast, diver-
gent thinking relies on a person's ability to generate multi-
ple associations or solutions to a subject or problem
(Mohamed, 2014). Most studies did not report any effect
of modanil on simple divergent thinking paradigms
(Mohamed, 2014;Müller et al., 2013;Randall et al., 2003,
2004,2005a,2005b). In a few studies, however, impaired
performance was observed in the modanil group:
decreased uency and elaboration on the abbreviated
Torrance task (Mohamed, 2014); increased deliberation time
on the Cambridge gambling task with no change in accuracy
(Turner et al., 2003); and slower reaction times in the
inhibition section of the Hayling sentence completion test
(Mohamed and Lewis, 2014).
3.5. Complex tasks
Most of the tasks above are simplein that they selectively
assess one or two cognitive sub-functions. However, with
testing of higher executive functions, which as noted are
thought to rely on separately testable sub-functions, task
procedures become more complicated, as do their results.
Equally, their relevance is altered: tests assessing higher
functions immediately appear more ecologically valid. The
complextasks described below extend this framework, and
use one or more advanced psychometric tasks to assess more
global cognitive domains, typically also varying task dif-
culty. They are therefore also able to gather more informa-
tion about different aspects of participants' performances:
learning rates and value associations, in addition to reaction
times and accuracies. However, these tests have mainly been
used to test specic hypotheses about cognitive functioning,
and consequently remain less well standardised. This means
they are less suited to monitoring permutations of already
well-described cognitive sub-functions, as their results are
harder to generalise, and less evidence exists as to their
modulation by different cognitive states.
Pringle and colleagues examined the effects of modanil
versus placebo in a compound learning task that also relied
on attention and executive function. In this task, a set of two
objects were briey shown on a screen, followed by one or
two dots in the position previously occupied by one of the
objects, and participants were instructed to indicate the
number of dots present as quickly as possible. In the rst set
of trials, dot location was predicted by particular object
features, for example, the object coloured red. Then,
representing an intra-dimensional switch, another colour
became predictive in the second set of stimuli; in the third
a different stimulus dimension the shape of the object
became predictive (an extra-dimensional switch); and in the
fourth, another shape became the salient indicator. Modanil
intake not only improved learning rates following the extra-
dimensional shift, but also increased participants' accuracy
across all blocks. The authors attribute this difference to
better orientation of sustained attention in the modanil
group, driven by enhanced cognitive exibility, decision
making, and rule acquisition (Pringle et al., 2 013).
In Marchant and colleagues' paradigm, stimuli were
concurrently presented in visual and auditory streams, and
participants had to identify non-targets and targets. In the
constant condition, participants were informed that the
target stimulus would be red objects in the rst set of trials,
and a low tone in the second. Thus, this section tested
selective and sustained attention, and inhibitory control. In
the alternating condition, participants were told that the
salient stimulus dimension would alternate between red
stimuli and the low tone; thus this section additionally
probes short-term memory and cognitive exibility. In the
constant condition, all participants were more accurate at
identifying non-targets rather than targets (this was unsur-
prising, as non-targets were presented at a higher fre-
quency), with no differences observed between modanil
and placebo groups. In the alternating condition, however,
subjects taking modanil responded to non-targets and
targets with similar accuracy (near-maximal), whereas
those taking placebo did not detect targets with the same
high accuracy as non-targets (Marchant et al., 2009); an
effect suggestive of enhanced attentional and executive
functions.
Geng and colleagues employed a decision-making task
based on spatial probability, in which subjects were
instructed to guess which of two boxes a stimulus would
appear in. For the rst 200 trials, the stimulus was
presented at one location 70% of the time; in the second
200 trials, the stimulus was presented in either location 50%
of the time. Modanil intake was found to improve the rate
at which subjects learnt the spatial probabilities underlying
their choices, again attributed to an enhancement of
executive functions with more accurate orientation of
attention as a corollary (Geng et al., 2013).
Finke and colleagues analysed participants' performance
on a whole report task, according to the theory of visual
attentionmodel. In this task, participants viewed a column
1875Modanil for cognitive neuroenhancement
of ve simultaneously presented letters for a brief period of
time, followed by either blank space (the unmasked
condition) or an identically positioned column of ve crosses
(the maskedcondition). Stimuli were presented for a
variable amount of time, and, after a variable pause
(masked or unmasked), participants were instructed to
recall as many of the letters as possible. According to the
theory of attention model, visual objects are processed in
parallel, and compete for space in a visual short-term
memory store according to the attentional weighting they
receive. Modanil was found to increase the uptake of
information (in other words, processing speed) in low base-
line performers, as well as the storage capacity in this
group. The authors again posit that these benets were
probably due to modanil's upregulation of PFC-based
processes involved in executive function, manifesting in
improved attentional functions (Finke et al., 2010).
Gilleen and colleagues combined cognitive training on a
language learning paradigm with twelve days of either
modanil or placebo intake. In their task, auditory neolo-
gisms were presented with a visual object within a rapidly
presented series. 50 word-picture combinations were target
pairings these were presented twice as frequently
whereas all other combinations were unpaired. After each
pairing was presented, participants had to identify whether
it was a target or not, with the only indicator being the
increased incidence of target pairings, and experience in
previous days. This task relies on multiple memory domains,
as well as attentional components, and those taking mod-
anil exhibited enhanced learning rates early in the training
period, and maintained superior performance overall, and
at follow up two weeks later. Notably, those with high
baseline intelligence scores measured using the Wechsler
Abbreviated Scale of Intelligence progressed more quickly
in the modanil group than those with low baseline intelli-
gence scores on all days of training (110), an effect not
seen in the placebo group (Gilleen et al., 2014).
When these results are considered together, it appears
that modanil exerts a complex effect on cognitive
domains, in general driving benets in attention and
memory through enhancement of higher executive func-
tions. Positive results are observed in all of these studies,
suggesting increased testing times and more complicated
paradigms might be necessary to consistently reveal the
cognitive benets of modanil intake.
3.6. Alteration of mood and side effects
70% of studies assessed the inuence of modanil intake on
mood, and although a small number of studies reported a
clustering of positive effects centred on the ability of
modanil to promote alertness/energy and ameliorate
feelings of tiredness, the majority reported no changes.
Notably, very few studies reported potentially negative
effects, such as increased anxiety (Randall et al., 2003)
and decreased contentedness (Marchant et al., 2009). Nine
out of 24 (37.5%) of the studies in our review reported side
effects: of these, 78% reported no side effects, and the
remaining two reported that a small minority of participants
had experienced insomnia, headache, stomach ache or
nausea, and dry mouth (Gilleen et al., 2014;Müller et al.,
2013). Further, modanil did not appear to affect motor
excitability (Liepert et al., 2004). Encouragingly, the only
study to assess modanil's abuse potential corroborates
consensus that it is low (Makris et al., 2007).
4. Discussion
4.1. Summary
When simple psychometric assessments are considered,
modanil intake appears to enhance executive function,
variably benet attention and learning and memory, and
have little effect on creativity and motor excitability. When
more complex tasks are considered, modanil appears to
enhance attention, higher executive functions, and learning
and memory. Negative cognitive consequences of modanil
intake were reported in a small minority of tasks, and never
consistently on any one: decreased performance on a
cognitive exibility task (the intra/extra-dimensional set
shift task in Randall et al. (2004)), increased deliberation
time during harder trials on a planning task (the One-Touch
Stockings of Cambridge task in Randall et al. (2005a,
2005b)), increased deliberation time on one divergent
thinking task (the Cambridge Gambling Task in Turner
et al. (2003)), and decreased performance on another (the
abbreviated Torrance in Mohamed (2014)). It appears that
modanil exerts minimal effects on mood if anything
improving it and only rarely causes minor adverse effects.
