Article

Glycosylation Sites Flank Phosphorylation Sites on Synapsin I

Wiley
Journal of Neurochemistry
Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Synapsin I is concentrated in nerve terminals, where it appears to anchor synaptic vesicles to the cytoskeleton and thereby ensures a steady supply of fusion-competent synaptic vesicles. Although phosphorylation-dependent binding of synapsin I to cytoskeletal elements and synaptic vesicles is well characterized, little is known about synapsin I’s O-linked N-acetylglucosamine (O-GlcNAc) modifications. Here, we identified seven in vivo O-GlcNAcylation sites on synapsin I by analysis of HPLC-purified digests of rat brain synapsin I. The seven O-GlcNAcylation sites (Ser55, Thr56, Thr87, Ser516, Thr524, Thr562, and Ser576) in synapsin I are clustered around its five phosphorylation sites in domains B and D. The proximity of phosphorylation sites to O-GlcNAcylation sites in the regulatory domains of synapsin I suggests that O-GlcNAcylation may modulate phosphorylation and indirectly affect synapsin I interactions. With use of synthetic peptides, however, the presence of an O-GlcNAc at sites Thr562 and Ser576 resulted in only a 66% increase in the Km of calcium/calmodulin-dependent protein kinase II phosphorylation of site Ser566 with no effect on its Vmax. We conclude that O-GlcNAcylation likely plays a more direct role in synapsin I interactions than simply modulating the protein’s phosphorylation.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Another O-GlcNAcylated protein, synapsin, was also studied for its role in hippocampal plasticity [201]. Synapsins are proteins that tether synaptic vesicles onto the cytoskeleton to regulate vesicle release, and they are known to be heavily O-GlcNAcylated at multiple sites that flank phosphorylation sites [202,203]. Up-regulation of O-GlcNAc levels with the OGA chemical inhibitor NPentGT resulted in an increase in phosphorylation of synapsin [201]. Phosphorylation activates synapsins, promoting the movement of synaptic vesicles from reserve to releasable mode. ...
Article
Neurodegenerative diseases such as Alzheimer's and Parkinson's remain highly prevalent and incurable disorders. A major challenge in fully understanding and combating the progression of these diseases is the complexity of the network of processes that lead to progressive neuronal dysfunction and death. An ideal therapeutic avenue is conceivably one that could address many if not all of these multiple misregulated mechanisms. Over the years, chemical intervention for the up-regulation of the endogenous posttranslational modification (PTM) O-GlcNAc has been proposed as a potential strategy to slow down the progression of neurodegeneration. Through the development and application of tools that allow dissection of the mechanistic roles of this PTM, there is now a growing body of evidence that O-GlcNAc influences a variety of important neurodegeneration-pertinent mechanisms, with an overall protective effect. As a PTM that is appended onto numerous proteins that participate in protein quality control and homeostasis, metabolism, bioenergetics, neuronal communication, inflammation, and programmed death, O-GlcNAc has demonstrated beneficence in animal models of neurodegenerative diseases, and its up-regulation is now being pursued in multiple clinical studies.
Article
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for maintenance of normal brain activity. While significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Article
Full-text available
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked -GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other’s enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc’s fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc’s regulation, functions, and roles in chronic diseases of aging.
Article
In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post‐translational modification that interplays with phosphorylation is O‐GlcNAcylation. This atypical glycosylation, reversible and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning and memory. We examined potential roles of phosphorylation/O‐GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre‐ and postsynaptic levels, characterized by a reduction of phosphorylation (synapsin1, AMPAR GluA2) and expression (synaptophysin, PSD‐95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of OGT/OGA enzymes was unchanged but we observed a specific reduction of synapsin1 O‐GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O‐GlcNAcylation could affect presynaptic neurotransmitter release. Associated with other pre‐ and postsynaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, synapsin1 O‐GlcNAcylation/phosphorylation interplay also appears to be involved in this synaptic plasticity by finely regulating neural activity. This article is protected by copyright. All rights reserved.