4.2. Mechanistic speculations
These ndings are in keeping with the effects reported in
clinical and sleep-deprived populations (Minzenberg and
Carter, 2008;Mohamed and Lewis, 2014), and are supported
by the molecular, imaging, and electrophysiological litera-
ture, allowing speculation as to the cognitive mechanisms
by which modanil might engender neuroenhancement.
Modanil is known to amplify endogenous arousal systems,
seen in pupillography (Hou et al., 2005), hormone and
enzyme levels (Samuels and Hou, 2006;Winder-Rhodes
et al., 2010), imaging (Minzenberg et al., 2008), and
electrophysiology (Della Marca et al., 2004). As arousal
subserves all other attentional capacities, which in turn
underlie many aspects of higher cognition, it is conceivable
that this bottom-upeffect is responsible for the benets
observed on simple measures of attention, executive func-
tion, learning and memory following modanil intake.
Certainly, an increase in arousal could explain observations
that modanil amplies task-induced deactivation of the
default mode network”–which is active in the absence of
salient stimuli or attention-demanding tasks (Minzenberg
et al., 2011), or the brainstem-based potentiation of
somatosensory-driven high frequency oscillations (Della
Marca et al., 2004). However, on most direct measures of
arousal itself, no benet to modanil intake was seen.
Instead, a more compelling theory is that modanil stimu-
lates improved performance in the range of tasks reported
herein mainly as a downstream effect of enhancement of
top-downcognitive control processes. Behaviour support
for this second theory comes from the consistently improved
performance in executive function paradigms, and positive
R.M. Battleday, A.-K. Brem1876
results from complex trials primarily involving these func-
tions. Further, the task-related changes in ACC and PFC
activity during executive control tasks (Minzenberg et al.,
2008;Rasetti et al., 2010), as well as in EEG alpha, beta,
and theta activity (Minzenberg et al., 2014), are also
consistent with amplication of activity in executive-
control-related brain regions (which are richly innervated
by catecholaminergic neurons (Rasetti et al., 2010)).
Such a theory is undoubtedly a simplication of the
intricate effect of modanil on the networks underlying
cognition. The more marked improvements on tasks asses-
sing multiple cognitive domains and sub-domains as well as
the permutation of many major neurotransmitter systems
indicate that there is much more to be discovered about this
interaction. As our theories of intelligence increasingly
follow a neural network philosophy (Jung and Haier,
2007), perhaps the neuronal causality of modanil's cogni-
tive effects will be more faithfully explicated. Indeed, the
value of this approach can be seen in the imaging studies
above, where modanil intake increases blood ow to
diverse network and specic regions, including the hippo-
campus, (Joo et al., 2008), and activates multi-areal brain
networks subserving attention and executive functions
(Esposito et al., 2013) and multiple cortical areas during
associative learning (Ghahremani et al., 2011).
Finally, discrepancies in the relationship between mod-
anil intake and speed of cognitive processing reported
above merit further discussion. In attention- and executive
function-based paradigms, modanil on average improved
immediate reaction times, with or without enhanced accu-
racy. However, in short-term memory studies, the benets
of modanil were most marked in delayed recognition
conditions, and in some tests of planning and creativity,
increased deliberation time was seen in the modanil
group, without improved performance. These ndings on
one hand imply that modanil intake assists with focussing
cognitive resources on attention-based tasks, endowing
benets on rapid and delayed singular responses, but also
hint that these improvements have the unwanted corollary
of impairing functions that benet from more protracted
contemplation. It is essential that future work analyses
these effects more rigorously.
4.3. Methodological points
The discrepancy between the mainly null results from
simple tests, with the exception of those assessing execu-
tive functions, and the mainly positive results from more
complex testing paradigms highlighted by this review war-
rants further discussion and investigation. In terms of
complex tasks, a systematic bias towards positive results
could have been introduced through study design or study
execution (a universal bias from task design is less likely
because of the varied nature of these tasks). One source of
study-design-based error could be the equal weighting we
have accorded to results from crossover and between-
subject trials. In the former, a participant's performance
on a test under one condition (for example, modanil
intake) is compared to their own performance under
another condition (for example, placebo), and in the latter
one group's performance under one condition on a test is
compared to a control group's performance on the same
test. It has been argued that repeating psychometric tests in
crossover tests introduces practice effects that vary unpre-
dictably between individuals and cognitive tasks, and could
bias results (Hartley et al., 2003;Lowe and Rabbitt, 1998;
Randall et al., 2004;Rose and Lin, 1984). Fortunately,
however, the preponderance for each study design is
roughly equal within simple and complex task groups, and
repeated dose studies use complex tasks with adaptive
assessment platforms that should obviate these practice
effects. Equally, the prolonged testing experience asso-
ciated with complex tasks may have allowed more oppor-
tunities for experimenters to inuence participants. Against
this argument is the fact that in the two studies that did
assess participant blinding, participants were able to guess
they had taken modanil 55% of the time in a complex
crossover trial (Gilleen et al., 2014), but 75% in a simple
between-subjects study (Turner et al., 2003).
Conversely, the simple psychometric tasks used by the
majority of studies could have lacked sufcient sensitivity
to detect cognitive effects in the healthy and mostly
student-based populations tested. With this in mind, it is
a notable non sequitur that tests that reliably report
cognitive dysfunction are equally qualied to detect
improved cognitive performance in healthy adults. A key
example of the inadequacy of some testing paradigms is the
use of the clock testin some of these studies, which
involves drawing hands onto a clock at specic times (for
example, in Randall et al. (2005a,2005b)). Whilst in ill
populations this test offers a valuable screening tool of poor
cognitive function (Shulman, 2000), it is clearly a poor
differentiator of normal or high-performing healthy indivi-
duals. Indeed, ceiling performances were consistently
observed within simple tasks, for example on the pattern
recognition memory task (Müller et al., 2013;Randall et al.,
2005a,2005b;Turner et al., 2003;Winder-Rhodes et al.,
2010), the delayed matching to sample task (Randall et al.,
2003,2004;Turner et al., 2003), the rapid visual informa-
tion processing task (Randall et al., 2005a,2005b), the
spatial working memory task (Turner et al., 2003;Winder-
Rhodes et al., 2010), the preparing-to-overcome-pre-
potency tasks (Minzenberg et al., 2008,2014), and the
Sternberg number recognition task (Makris et al., 2007).
When these ceiling effects were lessened by only analysing
data from low baseline performers, many studies actually
did detect signicant differences between modanil and
placebo groups (Minzenberg et al., 2014;Mohamed, 2014;
Müller et al., 2004;Randall et al., 2005b). Several groups
have commented this issue, noting, for example, that it may
explain why robust effects on these same tasks are seen
with sleep deprivation (Müller et al., 2004), when all
participants effectively become low baseline performers.
They also suggest that these tasks are in their current state
inappropriate for detailed assessment of healthy individuals
(Müller et al., 2004), and must be revised or abandoned in
favour of more complex testing paradigms (Finke et al.,
2010;Müller et al., 2013;Pringle et al., 2013). Recognition
of the limitations of simple psychometric tests is also seen
in the temporal succession of simple with complex ones over
the last decade. Thus, it appears that within research on
modanil, any consensus about cognitive benets has to this
point been limited by the use of simplistic testing
1877Modanil for cognitive neuroenhancement
paradigms. These ceiling effects must be addressed in
future work; certainly before discourse on the ability of
low and high baseline participants to benet from modanil
can offer real value.
4.4. Recommendations for future studies of
neuroenhancement techniques and agents
If the literature surrounding modanilone of the most
promising and highly-investigated neuroenhancers to date
presents this many barriers to comparison and interpreta-
tion, it stands to reason that cognitive assessment of
neuroenhancement in general may benet from the devel-
opment of novel or improved methodological approaches.
As the rst stage in this process, and in order to guide future
neuroenhancement studies, we propose the following fra-
mework, centred on the principles of, on one hand,
sensitivity and reproducibility, and, on the other, ecological
validity (see Table 3).
The simpletask designs described above are extremely
useful tools for dissecting the inuence of a substance or
process on higher cognitive functions. Equally important,
their internal validity is high, at least within clinical
populations (Levaux et al., 2007;Sweeney et al., 2000).
Hence, if the ceiling effects encountered in these studies
could be ameliorated, they would still add much valuable
information to any assessment of supra-normal cognition.
One solution to this problem is to integrate them into more
advanced software platforms, which would still be standar-
dised, but could be set to increase task difculty via more
complex task demands and shorter response windows. More
complex tasks could then be integrated into the basic
software package as additional modules, meaning more
nebulous domains and cognitive processes could be investi-
gated with reference to changes in basic systems, and a high
internal consistency in the literature could be established.
The additional advantages of such an approach are myriad:
integration of adaptive training and testing regimes, so that
learning in each cognitive-subdomain could also be mea-
sured; more comprehensive analysis of participant perfor-
mance, with the ability to compare every aspect of their
actions; and game-based incentive structures, obviating the
decline in performance that follows prolonged testing
(Kennedy and Scholey, 2004). Using the same system,
testing could be conducted on untrained tasks and their
cognitive sub-domains, to identify any transfer of cognitive
ability (see Gilleen et al. (2014), or be used for re-testing at
later dates, to identify lasting effects.
The output of neuroenhancement-related research is
aimed at a fundamentally different population from most
prior work on cognitive modulation those seeking elective
self-improvement of their own cognitive abilities, rather
than those hoping to treat cognitive decits. Consequently,
methodologies of research in this area need to be consid-
ered anew, in order to probe supra-normal cognitive
enhancement in ecologically valid settings whilst retaining
rigorous testing conditions. Most tasks and projects in life
necessitate learning and operating within a system for
multiple days, and individual users are interested primarily
in how their own performance will change, rather than the
average of a group. Thus, testing regimes should be based
over multiple days, and allow analysis within and between
single participants' performances. Baseline testing is also
essential; as an absolute measure of individual perfor-
mance, to ensure that ceiling and oor performances are
not limiting the usefulness of results, and to allow specula-
tion on whether and why some groups benet more from
particular agents or techniques. Makris and colleagues'
(2007) nding of improved reaction times four and ve
hours after modanil ingestion serves as a reminder that
under real-life conditions, performance is likely to be
affected by fatigue even within a single working day. In this
case, modanil's eugeroic properties are evidently bene-
cial; however, more generally studies should make more
effort to examine the length of performance benets
offered by an agent or technique for neuroenhancement.
Finally, in the set of studies we examined, reporting of
side effects was egregiously low and inconsistent. Given the
potentially far-reaching consequences of neuroenhance-
ment research, future studies must be required to report
side effects, using a rigorous and standardized system.
5. Conclusion
In this review, we have highlighted that modanil provides
some benet to cognition, in particular executive functions,
speculated on the mechanisms by which it may do so, and
offered critical analysis on the methodology that has been
employed to date in healthy, non-sleep-deprived indivi-
duals. As this is a retrospective analysis, we must emphasise
that these conclusions and explanations remain necessarily
weaker than if integrated into prospective study questions;
indeed, this is a secondary and explicit aim of the text.
A full discussion of the rationale for, possibility of, and
ethical issues surrounding neuroenhancement is beyond the
scope of this review (for attempts at such, see Maslen et al.
(2014) and Persson and Savulescu (2008)). However, it is
Table 3 Methodological recommendations for neuroen-
hancement studies.
Task design
In order to attain the sensitivity to detect supra-normal
improvements in cognition, studies should use
computer-based assessment paradigms that:
1. Are designed for use in healthy rather than clinical or
animal populations;
2. Focus on one or more cognitive domains and their sub-
domains;
3. Integrate adaptive training and testing components;
4. Include testing on other un-trained cognitive domains.
Trial design
In order to emulate real-world conditions surrounding
ideal use of neuroenhancement, studies should:
1. Test over multiple days;
2. Include follow-up testing;
3. Use a design that includes between-subjects and
within-subjects testing;
4. Include analysis of high and low baseline performers;
5. Be required to report side effects using a
standardized and rigorous system.
R.M. Battleday, A.-K. Brem1878
noteworthy that with more protracted and complex testing,
more benets are being associated with modanil use rather
than less, which suggests that modanil may well deserve
the title of the rst well-validated pharmaceutical noo-
tropicagent. This observation is also true of non-invasive
brain stimulation techniques, in which more integrative
cognitive assessments and physiological recordings are
yielding increasingly valuable insights into the mechanisms
by which they may engender cognitive enhancement (see,
for example, Battleday et al. (2014) and Santarnecchi et al.
(2015)). In this vein, we hope our recommendations for
future study will assist in advancing and consolidating the
cognitive investigation of neuroenhancement agents, and,
in doing so, contribute valuable information to wider
discourse on the achievability and role of neuroenhance-
ment within wider society.
Conict of interests
The authors declare no conict of interests.
Contributors
R.M. Battleday conducted the literature review and wrote the
article. A-K. Brem assisted with critical analysis and writing the
article.
Funding source
This work was conducted without any input from funding
sources.
Acknowledgements
None.
References
Aguiar, S., Borowski, T., 2013. Neuropharmacological review of the
nootropic herb Bacopa monnieri. Rejuvenation Res. 16, 313326.
http://dx.doi.org/10.1089/rej.2013.1431.
Au, J., Sheenhan, E., Tsai, N., Duncan, G.J., Buschkuehl, M.,
Jaeggi, S.M., 2014. Improving uid intelligence with training
on working memory: a meta-analysis. Psychon. Bull. Rev. 22,
112. http://dx.doi.org/10.3758/s13423-014-0699-x.
Baranski, J.V., Pigeau, R., Dinich, P., Jacobs, I., 2004. Effects of
modanil on cognitive and meta-cognitive performance. Hum.
Psychopharmacol. 19, 323332. http://dx.doi.org/10.1002/
hup.596.
Battleday, R.M., Muller, T., Clayton, M.S., Cohen Kadosh, R., 2014.
Mapping the mechanisms of transcranial alternating current
stimulation: a pathway from network effects to cognition.
Front. Psychiatry 5, 15. http://dx.doi.org/10.3389/
fpsyt.2014.00162.
Berlyne, D.E., 1960. Conict, Arousal, and Curiosity. McGraw-Hill
Book Company, New York, NY.
Cera, N., Tartaro, A., Sensi, S.L., 2014. Modanil alters intrinsic
functional connectivity of the right posterior insula: a pharma-
cological resting state fMRI study. PLoS One 9, e107145. http:
//dx.doi.org/10.1371/journal.pone.0107145.
Della Marca, G., Restuccia, D., Rubino, M., Maiese, T., Tonali, P.,
2004. Inuence of modanil on somatosensory input processing
in the human brain-stem. Clin. Neurophysiol. 115, 919926.
http://dx.doi.org/10.1016/j.clinph.2003.11.003.
Diamond, A., 2013. Executive functions. Annu. Rev. Psychol. 64,
135168. http://dx.doi.org/10.1146/annurev-psych-113011-
143750.
Dietrich, A., 2004. The cognitive neuroscience of creativity.
Psychon. Bull. Rev. 11, 10111026. http://dx.doi.org/10.3758/
BF03196731.
Dimond, S.J., Brouwers, E.M., 1976. Increase in the power of human
memory in normal man through the use of drugs. Psychophar-
macology (Berl) 49, 307309.