Article
The conventional secretory pathway is indispensable for eukaryotic cells. Newly synthesized membrane and secretory proteins are released from the endoplasmic reticulum (ER) through ER-derived vesicles to their appropriate destination. Vesicle formation is important for steady protein trafficking. O-GlcNAcylation ( O-GlcNAc) is a unique protein glycosylation signature, whose dynamic regulation by O-GlcNAc transferase and O-GlcNAcase occurs exclusively for nuclear and cytoplasmic proteins. Because of this locally limited property, the role of O-GlcNAc in the conventional protein secretory pathway is unknown. We report that Sec31A on COPII vesicles, a specific coat-protein complex for anterograde trafficking in the ER-Golgi network, is O-GlcNAcylated on S964, which accelerates COPII vesicle formation through control of its binding affinity to apoptosis-linked gene 2, a calcium-binding protein. Together, O-GlcNAc on Sec31A regulates conventional secretory vesicle trafficking in the ER-Golgi network. These modifications accelerate COPII vesicle formation and accelerated anterograde transport of vesicles within the ER-Golgi networks.-Cho, H. J., Mook-Jung, I. O-GlcNAcylation regulates endoplasmic reticulum exit sites through Sec31A modification in conventional secretory pathway.
Article
Full-text available
O-linked N-acetylglucosamine (O-GlcNAc) is a posttranslational modification that is increasingly recognized as a signal transduction mechanism. Unlike other glycans, O-GlcNAc is a highly dynamic and reversible process that involves the addition and removal of a single N-acetylglucosamine molecule to Ser/Thr residues of proteins. UDP-GlcNAc—the direct substrate for O-GlcNAc modification—is controlled by the rate of cellular metabolism, and thus O-GlcNAc is dependent on substrate availability. Serving as a feedback mechanism, O-GlcNAc influences the regulation of insulin signaling and glucose transport. Besides nutrient sensing, O-GlcNAc was also implicated in the regulation of various physiological and pathophysiological processes. Due to improvements of mass spectrometry techniques, more than one thousand proteins were detected to carry the O-GlcNAc moiety; many of them are known to participate in the regulation of metabolites, ions, or protein transport across biological membranes. Recent studies also indicated that O-GlcNAc is involved in stress adaptation; overwhelming evidences suggest that O-GlcNAc levels increase upon stress. O-GlcNAc elevation is generally considered to be beneficial during stress, although the exact nature of its protective effect is not understood. In this review, we summarize the current data regarding the oxidative stress-related changes of O-GlcNAc levels and discuss the implications related to membrane trafficking.
Article
Full-text available
O-GlcNAcylation is the covalent addition of an O-linked β-N-acetylglucosamine (O-GlcNAc) sugar moiety to hydroxyl groups of serine/threonine residues of cytosolic and nuclear proteins. O-GlcNAcylation, analogous to phosphorylation, plays critical roles in gene expression through direct modification of transcription factors such as NF-κB. Aberrantly increased NF-κB O-GlcNAcylation has been linked to NF-κB constitutive activation and cancer development. Therefore, it is of a great biological and clinical significance to dissect the molecular mechanisms that tune NF-κB activity. Recently, we and others have shown that O-GlcNAcylation affects the phosphorylation and acetylation of NF-κB subunit p65/RelA. However, the mechanism of how O-GlcNAcylation activates NF-κB signaling through phosphorylation and acetylation is not fully understood. In this study, we mapped O-GlcNAcylation sites of p65 at T305, S319, S337, T352, and S374. O-GlcNAcylation of p65 at T305 and S319 increased CBP/p300-dependent activating acetylation of p65 at K310, contributing to NF-κB transcriptional activation. Moreover, elevation of O-GlcNAcylation by overexpression of OGT increased the expression of p300, IKKα and IKKβ and promoted IKK-mediated activating phosphorylation of p65 at S536, contributing to NF-κB activation. In addition, we also identified phosphorylation of p65 at T308, which impaired the O-GlcNAcylation of p65 at T305. These results indicate mechanisms through which both non-pathological and oncogenic O-GlcNAcylation regulates NF-κB signaling through interplay with phosphorylation and acetylation.