Ellis, C.M., Monk, C., Simmons, A., Lemmens, G., Williams, S.C.R.,
Brammer, M., Bullmore, E., Parkes, J.D., 1999. Functional
magnetic resonance imaging neuroactivation studies in normal
subjects and subjects with the narcoleptic syndrome. Actions of
modanil. J. Sleep Res., 8593.
Esposito, R., Cilli, F., Pieramico, V., Ferretti, A., Macchia, A.,
Tommasi, M., Saggino, A., Ciavardelli, D., Manna, A., Navarra,
R., Cieri, F., Stuppia, L., Tartaro, A., Sensi, S.L., 2013. Acute
effects of modanil on brain resting state networks in young
healthy subjects. PloS One 8, 110. http://dx.doi.org/10.1371/
journal.pone.0069224.
Farooqui, A.A., 2012. Benecial effects of ginkgo biloba in neuro-
logical disorders. Springer, New York, NY, 237270. http://dx.
doi.org/10.1007/978-1-4614-3804-5_8.
Finke, K., Dodds, C.M., Bublak, P., Regenthal, R., Baumann, F.,
Manly, T., Müller, U., 2010. Effects of modanil and methylphe-
nidate on visual attention capacity: a TVA-based study. Psycho-
pharmacology (Berl) 210, 317329. http://dx.doi.org/10.1007/
s00213-010-1823-x.
Franke, A.G., Bagusat, C., Dietz, P., Hoffmann, I., Simon, P., Ulrich,
R., Lieb, K., 2013. Use of illicit and prescription drugs for
cognitive or mood enhancement among surgeons. BMC Med. 11,
102. http://dx.doi.org/10.1186/1741-7015-11-102.
Geng, J.J., Soosman, S., Sun, Y., Diquattro, N.E., Stankevitch, B.,
Minzenberg, M.J., 2013. A match made by modanil: probability
matching in choice decisions and spatial attention. J. Cogn.
Neurosci. 25, 657669. http://dx.doi.org/10.1162/
jocn_a_00333.
Ghahremani, D.G., Tabibnia, G., Monterosso, J., Hellemann, G.,
Poldrack, R.A., London, E.D., 2011. Effect of modanil on
learning and task-related brain activity in methamphetamine-
dependent and healthy individuals. Neuropsychopharmacology
36, 950959. http://dx.doi.org/10.1038/npp.2010.233.
Gilleen, J., Michalopoulou, P.G., Reichenberg, A., Drake, R., Wykes,
T., Lewis, S.W., Kapur, S., 2014. Modanil combined with
cognitive training is associated with improved learning in
healthy volunteers - a randomised controlled trial. Eur. Neurop-
sychopharmacol. 24, 529539. http://dx.doi.org/10.1016/j.
euroneuro.2014.01.001.
Hartley, D.E., Heinze, L., Elsabagh, S., File, S.E., 2003. Effects on
cognition and mood in postmenopausal women of 1-week
treatment with Ginkgo biloba. Pharmacol. Biochem. Behav. 75,
711720. http://dx.doi.org/10.1016/S0091-3057(03)00123-0.
Hou,R.H.,Freeman,C.,Langley,R.W.,Szabadi,E.,Bradshaw,C.M.,
2005. Does modanil activate the locus coeruleus in man? Compar-
ison of modanil and clonidine on arousal and autonomic functions
in human volunteers. Psychopharmacology (Berl) 181, 537549.
http://dx.doi.org/10.1007/s00213-005-0013-8.
Joo, E.Y., Seo, D.W., Tae, W.S., Hong, S.B., 2008. Effect of
modanil on cerebral blood ow in narcolepsy patients. Sleep
31 (6), 868873.
Jung, R.E., Haier, R.J., 2007. The parieto-frontal integration theory
(P-FIT) of intelligence: converging neuroimaging evidence.
Behav. Brain Sci 30, 135154. http://dx.doi.org/10.1017/
S0140525X07001185 discussion 15487.
Kennedy, D.O., Scholey, A.B., 2004. A glucose-caffeine energy
drinkameliorates subjective and performance decits during
1879Modanil for cognitive neuroenhancement
prolonged cognitive demand. Appetite 42, 331333. http://dx.
doi.org/10.1016/j.appet.2004.03.001.
Kumar, R., 2008. Approved and investigational uses of modanil: an
evidence-based review. Drugs. http://dx.doi.org/10.2165/
00003495-200868130-00003.
Levaux, M.N., Potvin, S., Sepehry, A.A., Sablier, J., Mendrek, A.,
Stip, E., 2007. Computerized assessment of cognition in schizo-
phrenia: promises and pitfalls of CANTAB. Eur. Psychiatry 22,
104115. http://dx.doi.org/10.1016/j.eurpsy.2006.11.004.
Liepert, J., Allstadt-Schmitz, J., Weiller, C., 2004. Motor excit-
ability and motor behaviour after modanil ingestion - a double-
blind placebo-controlled cross-over trial. J. Neural Transm. 111,
703711. http://dx.doi.org/10.1007/s00702-004-0111-5.
Linssen, A.M.W., Sambeth, A., Vuurman, E.F.P.M., Riedel, W.J.,
2014. Cognitive effects of methylphenidate in healthy volun-
teers: a review of single dose studies. Int. J. Neuropsychophar-
macol., 117. http://dx.doi.org/10.1017/S1461145713001594.
Lowe, C., Rabbitt, P., 1998. Test\re-test reliability of the CANTAB
and ISPOCD neuropsychological batteries: theoretical and prac-
tical issues. Neuropsychologia 36, 915923. http://dx.doi.org/
10.1016/S0028-3932(98)00036-0.
Lü, J., Yao, Q., Chen, C., 2009. Ginseng compounds: an update on
their molecular mechanisms and medical applications. Curr.
Vasc. Pharmacol. 7, 293302.
Maher, B., 2008. Poll results: look who's doping. Nature 452,
674675. http://dx.doi.org/10.1038/452674a.
Makris, A.P., Rush, C.R., Frederich, R.C., Taylor, A.C., Kelly, T.H.,
2007. Behavioral and subjective effects of d-amphetamine and
modanil in healthy adults. Exp. Clin. Psychopharmacol. 15,
123133. http://dx.doi.org/10.1037/1064-1297.15.2.123.
Marchant, N.L., Kamel, F., Echlin, K., Grice, J., Lewis, M., Rusted,
J.M., 2009. Modanil improves rapid shifts of attention. Psycho-
pharmacology (Berl) 202, 487495. http://dx.doi.org/10.1007/
s00213-008-1395-1.
Maslen, H., Douglas, T., Cohen Kadosh, R., Levy, N., Savulescu, J.,
2014. The regulation of cognitive enhancement devices: extend-
ing the medical model. J. Law Biosci. 1, 6893. http://dx.doi.
org/10.1093/jlb/lst003.
Mindus, P., Cronholm, B., Levander, S.E., Schalling, D., 1976.
Piracetam-induced improvement of mental performance. A
controlled study on normally aging individuals. Acta Psychiatr.
Scand. 54, 150160.
Minzenberg, M., Yoon, J., Carter, C., 2011. Modanil modulation of
the default mode network. Psychopharmacology (Berl), 2331.
http://dx.doi.org/10.1007/s00213-010-2111-5.
Minzenberg, M.J., Carter, C.S., 2008. Modanil: a review of
neurochemical actions and effects on cognition. Neuropsycho-
pharmacology 33, 14771502. http://dx.doi.org/10.1038/sj.
npp.1301534.
Minzenberg, M.J., Gomes, G.C., Yoon, J.H., Watrous, A.J., Geng,
J., Firl, A.J., Carter, C.S., 2014. Modanil augments oscillatory
power in middle frequencies during rule selection. Psychophy-
siology 51, 510519. http://dx.doi.org/10.1111/psyp.12201.