Article
Full-text available
O-GlcNAcylated proteins are abundant in the brain and are associated with neuronal functions and neurodegenerative diseases. Although several studies have reported the effects of aberrant regulation of O-GlcNAcylation on brain function, the roles of O-GlcNAcylation in synaptic function remain unclear. To understand the effect of aberrant O-GlcNAcylation on the brain, we used Oga+/− mice which have an increased level of O-GlcNAcylation, and found that Oga+/− mice exhibited impaired spatial learning and memory. Consistent with this result, Oga+/− mice showed a defect in hippocampal synaptic plasticity. Oga heterozygosity causes impairment of both long-term potentiation and long-term depression due to dysregulation of AMPA receptor phosphorylation. These results demonstrate a role for hyper-O-GlcNAcylation in learning and memory.
Article
Diabetes mellitus significantly increases the risk of heart failure, independent of coronary artery disease. The mechanisms implicated in the development of diabetic heart disease, commonly termed diabetic cardiomyopathy, are complex, but much of the impact of diabetes on the heart can be attributed to impaired glucose handling. It has been shown that the maladaptive nutrient-sensing hexosamine biosynthesis pathway (HBP) contributes to diabetic complications in many non-cardiac tissues. Glucose metabolism by the HBP leads to enzymatically-regulated, O-linked attachment of a sugar moiety molecule, β-N-acetylglucosamine (O-GlcNAc), to proteins, affecting their biological activity (similar to phosphorylation). In normal physiology, transient activation of HBP/O-GlcNAc mechanisms is an adaptive, protective means to enhance cell survival; interventions that acutely suppress this pathway decrease tolerance to stress. Conversely, chronic dysregulation of HBP/O-GlcNAc mechanisms has been shown to be detrimental in certain pathological settings, including diabetes and cancer. Most of our understanding of the impact of sustained maladaptive HBP and O-GlcNAc protein modifications has been derived from adipose tissue, skeletal muscle and other non-cardiac tissues, as a contributing mechanism to insulin resistance and progression of diabetic complications. However, the long-term consequences of persistent activation of cardiac HBP and O-GlcNAc are not well-understood; therefore, the goal of this timely review is to highlight current understanding of the role of the HBP pathway in development of diabetic cardiomyopathy.
Article
Full-text available
Deletions on chromosome 22q11.2 are a strong genetic risk factor for development of schizophrenia and cognitive dysfunction. We employed shotgun liquid chromatography-mass spectrometry (LC-MS) proteomic and metabonomic profiling approaches on prefrontal cortex (PFC) and hippocampal (HPC) tissue from Df(16)A(+/-) mice, a model of the 22q11.2 deletion syndrome. Proteomic results were compared with previous transcriptomic profiling studies of the same brain regions. The aim was to investigate how the combined effect of the 22q11.2 deletion and the corresponding miRNA dysregulation affects the cell biology at the systems level. The proteomic brain profiling analysis revealed PFC and HPC changes in various molecular pathways associated with chromatin remodelling and RNA transcription, indicative of an epigenetic component of the 22q11.2DS. Further, alterations in glycolysis/gluconeogenesis, mitochondrial function and lipid biosynthesis were identified. Metabonomic profiling substantiated the proteomic findings by identifying changes in 22q11.2 deletion syndrome (22q11.2DS)-related pathways, such as changes in ceramide phosphoethanolamines, sphingomyelin, carnitines, tyrosine derivates and panthothenic acid. The proteomic findings were confirmed using selected reaction monitoring mass spectrometry, validating decreased levels of several proteins encoded on 22q11.2, increased levels of the computationally predicted putative miR-185 targets UDP-N-acetylglucosamine-peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT1) and kinesin heavy chain isoform 5A and alterations in the non-miR-185 targets serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform, neurofilament light chain and vesicular glutamate transporter 1. Furthermore, alterations in the proteins associated with mammalian target of rapamycin signalling were detected in the PFC and with glutamatergic signalling in the hippocampus. Based on the proteomic and metabonomic findings, we were able to develop a schematic model summarizing the most prominent molecular network findings in the Df(16)A(+/-) mouse. Interestingly, the implicated pathways can be linked to one of the most consistent and strongest proteomic candidates, (OGT1), which is a predicted miR-185 target. Our results provide novel insights into system-biological mechanisms associated with the 22q11DS, which may be linked to cognitive dysfunction and an increased risk to develop schizophrenia. Further investigation of these pathways could help to identify novel drug targets for the treatment of schizophrenia.Molecular Psychiatry advance online publication, 22 March 2016; doi:10.1038/mp.2016.27.
Article
Full-text available
Enteropathogenic Escherichia coli (EPEC) interferes with host cell signalling by injecting virulence effector proteins into enterocytes via a type III secretion system (T3SS). NleB1 is a novel T3SS glycosyltransferase effector from EPEC that transfers a single N-acetylglucosamine (GlcNAc) moiety in an N-glycosidic linkage to Arg117 of the Fas associated death domain protein (FADD). GlcNAcylation of FADD prevents assembly of the canonical death inducing signalling complex and inhibits Fas ligand (FasL) induced cell death. Apart from the DxD catalytic motif of NleB1, little is known about other functional sites in the enzyme. Here a library of 22 random transposon-based, in-frame, linker insertion mutants of NleB1 were tested for their ability to block caspase-8 activation in response to FasL during EPEC infection. Immunoblot analysis of caspase-8 cleavage showed that 17 mutant derivatives of NleB1 no longer inhibited caspase-8 activation, including the catalytic DxD mutant. Regions of interest around the insertion sites were examined further with multiple or single amino acid substitutions. Co-immunoprecipitation studies of 34 site-directed mutants showed that the NleB1 derivatives, E253A, Y219A and PILN63-66AAAA, bound but did not GlcNAcylate FADD. A further mutant derivative, PDG236-238AAA, did not bind or GlcNAcylate FADD. Infection of mice with the EPEC-like mouse pathogen Citrobacter rodentium expressing NleBE253A and NleBY219A showed that these strains were attenuated, indicating the importance of the residues E253 and Y219 in NleB1 virulence in vivo. In summary, we identified new amino acid residues critical for NleB1 activity and confirmed that these were required for the virulence function of NleB1.
Article
Full-text available
Hyaluronan content is a powerful prognostic factor in many cancer types, but the molecular basis of its synthesis in cancer still remains unclear. Hyaluronan synthesis requires the transport of hyaluronan synthases (HAS1-3) from Golgi to plasma membrane (PM), where the enzymes are activated. For the very first time, the present study demonstrated a rapid recycling of HAS3 between PM and endosomes, controlled by the cytosolic levels of the HAS substrates UDP-GlcUA and UDP-GlcNAc. Depletion of UDP-GlcNAc or UDP-GlcUA shifted the balance towards HAS3 endocytosis, and inhibition of hyaluronan synthesis. In contrast, UDP-GlcNAc surplus suppressed endocytosis and lysosomal decay of HAS3, favoring its retention in PM, stimulating hyaluronan synthesis, and HAS3 shedding in extracellular vesicles. The concentration of UDP-GlcNAc also controlled the level of O-GlcNAc modification of HAS3. Increasing O-GlcNAcylation reproduced the effects of UDP-GlcNAc surplus on HAS3 trafficking, while its suppression showed the opposite effects, indicating that O-GlcNAc signaling is associated to UDP-GlcNAc supply. Importantly, a similar correlation existed between the expression of GFAT1 (the rate limiting enzyme in UDP-GlcNAc synthesis) and hyaluronan content in early and deep human melanomas, suggesting the association of UDP-sugar metabolism in initiation of melanomagenesis. In general, changes in glucose metabolism, realized through UDP-sugar contents and O-GlcNAc signaling, are important in HAS3 trafficking, hyaluronan synthesis, and correlates with melanoma progression.
Article
Full-text available
Nutrient levels dictate the activity of O-linked N-acetylglucosamine transferase (OGT) to regulate O-GlcNAcylation, a post-translational modification mechanism to “fine-tune” intracellular signaling and metabolic status. However, the requirement of O-GlcNAcylation for maintaining glucose homeostasis by regulating pancreatic β cell mass and function is unclear. Here, we reveal that mice lacking β cell OGT (βOGT-KO) develop diabetes and β cell failure. βOGT-KO mice demonstrated increased ER stress and distended ER architecture, and these changes ultimately caused the loss of β cell mass due to ER-stress-induced apoptosis and decreased proliferation. Akt1/2 signaling was also dampened in βOGT-KO islets. The mechanistic role of these processes was demonstrated by rescuing the phenotype of βOGT-KO mice with concomitant Chop gene deletion or genetic reconstitution of Akt2. These findings identify OGT as a regulator of β cell mass and function and provide a direct link between O-GlcNAcylation and β cell survival by regulation of ER stress responses and modulation of Akt1/2 signaling.