Minzenberg, M.J., Watrous, A.J., Yoon, J.H., Ursu, S., Carter, C.S.,
2008. Modanil shifts human locus coeruleus to low-tonic, high-
phasic activity during functional MRI. Science 322, 17001702.
http://dx.doi.org/10.1126/science.1164908.
Mohamed, A.D., 2014. The effects of modanil on convergent and
divergent thinking of creativity: a randomized controlled trial.
J. Creat. Behav. 0, 121. http://dx.doi.org/10.1002/jocb.73.
Mohamed, A.D., Lewis, C.R., 2014. Modanil increases the latency
of response in the hayling sentence completion test in healthy
volunteers: a randomised controlled trial. PLoS One 9, e110639.
http://dx.doi.org/10.1371/journal.pone.0110639.
Müller, U., Rowe, J.B., Rittman, T., Lewis, C., Robbins, T.W.,
Sahakian, B.J., 2013. Effects of modanil on non-verbal cogni-
tion, task enjoyment and creative thinking in healthy
volunteers. Neuropharmacology 64, 490495. http://dx.doi.
org/10.1016/j.neuropharm.2012.07.009.
Müller, U., Steffenhagen, N., Regenthal, R., Bublak, P., 2004.
Effects of modanil on working memory processes in humans.
Psychopharmacology (Berl) 177, 161169. http://dx.doi.org/
10.1007/s00213-004-1926-3.
Neale, C., Cameld, D., Reay, J., Stough, C., Scholey, A., 2013.
Cognitive effects of two nutraceuticals Ginseng and Bacopa
benchmarked against modanil: a review and comparison of
effect sizes. Br. J. Clin. Pharmacol.. http://dx.doi.org/10.1111/
bcp.12002.
Nusbaum, E.C., Silvia, P.J., 2011. Are intelligence and creativity
really so different? Fluid intelligence, executive processes, and
strategy use in divergent thinking. Intelligence 39, 3645. http:
//dx.doi.org/10.1016/j.intell.2010.11.002.
Owen, A., Downes, J., Sahakian, B., 1990. Planning and spatial
working memory following frontal lobe lesions in man. Neurop-
sychologia 28, 10211034.
Persson, I., Savulescu, J., 2008. The perils of cognitive enhance-
ment and the urgent imperative to enhance the moral character
of humanity. J. Appl. Philos, 25, 162177. http://dx.doi.org/
10.1111/j.1468-5930.2008.00410.x.
Posner, M.I., 2012. Cognitive Neuroscience of Attention. The
Guilford Press, New York, NY.
Pringle, A., Browning, M., Parsons, E., Cowen, P.J., Harmer, C.J.,
2013. Early markers of cognitive enhancement: developing an
implicit measure of cognitive performance. Psychopharmacology
(Berl) 230, 631638. http://dx.doi.org/10.1007/s00213-013-
3186-6.
Qu, W.-M., Huang, Z.-L., Xu, X.-H., Matsumoto, N., Urade, Y., 2008.
Dopaminergic D1 and D2 receptors are essential for the arousal
effect of modanil. J. Neurosci. 28, 84628469. http://dx.doi.
org/10.1523/JNEUROSCI.1819-08.2008.
Randall, D., Viswanath, A., Bharania, P., Elsabagh, S., Hartley, D.,
Shneerson, J., File, S., 2005a. Does modanil enhance cognitive
performance in young volunteers who are not sleep-deprived? J.
Clin. Psychopharmacol 25, 175179. http://dx.doi.org/10.1097/
01.jcp.0000155816.21467.25.
Randall, D.C., Fleck, N.L., Shneerson, J.M., File, S.E., 2004. The
cognitive-enhancing properties of modanil are limited in non-
sleep-deprived middle-aged volunteers. Pharmacol. Biochem.
Behav. 77, 547555. http://dx.doi.org/10.1016/j.
pbb.2003.12.016.
Randall, D.C., Shneerson, J.M., File, S.E., 2005b. Cognitive effects
of modanil in student volunteers may depend on IQ. Pharmacol.
Biochem. Behav. 82, 133139. http://dx.doi.org/10.1016/j.
pbb.2005.07.019.
Randall, D.C., Shneerson, J.M., Plaha, K.K., File, S.E., 2003.
Modanil affects mood, but not cognitive function, in healthy
young volunteers. Hum. Psychopharmacol 18, 163173. http:
//dx.doi.org/10.1002/hup.456.
Rasetti, R., Mattay, V.S., Stankevich, B., Skjei, K., Blasi, G.,
Sambataro, F., Arrillaga-Romany, I.C., Goldberg, T.E., Callicott,
J.H., Apud, J.A., Weinberger, D.R., 2010. Modulatory effects of
modanil on neural circuits regulating emotion and cognition.
Neuropsychopharmacology 35, 21012109. http://dx.doi.org/
10.1038/npp.2010.83.
Repantis, D., Schlattmann, P., Laisney, O., Heuser, I., 2010.
Modanil and methylphenidate for neuroenhancement in
healthy individuals: a systematic review. Pharmacol. Res. 62,
187206. http://dx.doi.org/10.1016/j.phrs.2010.04.002.
Rose, L.H., Lin, H.-T., 1984. A meta-analysis of long-term creativity
training programs. J. Creat. Behav. 18, 1122. http://dx.doi.
org/10.1002/j.2162-6057.1984.tb00985.x.
Rycroft, N., Hutton, S.B., Clowry, O., Groomsbridge, C., Siera-
kowski, A., Rusted, J.M., 2007. Non-cholinergic modulation of
antisaccade performance: a modanil-nicotine comparison.
R.M. Battleday, A.-K. Brem1880
Psychopharmacology (Berl) 195, 245253. http://dx.doi.org/
10.1007/s00213-007-0885-x.
Samuels, E., Hou, R., 2006. 2006. Comparison of pramipexole and
modanil on arousal, autonomic, and endocrine functions in
healthy volunteers. J. Psychopharmacol. 20 (6), 756770. http:
//dx.doi.org/10.1177/0269881106060770.
Santarnecchi, E., Brem, A.-K., Levenbaum, E., Thompson, T.,
Kadosh, R.C., Pascual-Leone, A., 2015. Enhancing cognition
using transcranial electrical stimulation. Curr. Opin. Behav.
Sci. 4, 171178.
Scoriels, L., Jones, P.B., Sahakian, B.J., 2013. Modanil effects on
cognition and emotion in schizophrenia and its neurochemical
modulation in the brain. Neuropharmacology 64, 168184. http:
//dx.doi.org/10.1016/j.neuropharm.2012.07.011.
Shulman, K.I., 2000. Clock-drawing: is it the ideal cognitive screen-
ing test? Int. J. Geriatr. Psychiatry 15, 548561.
Sohlberg, M.M., Mateer, C.A., 1987. Effectiveness of an attention-
training program. J. Clin. Exp. Neuropsychol. 9, 117130. http:
//dx.doi.org/10.1080/01688638708405352.
Spreng, R.N., Stevens, W.D., Chamberlain, J.P., Gilmore, A.W.,
Schacter, D.L., 2010. Default network activity, coupled with the
frontoparietal control network, supports goal-directed cogni-
tion. Neuroimage 53, 303317. http://dx.doi.org/10.1016/j.
neuroimage.2010.06.016.
Sternberg, D.A., Ballard, K., Hardy, J.L., Katz, B., Doraiswamy, P.M.,
Scanlon, M., 2013. The largest human cognitive performance
dataset reveals insights into the effects of lifestyle factors and
aging. Front. Hum. Neurosci. 7, 292. http://dx.doi.org/10.3389/
fnhum.2013.00292.
Sweeney, J.A., Kmiec, J.A., Kupfer, D.J., 2000. Neuropsychologic
impairments in bipolar and unipolar mood disorders on the
CANTAB neurocognitive battery. Biol. Psychiatry 48, 674684.
http://dx.doi.org/10.1016/S0006-3223(00)00910-0.