Article
Full-text available
The cycling (addition and removal) of O-linked N-acetylglucosamine (O-GlcNAc) on serine or threonine residues of nuclear and cytoplasmic proteins serves as a nutrient sensor via the hexosamine biosynthetic pathway's production of UDP-GlcNAc, the donor for the O-GlcNAc Transferase (OGT). OGT is exquisitely sensitive both in terms of its catalytic activity and by its specificity to the levels of this nucleotide sugar. UDP-GlcNAc is a major node of metabolism whose levels are coupled to flux through the major metabolic pathways of the cell. O-GlcNAcylation has extensive crosstalk with protein phosphorylation to regulate signalling pathways in response to flux through glucose, amino acid, fatty acid, energy and nucleotide metabolism. Not only does O-GlcNAcylation compete for phosphorylation sites on proteins, but also over one-half of all kinases appear to be O-GlcNAcylated, and many are regulated by O-GlcNAcylation. O-GlcNAcylation is also fundamentally important to nutrient regulation of gene expression. OGT is a polycomb gene. Nearly all RNA polymerase II transcription factors are O-GlcNAcylated, and the sugar regulates their activities in many different ways, depending upon the transcription factor and even upon the specific O-GlcNAc site on the protein. O-GlcNAc is part of the histone code, and the sugar affects the modification of histones by other epigenetic marks. O-GlcNAcylation regulates DNA methylation by the TET family of proteins. O-GlcNAc modification of the basal transcription machinery is required for assembly of the pre-initiation complex in the transcription cycle. Dysregulated O-GlcNAcylation is directly involved in the etiology of the major chronic diseases associated with aging.
Article
Addition of O-linked N-acetylglucosamine (O-GlcNAc) to the hydroxyl group of serine and threonine residues (O-GlcNAcylation) is a post-translational modification common to multicellular eukaryotes. To date, O-GlcNAcylations have been divided into two categories: the first involves nucleocytoplasmic and mitochondrial (intracellular) O-GlcNAcylation catalyzed by O-GlcNAc transferase (OGT), and the second involves O-GlcNAcylation in the secretory pathways (extracellular) catalyzed by epidermal growth factor (EGF) domain-specific O-GlcNAc transferase (EOGT). Intracellular O-GlcNAcylation is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, and learning and memory. Moreover, intracellular O-GlcNAc might have a neuroprotective effect, protecting against neurodegenerative diseases such as Alzheimer's disease. EGF repeats on extracellular matrix proteins and the extracellular region of transmembrane proteins have recently been found to be modified by O-GlcNAc in the mouse cerebral cortex. EOGT is responsible for Adams-Oliver syndrome, a rare congenital disorder characterized by aplasia cutis congenita and terminal transverse limb defects, often accompanied by cardiovascular and neurological defects. Thus, a mechanistic understanding of O-GlcNAc in the regulation of its target proteins is of importance from both a basic science and a clinical-translational perspective. In this review, we summarize the current understanding of the physiological and pathological significances of both types of O-GlcNAcylations found in the nervous system. Copyright © 2015. Published by Elsevier Inc.
Article
Full-text available
O-GlcNAcylation is an important post-translational modification of proteins and is known to regulate a number of pathways involved in cellular homeostasis. This involves dynamic and reversible modification of serine/threonine residues of different cellular proteins catalyzed by O-linked N-acetylglucosaminyltransferase (OGT) and O-linked N-acetylglucosaminidase (OGA) in antagonistic manner. We report here that decreasing O-GlcNAcylation enhances viability of neuronal cells expressing polyglutamine expanded huntingtin exon 1 protein fragment (mHtt). We further show that O-GlcNAcylation regulates the basal autophagic process and that suppression of O-GlcNAcylation significantly increases autophagic flux by enhancing the fusion of autophagosome with lysosome. This regulation considerably reduces toxic mHtt aggregates in eye imaginal discs, and partially restores rhabdomere morphology and vision in a fly model for Huntington's disease. The present study is significant in unravelling O-GlcNAcylation-dependent regulation of autophagic process in mediating mHtt toxicity. Therefore, targeting autophagic process through the suppression of O-GlcNAcylation may prove to be an important therapeutic target in Huntington disease.
Article
The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets.
Article
Full-text available
O-GlcNAc is a carbohydrate modification found on cytosolic and nuclear proteins. Our previous findings implicated O-GlcNAc in hippocampal presynaptic plasticity. An important mechanism in presynaptic plasticity is the establishment of the reserve pool of synaptic vesicles (RPSV). Dynamic association of synapsin I with synaptic vesicles (SVs) regulates the size and release of RPSV. Disruption of synapsin I function results in reduced size of the RPSV, increased synaptic depression, memory deficits, and epilepsy. Here, we investigate whether O-GlcNAc directly regulates synapsin I function in presynaptic plasticity. We found that synapsin I is modified by O-GlcNAc during hippocampal synaptogenesis in the rat. We identified three novel O-GlcNAc sites on synapsin I, two of which are known Ca2+/calmodulin-dependent protein kinase II phosphorylation sites. All O-GlcNAc sites mapped within the regulatory regions on synapsin I. Expression of synapsin I where a single O-GlcNAc site Thr-87 was mutated to alanine in primary hippocampal neurons dramatically increased localization of synapsin I to synapses, increased density of SV clusters along axons, and the size of the RPSV, suggesting that O-GlcNAcylation of synapsin I at Thr-87 may be a mechanism to modulate presynaptic plasticity. Thr-87 is located within an amphipathic lipid-packing sensor (ALPS) motif, which participates in targeting of synapsin I to synapses by contributing to the binding of synapsin I to SVs. We discuss the possibility that O-GlcNAcylation of Thr-87 interferes with folding of the ALPS motif, providing a means for regulating the association of synapsin I with SVs as a mechanism contributing to synapsin I localization and RPSV generation.
Article
Full-text available
O-linked β-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification (PTM) consisting of a single N-acetylglucosamine moiety attached via an O-β-glycosidic linkage to serine and threonine residues. Glycosylation with O-GlcNAc occurs on myriad nuclear and cytosolic proteins from almost all functional classes. However, with respect to O-GlcNAcylated proteins special in mitochondria, little attention has been paid. In this study, we combined mass spectrometry and immunological methods to perform global exploration of O-GlcNAcylated proteins specific in mitochondria of rat liver. First, highly purified mitochondrial proteins were obviously shown to be O-GlcNAcylated by immunoblot profiling. Then, β-elimination followed by Michael Addition with Dithiothreitol (BEMAD) treatment and LC-MS/MS were performed to enrich and identify O-GlcNAcylated mitochondrial proteins, resulting in an unambiguous assignment of 14 O-GlcNAcylation sites, mapping to 11 O-GlcNAcylated proteins. Furthermore, the identified O-GlcNAcylated mitochondrial proteins were fully validated by both electron transfer dissociation tandem mass spectrometry (ETD/MS/MS) and western blot. Thus, for the first time, our study definitely not only identified but also validated that some mitochondrial proteins in rat liver are O-GlcNAcylated. Interestingly, all of these O-GlcNAcylated mitochondrial proteins are enzymes, the majority of which are involved in a wide variety of biological processes, such as urea cycle, tricarboxylic acid cycle and lipid metabolism, indicating a role for protein O-GlcNAcylation in mitochondrial function.
Article
We have investigated the effect of glucosamine on the retinal cells after continuous infusion into cerebroventricle by using osmotic minipump to avoid peripheral effect. Continuous intracerebroventricular (i.c.v) infusion of glucosamine with the rate of 0.1 /10 /hr for 7 days resulted in morphological changes of the optic nerve in electron microscopic level as well as morphological changes of the retina in light microscopic level. Retinal sections were immunostained for the detection of morphological changes of astrocytes. GFAP immunoreactivity appeared not only in the Muller cells but also many of the radial processes of Muller cells. The optic nerve showed deformed axon and slight lamellar separation of myelin sheath after continuous infusion of glucosamine in observing with electron microscope. Interestingly, vacuoles were observed in deformed axons and retinal layers were folded and detached. These results suggested that glucosamine plays a role in induction of morphological dysfunction in retina and optic nerves.