Theunissen, E.L., Elvira, J., de la, A., van den Bergh, D., Ramae-
kers, J.G., 2009. Comparing the stimulant effects of the H1-
antagonist fexofenadine with 2 psychostimulants, modanil and
methylphenidate. J. Clin. Psychopharmacol. 29, 439443. http:
//dx.doi.org/10.1097/JCP.0b013e3181b3b5f3.
Turner, D.C., Robbins, T.W., Clark, L., Aron, A.R., Dowson, J.,
Sahakian, B.J., 2003. Cognitive enhancing effects of modanil in
healthy volunteers. Psychopharmacology (Berl) 165, 260269.
http://dx.doi.org/10.1007/s00213-002-1250-8.
Waegemans, T., Wilsher, C.R., Danniau, A., Ferris, S.H., Kurz, A.,
Winblad, B., 2002. Clinical efcacy of piracetam in cognitive
impairment: a meta-analysis. Dement. Geriatr. Cogn. Disord. 13,
217224. http://dx.doi.org/10.1159/000057700.
Winblad, B., 2006. Piracetam: a review of pharmacological proper-
ties and clinical uses. CNS Drug Rev. 11, 169182. http://dx.doi.
org/10.1111/j.1527-3458.2005.tb00268.x.
Winder-Rhodes, S.E., Chamberlain, S.R., Idris, M.I., Robbins, T.W.,
Sahakian, B.J., Müller, U., 2010. Effects of modanil and
prazosin on cognitive and physiological functions in healthy
volunteers. J. Psychopharmacol. 24, 16491657, http://dx.doi.
org/10.1177/0269881109105899.
1881Modanil for cognitive neuroenhancement
... Прием препарата может ухудшить переносимость жары [51]. Применение модафинила для улучшения когнитивных функций позволяет незначительно улучшить показатели внимания и реакции у пациентов, страдающих нарушением сна (недосыпанием) [19,50]. ...
... В дозе 400 мг/день у здоровых добровольцев прием модафинила увеличивал период бодрствования, усиливая региональный мозговой кровоток в областях головного мозга, ответственных за эмоциональные и исполнительные функции. Также препарат усиливает показатели внимания у пациентов и их обучаемость [19,27]. ...
Article
В Республике Беларусь зарегистрирована субстанция лекарственного вещества модафинил. До настоящего времени это первая субстанция данного вещества, произведенного на территории государств постсоветского пространства. Представлены результаты анализа литературных источников, и дана клинико-фармакологическая характеристика лекарственного вещества модафинил. Отражены данные клинических исследований использования модафинила, его эффектов, показаний, противопоказаний, а также результаты исследований воздействия модафинила на когнитивные функции, психическую работоспособность и способность повышать концентрацию внимания. The substance of the medicinal substance modafinil is registered in the Republic of Belarus. To date, this is the first substance of this substance produced on the territory of the post-Soviet states. The results of the analysis of literary sources are presented and the clinical and pharmacological characteristics of the medicinal substance modafinil are given. The data of clinical studies of the use of modafinil, its effects, indications, contraindications, as well as the results of studies of the effects of modafinil on cognitive functions, mental performance and the ability to increase concentration are reflected.
... Chemically known as 2-[(Diphenylmethyl) sulfinyl] acetamide, Modafinil is renowned for its ability to selectively increase wakefulness and alertness. [2] Modafinil is a wake-promoting agent prescribed for narcolepsy-associated somnolence (Yuan and Li, 2006). The precise mechanism of its action remains a subject of research; however, modulation by Modafinil in various neurotransmitter systems, including dopamine, norepinephrine, and histamine, is prominent in explanatory models. ...
... Additionally, Modafinil's potential in enhancing executive functions, such as working memory and cognitive flexibility, has been observed, underscoring its role in elevating cognitive processes to a higher level. [5] While most studies employing basic testing paradigms show that modafinil intake enhances executive function, only half show improvements in attention and learning and memory, and a few even report impairments in divergent creative thinking (Battleday and Brem, 2015). A significant body of research has extensively explored the broader concept of cognitive enhancement in various fields of cognitive sciences, including cognitive psychology, neurobiology, and educational sciences. ...
Article
Full-text available
In the dynamic intersection of cognitive enhancement and artistic expression, this article explores the cognitive neuroeffects of modafinil on the cognitive abilities of actors and investigates its potential impact on the inherent cognitive domains crucial to the entertainment industry. Employing a comprehensive experimental approach, professional actors of diverse backgrounds utilized modafinil to uncover its effects on sustained attention, working memory, creativity, emotional recognition, cognitive flexibility, and emotional intelligence. The findings reveal significant improvements in attention accuracy, working memory precision, heightened creative output, emotional recognition acuity, cognitive flexibility, and emotional intelligence within the modafinil group when compared to the placebo. These effects stem from the modulation of neural chemical pathways governing attention, memory, emotional processing, and cognitive flexibility by modafinil. The results affirm modafinil as a cognitive enhancer for actors, optimizing their executive intelligence while heightening ethical considerations and potential challenges. This exploration of modafinil's cognitive effects in the realm of acting contributes valuable insights to cognitive enhancement research and paves the way for the integration of pharmacological interventions in creative professions.
... Modafinil also activates glutamatergic circuits while inhibiting GABA. 129,130 The evidence is mixed regarding the effectiveness of modafinil in reducing cocaine use in patients with cocaine use **Prescriptions. 21 CFR §1306 (1971). ...
... It is a prescription drug, that in the United States is FDA-approved for the treatment of narcolepsy, sleep work shift disorder and obstructive sleep apnea in adults. Although its exact biochemical process is unknown, it is thought to alter the height of different neurotransmitters (e.g., serotonin, noradrenalin, dopamine, and gamma-aminobutyric acid (Kim, 2012;Battleday and Brem, 2015). Its effectiveness as a countermeasure has been demonstrated in several studies with different periods of wakefulness (Wesensten et al., 2004;Estrada et al., 2012;Wingelaar-Jagt et al., 2023). ...
Article
Full-text available
Introduction: Literature suggests pilots experience fatigue differently. So-called fatigue-resistant or -vulnerable individuals might also respond differently to countermeasures or stimulants. This study, which is part of a larger randomized controlled clinical trial, aims to investigate the effect of caffeine and modafinil on fatigue-resistant and -vulnerable pilots. Methods: This study included 32 healthy employees of the Royal Netherlands Air Force, who completed three test days, separated by at least 7 days. After a regular work day, the subjects were randomly administered either 300 mg caffeine, 200 mg modafinil or placebo at midnight. Hereafter the subjects performed the psychomotor vigilance test (PVT), vigilance and tracking test (VigTrack) and Stanford sleepiness scale (SSS) six times until 8 a.m. the next day. Subjects were ranked on the average number of lapses on the PVT during the placebo night and divided into three groups: fatigue-vulnerable (FVUL), -intermediate (FINT) and -resistant (FRES), with 11, 10 and 11 subjects in each group, respectively. Area under the curve (AUC) of the PVT, VigTrack and SSS during the test nights were calculated, which were used in univariate factorial analysis of variance (ANOVA). Tukey’s HSD post hoc tests were used to differentiate between the groups. Results: A significant effect of treatment was found in the ANOVA of both PVT parameters, VigTrack mean reaction time and SSS. There was a statistically significant effect of fatigue group on all PVT parameters and VigTrack mean percentage omissions, where FINT and FRES scored better than FVUL. There was a significant interaction effect between treatment and fatigue group for PVT number of lapses. This is congruent for the AUC analyses in which for all parameters (except for the SSS) the performance of the FVUL group was consistently worse than that of the FINT and FRES groups. Discussion: This study demonstrates that the performance of individuals with different fatigue tolerances are differently affected by simulants after a limited period of sleep deprivation. The classification of fatigue tolerance through PVT lapses when sleep deprived seems to be able to predict this.