Article
Phosphorylation plays a key role in regulating growth cone migration and protein trafficking in nerve terminals. Here we show that nerve terminal proteins contain another abundant post-translational modification: β-N-acetylglucosamine linked to hydroxyls of serines or threonines (O-GlcNAc1). O-GlcNAc modifications are essential for embryogenesis and mounting evidence suggests that O-GlcNAc is a regulatory modification that affects many phosphorylated proteins. We show that the activity and expression of O-GlcNAc transferase (OGT) and N-acetyl-β-d-glucosaminidase (O-GlcNAcase), the two enzymes regulating O-GlcNAc modifications, are present in nerve terminal structures (synaptosomes) and are particularily abundant in the cytosol of synaptosomes. Numerous synaptosome proteins are highly modified with O-GlcNAc. Although most of these proteins are present in low abundance, we identified by proteomic analysis three neuron-specific O-GlcNAc modified proteins: collapsin response mediator protein-2 (CRMP-2), ubiquitin carboxyl hydrolase-L1 (UCH-L1) and β-synuclein. CRMP-2, which is involved in growth cone collapse, is a major O-GlcNAc modified protein in synaptosomes. All three proteins are implicated in regulatory cascades that mediate intracellular signaling or neurodegenerative diseases. We propose that O-GlcNAc modifications in the nerve terminal help regulate the functions of these and other synaptosome proteins, and that O-GlcNAc may play a role in neurodegenerative disease.
Article
Full-text available
O-GlcNAcylation is an inducible, highly dynamic and reversible post-translational modification, mediated by a unique enzyme named O-linked N-acetyl-d-glucosamine (O-GlcNAc) transferase (OGT). In response to nutrients, O-GlcNAc levels are differentially regulated on many cellular proteins involved in gene expression, translation, immune reactions, protein degradation, protein–protein interaction, apoptosis and signal transduction. In contrast to eukaryotic cells, little is known about the role of O-GlcNAcylation in the viral life cycle. Here, we show that the overexpression of the OGT reduces the replication efficiency of Kaposi's sarcoma-associated herpesvirus (KSHV) in a dose-dependent manner. In order to investigate the global impact of O-GlcNAcylation in the KSHV life cycle, we systematically analyzed the 85 annotated KSHV-encoded open reading frames for O-GlcNAc modification. For this purpose, an immunoprecipitation (IP) strategy with three different approaches was carried out and the O-GlcNAc signal of the identified proteins was properly controlled for specificity. Out of the 85 KSHV-encoded proteins, 18 proteins were found to be direct targets for O-GlcNAcylation. Selected proteins were further confirmed by mass spectrometry for O-GlcNAc modification. Correlation of the functional annotation and the O-GlcNAc status of KSHV proteins showed that the predominant targets were proteins involved in viral DNA synthesis and replication. These results indicate that O-GlcNAcylation plays a major role in the regulation of KSHV propagation.
Article
Full-text available
In this chapter we describe the application of lectin weak affinity chromatography (LWAC) for the enrichment of peptides modified by O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAc is a single carbohydrate moiety post-translational modification of intracellular proteins. The stoichiometry of the modification is low and identification of the sites of O-GlcNAc attachment is challenging. To map O-GlcNAc sites we use the approach where a protein sample of interest is digested with trypsin and subjected to LWAC, which employs weak interaction between lectin wheat germ agglutinin and O-GlcNAc. Obtained sample is enriched with O-GlcNAc-modified peptides, which can be identified by means of mass spectrometry.
Article
Full-text available
Post-translational modifications (PTMs) of proteins induce structural and functional changes that are most often transitory and difficult to follow and investigate invivo. Insilico prediction procedures for PTMs are very valuable to foresee and define such transitory changes responsible for the multifunctionality of proteins. Epidermal growth factor receptor (EGFR) is such a multifunctional transmembrane protein with intrinsic tyrosine kinase activity that is regulated primarily by ligand-stimulated transphosphorylation of dimerized receptors. In human EGFR, potential phosphorylation sites on Ser, Thr and Tyr residues including five autophosphorylation sites on Tyr were investigated using insilico procedures. In addition to phosphorylation, O-GlcNAc modifications and interplay between these two modifications was also predicted. The interplay of phosphorylation and O-GlcNAc modification on same or neighboring Ser/Thr residues is termed as Yin Yang hypothesis and the interplay sites are named as Yin Yang sites. Amongst these modification sites, one residue is localized in the juxtamembrane (Thr 654) and two are found in the catalytic domain (Ser 1046/1047) of the EGFR. We propose that, when EGFR is O-GlcNAc modified on Thr 654, EGFR may be transferred from early to late endosomes, whereas when EGFR is O-GlcNAc modified on Ser 1046/1047 desensitization of the receptor may be prevented. These findings suggest a complex interplay between phosphorylation and O-GlcNAc modification resulting in modulation of EGFR’s functionality.