... The latter of these qualities has led to it be considered as a potential medication for ADHD as well. Furthermore, modafinil was also observed to have less side effects and less dependency-creating potential than amphetamines and methylphenidates, making it even more valuable for users, and increasingly attractive to abusers (Battleday & Brem, 2015;Jasinski, 2000). ...
Thesis
Full-text available
This research aims to estimate the prevalence of pharmacological cognitive enhancement (PCE) substances among students in UK universities, along with confirming which stressors users believe have contributed towards their use of such drugs. Due to most research on “study drugs” having been undertaken in the US, the prevalence of substance use with cognitive aims is not known in the UK. A questionnaire was distributed online amongst Durham, Cambridge, Newcastle, and Edinburgh students, which asked about potential drug use and, if relevant, if and what stressors contributed towards their decision to use PCE- drugs. While the survey gained traction amongst Cambridge and Durham students, it failed to produce an adequate number of responses from the other universities. A total of 192 responses were recorded. The main findings showed that the rate of PCE-use in the sample was 11%, with the true population estimate likely existing in the interval 7.01-16.58%. Men were found to be more likely than women to use PCE-drugs (p-value: 0.033). Respondents indicated that, of the listed stressors, academic procrastination along with feelings of being “burnt out” contributed most towards their decision to use PCE-drugs. Further research on the subject of PCE-use is encouraged so that estimates of prevalence can continue to be improved and understanding behind the motive to use enhancement drugs is advanced.
... Accordingly, the atypical DAT inhibitor modafinil has been approved for the treatment of sleeping disturbances and narcolepsia. Modafinil has also been proposed for the treatment of neurological and psychiatric conditions (e.g., Alzheimer disease or ADHD) as well as drug addiction (Mereu et al., 2013) and also as a cognitive enhancer in healthy people (Repantis et al., 2010;Battleday and Brem, 2015). However, in this latter case, there are some important ethical considerations (Brühl et al., 2019). ...
Article
Full-text available
Background: Dopamine plays a key role in several physiological functions such as motor control, learning and memory, motivation and reward. The atypical dopamine transporter inhibitor CE-158 has been recently reported to promote behavioral flexibility and restore learning and memory in aged rats. Methods: Adult male rats were intraperitoneally administered for 1 or 10 days with CE-158 at the dose of 1 or 10 mg/kg, and tested for extracellular dopamine in the medial prefrontal cortex (mPFC) by means of intracerebral microdialysis and single unit cell recording in the same brain area. Moreover, the effects of acute and chronic CE-158 on exploratory behavior, locomotor activity, prepulse inhibition (PPI), working memory and behavioral flexibility were also investigated. Results: CE-158 dose-dependently potentiates dopamine neurotransmission in the mPFC as assessed by intracerebral microdialysis. Moreover, repeated exposure to CE-158 at 1 mg/kg is sufficient to increase the number of active pyramidal neurons and their firing frequency in the same brain area. In addition, CE-158 at the dose of 10 mg/kg stimulates exploratory behavior to the same extent after acute or chronic treatment. Noteworthy, the chronic treatment at both doses did not induce any behavioral alterations suggestive of abuse potential (e.g., motor behavioral sensitization) or pro-psychotic-like effects such as disruption of sensorimotor gating or impairments in working memory and behavioral flexibility as measured by PPI and Y maze. Conclusions: Altogether, these findings confirm CE-158 as a promising pro-cognitive agent and contribute to assessing its preclinical safety profile in a chronic administration regimen for further translational testing.
... Furthermore, modafinil is a stimulant that inhibits dopamine reuptake by binding to the dopamine transporter and, in the cortex, also inhibits norepinephrine reuptake [33]. Although less commonly used, this drug has evidence of improvement in ADHD symptoms [34]. ...
Article
Full-text available
(1) Background: Attention-deficit/hyperactivity disorder (ADHD) is typically treated with stimulant medications, which may lead to several adverse effects. Recent animal studies have shown that caffeine can improve the symptoms of ADHD. This systematic review and meta-analysis sought to evaluate the effect of caffeine on ADHD symptoms in children. (2) Methods: PubMed, Embase, and Cochrane databases were searched for randomized controlled trials comparing caffeine with placebo in children, comparing overall symptoms of ADHD, inattention, hyperactivity, and impulsivity. (3) Results: We included seven RCTs in the systematic review for qualitative assessment, with 104 patients aged 5 to 15 years. Four of these studies (n = 76) were included in the meta-analysis. After qualitative analysis, four studies indicated no improvement in any of the ADHD symptoms compared with placebo. One study showed improvement in ADHD symptoms based on 1 of 5 scales applied. One study indicated significant improvement in general symptoms, inattention, and hyperactivity. One study indicated improvement in sustained attention but a worsening of impulsivity. In contrast, when using a quantitative analysis of the general symptoms of ADHD, the data showed no significant difference when comparing placebo with caffeine (standardized mean difference −0.12; 95% CI −0.44 to 0.20; p = 0.45; I2 = 0%). (4) Conclusion: overall, the totality of the evidence suggests no significant benefit of caffeine over placebo in the treatment of children with ADHD.
Preprint
Full-text available
Modafinil, a prescription-only drug, it is mainly used to treat narcolepsy and sleep disorders, but it is also used, without a prescription, as a cognitive enhancer by ~10% of UK University students. Previous research has focused on the prevalence of, and motivations for, these behaviours. Here we focused specifically on determining whether students view this behaviour as cheating. We used a scenario-based approach to quantify, and qualitatively understand, student views on this topic. Most students did not view this behaviour as cheating, in part due to similarities with freely available stimulants such as caffeine, and a view that cognitive enhancement does not confer new knowledge or understanding. Although a minority of students did view it as cheating, they also expressed strong views, based in part on basic questions of fairness and access. Few students did not have a view either way. These views remained largely unchanged even when presented with considerations of other moderators of the ethics of cognitive enhancement with modafinil.
Chapter
Full-text available
This chapter explains how people’s nonmedical substance use, particularly that of prescription stimulants, was understood as “enhancement” or “brain doping” since the early 2000s. In both the academic debate and popular media, it was frequently claimed that ever more people, in particular students, were using such drugs to increase their cognitive performance. This chapter illustrates that this was not a new phenomenon and that even “moral enhancement”, the idea to use substances, and neuroscientific technology to improve people’s moral behavior already existed in the 1960s and 1970s. The actual present prevalence of brain doping is then discussed in detail, with an emphasis on other motives to use drugs besides cognitive enhancement. Indeed, much of the use turns out to be rather emotionally motivated and to cope with stress, particularly in competitive environments, or to be even self-medication of psychological problems. This shows how difficultly the distinction between medical and nonmedical use can be drawn. Finally, nonpharmacological alternatives to improve one’s mental health are presented. The chapter concludes that the academic debate on cognitive enhancement was not very informative and that a general theoretical framework for people’s instrumental substance use should be preferred, which is introduced in Chap. 4 .
Article
Full-text available
In recent decades, our appreciation of the complexity of the brain has deepened immensely, as has our understanding of how it performs key functions. In the face of such complexity, and given the rising cost of neuropsychiatric illness (1), an intriguing question is whether we can promote further understanding, and in some cases enhancement, of the typical and atypical brain by targeted modulation of its activity. Notably, transcranial alternating current stimulation (tACS) – which involves transcranial application of weak sinusoidal electrical currents (2) – seems ideally suited to address this question, as it has been demonstrated to modulate endogenous oscillatory electrical activity (3), enhance cognitive functions (4–7), and provide support in neurological disease (8, 9). However, a complete mechanistic pathway between the neuronal and cognitive effects of tACS remains in need of explication, precluding both significant theoretical contribution by tACS studies, and the development of more adaptive neuroenhancement regimes. Therefore, in this Opinion article, we briefly review the role of oscillatory neuronal activity in cognition, before outlining one potential pathway by which the interaction between tACS and endogenous oscillations at a network level may be reconciled with its effects on broader cognitive functions.
Article
Full-text available
Background: Modafinil is a medication licensed for the treatment of narcolepsy. However, it has been reported that healthy individuals without wakefulness disorders are using modafinil off-label to enhance cognitive functioning. Although some studies have reported that modafinil improves cognitive task performance in healthy volunteers, numerous other studies have failed to detect cognitive enhancing effects of modafinil on several well-established neuropsychological tasks. Interestingly, several clinical and preclinical studies have found that improved cognitive task performance by modafinil is accompanied by slower response times. This observation raises the question as to whether this slowing of response time in healthy volunteers is a necessary and sufficient condition for cognitive enhancement with modafinil. The aim of the current experiment was to explore this question by investigating the effects of modafinil on the Hayling Sentence Completion Test (HSCT). Methodology: Sixty-four healthy volunteers received either a single dose (200 mg) of modafinil (n = 32) or placebo (n = 32) in a randomized, double-blind, placebo-controlled, parallel group study in which the principal outcome measures were response latencies on the response initiation and response inhibition sections of the HSCT. Principal findings: Participants dosed with modafinil had significantly longer mean response latencies on the HSCT for both the response initiation and response inhibition compared to participants dosed with placebo. However, participants in both groups made a similar number of errors on each of these measures, indicating that modafinil did not enhance the accuracy of performance of the task relative to placebo. Conclusions: This study demonstrated that administration of single 200 mg doses of modafinil to healthy individuals increased the latency of responses in the performance of the HSCT, a task that is highly sensitive to prefrontal executive function, without enhancing accuracy of performance. This finding may provide important clues to defining the limitations of modafinil as a putative cognitive enhancer. Trial registration: ClinicalTrials.gov NCT02051153.
Article
Full-text available
This article presents a model for regulating cognitive enhancement devices (CEDs). Recently, it has become very easy for individuals to purchase devices which directly modulate brain function. For example, transcranial direct current stimulators are increasingly being produced and marketed online as devices for cognitive enhancement. Despite posing risks in a similar way to medical devices, devices that do not make any therapeutic claims do not have to meet anything more than basic product safety standards. We present the case for extending existing medical device legislation to cover CEDs. Medical devices and CEDs operate by the same or similar mechanisms and pose the same or similar risks. This fact coupled with the arbitrariness of the line between treatment and enhancement count in favour of regulating these devices in the same way. In arguing for this regulatory model, the paper highlights potential challenges to its implementation, and suggests solutions.
Article
Full-text available
Background: Modafinil is employed for the treatment of narcolepsy and has also been, off-label, used to treat cognitive dysfunction in neuropsychiatric disorders. In a previous study, we have reported that single dose administration of modafinil in healthy young subjects enhances fluid reasoning and affects resting state activity in the Fronto Parietal Control (FPC) and Dorsal Attention (DAN) networks. No changes were found in the Salience Network (SN), a surprising result as the network is involved in the modulation of emotional and fluid reasoning. The insula is crucial hub of the SN and functionally divided in anterior and posterior subregions. Methodology: Using a seed-based approach, we have now analyzed effects of modafinil on the functional connectivity (FC) of insular subregions. Principal findings: Analysis of FC with resting state fMRI (rs-FMRI) revealed increased FC between the right posterior insula and the putamen, the superior frontal gyrus and the anterior cingulate cortex in the modafinil-treated group. Conclusions: Modafinil is considered a putative cognitive enhancer. The rs-fMRI modifications that we have found are consistent with the drug cognitive enhancing properties and indicate subregional targets of action. Trial registration: ClinicalTrials.gov NCT01684306.
Article
The noradrenergic locus coeruleus is a major wakefulness-promoting nucleus of the brain, which is also involved in the regulation of autonomic and endocrine functions. The activity of the locus coeruleus is believed to be tonically enhanced by a mesocoerulear dopaminergic pathway arising from the ventral tegmental area of the midbrain. Both modafinil, a wakefulness-promoting drug, and pramipexole, a D(2)/D(3)receptor agonist with sedative properties, may act on this pathway, with modafinil increasing and pramipexole decreasing locus coeruleus activity. The aim of this study was to compare the two drugs on alertness, autonomic and endocrine functions in healthy volunteers. Pramipexole (0.5mg), modafinil (200mg), and their combination were administered to 16 healthy males in a double-blind, placebo-controlled design. Methods included tests of alertness (pupillographic sleepiness test, critical flicker fusion frequency, visual analogue scales), autonomic functions (resting pupil diameter, light and darkness reflex responses, heart rate, blood pressure, salivation, core temperature), and endocrine functions (blood concentrations of prolactin, growth hormone, and thyroid stimulating hormone). Data were analysed by ANOVA. Pramipexole reduced alertness, caused pupil dilatation, increased heart rate, reduced prolactin and thyroid stimulating hormone, and increased growth hormone level. Modafinil caused small increases in blood pressure and core temperature, and reduced prolactin levels. The sedative effect of pramipexole and the autonomic effects of modafinil are consistent with altered activity in the mesocoerulear pathway; the pupil dilatation following pramipexole suggests reduced dopaminergic excitation of the Edinger-Westphal nucleus.
Chapter
Ginkgo biloba (G. biloba), which belongs to the family Ginkgoaceae, is an important herb from the Chinese traditional system of medicine (Huh and Staba 1992). Extract prepared from its leaves has been used in traditional medicine for several hundred years. Major component of patented G. biloba leaves extract is called as EGb761. It was developed by Beaufour-Ipsen Pharma (Paris, France) and Dr. Willmar Schwabe Pharmaceuticals (Karlsruhe, Germany). EGb761 contains glycosides of the flavonols quercetin, isorhamnetin, and kaempferol (24 %); the terpene-lactones bilobalide and ginkgolides A, B and C, M, J, and bilobalide (6 %); and less than 5 ppm ginkgolic acid (Figs. 8.1 and 8.2) (Drieu 1986; DeFeudis and Drieu 2000). Other minor constituents of G. biloba include shikimic, vanillic, ascorbic, p-coumaric acids, steroids (sitosterol and stigmasterol), polyprenols, benzoic acid derivatives, carbohydrates, straight chain hydrocarbons, alcohol, ketones, and 2-hexenol. G. biloba constituents possess potent central nervous system (CNS) activity (Di Renzo 2000 including enhancement of memory, concentration, mental alertness, and decrease in mental fatigue. Many of these constituents produce memory boosting and mental altering effects, which are due to antioxidant- and neurogenesis-promoting properties of flavonols of G. biloba (Fig. 8.3) (Yoo et al. 2011). In addition, G. biloba terpenes are involved in antagonizing platelet activating factor, an endogenous mediator of inflammation and nociception produced by a variety of inflammatory cells, which may improve cardiovascular blood flow (Smith et al. 1996). G. biloba flavonoids have also been reported to dilate blood vessels by increasing the release of endothelium-derived relaxing factor and prostacyclin (PGI2) from vascular endothelial cells and decrease blood viscosity by antagonizing platelet activating factor.
Article
A double-blind, intra-individual cross-over comparison of the mental performance of 18 aging, non-deteriorated individuals during two 4-week periods of piracetam (1-acetamide-2-pyrrolidone) and placebo administration was performed using conventional and computerized perceptual-motor tasks. In a majority of these tasks the subjects did significantly better when on piracetam than on placebo, a finding consistent with ratings completed by two independent observers. The findings indicate new avenues for the treatment of individuals with reduced mental performance possibly related to disturbed alertness — a neglected group of psychiatric conditions.