Article
Full-text available
Background O-Linked β-N-acetylglucosamine (O-GlcNAc) is an enzyme-catalyzed posttranslational modification of serine or threonine side chains of nuclear and cytoplasmic proteins. O-GlcNAc is present in all metazoans and in viruses that infect eukaryotic cells. GlcNAcylation is dynamic and has a high cycling rate on many proteins in response to cellular metabolism and various environmental stimuli. The rapid cycling of O-GlcNAc modulates many biological processes, including transcriptional regulation, stress responses, cell cycle regulation, and protein synthesis and turnover. RationaleDespite the importance of O-GlcNAc, progress during the past two decades in this field has been slow. One of the major obstacles is the lack of simple and sensitive tools for efficient O-GlcNAc detection and localization. Recently developed O-GlcNAc derivatization and enrichment approaches, together with new techniques in mass spectrometric instrumentation and methods, have provided breakthroughs in O-GlcNAc site localization and site-specific quantitation. In this review, we will discuss how the current techniques are expanding our knowledge about O-GlcNAc proteomics/glycomics and functions.
Article
Full-text available
O-GlcNAc: a glycosylation type analogous to phosphorylation—the Yin-Yang hypothesis.
Article
Protein phosphorylation and glycosylation are the most common post-translational modifications observed in biology, frequently on the same protein. Assembly protein AP180 is a synapse-specific phosphoprotein and O-linked beta-N-acetylglucosamine (O-GlcNAc) modified glycoprotein. AP180 is involved in the assembly of clathrin coated vesicles in synaptic vesicle endocytosis. Unlike other types of O-glycosylation, O-GlcNAc is nucleocytoplasmic and reversible. It was thought to be a terminal modification, that is, the O-GlcNAc was not found to be additionally modified in any way. We now show that AP180 purified from rat brain contains a phosphorylated O-GlcNAc (O-GlcNAc-P) within a highly conserved sequence. O-GlcNAc or O-GlcNAc-P, but not phosphorylation alone, was found at Thr-310. Analysis of synthetic GlcNAc-6-P produced identical fragmentation products to GlcNAc-P from AP180. Direct O-linkage of GlcNAc-P to a Thr residue was confirmed by electron transfer dissociation MS. A second AP180 tryptic peptide was also glycosyl phosphorylated, but the site of modification was not assigned. Sequence similarities suggest there may be a common motif within AP180 involving glycosyl phosphorylation and dual flanking phosphorylation sites within 4 amino acid residues. This novel type of protein glycosyl phosphorylation adds a new signaling mechanism to the regulation of neurotransmission and more complexity to the study of O-GlcNAc modification.
Article
A DFT computational investigation of the catalytic mechanism of O-GlcNAcase shows the existence of a substrate-assisted reaction pathway similar to that proposed in the literature on the basis of experimental evidence: the carbonyl oxygen of the N-acyl group bonded at C2 of the substrate pyranose ring attacks the anomeric carbon affording a bicyclic oxazoline intermediate and causing the breaking of the glycosidic bond and the expulsion of the aglycon. This occurs in a single kinetic step where the transfer of a proton from Asp-243 (behaving as a general base) to the leaving group is simultaneous to the cycle formation and departure of the aglycon (an activation barrier E(a) of 16.5 kcal mol(-1)). Even if the other component of the catalytic dyad (Asp-242) is not actually involved in a proton transfer (as commonly suggested), it plays an important role in the catalysis through a complex network of hydrogen bonds that contribute to lower the activation barrier. The transition state of the process resembles an oxocarbenium ion (half chair conformation with an approximately planar sp(2) anomeric carbon). Following the lines of previous experiments aimed to demonstrate the existence of a substrate-assisted mechanism, it is found that the computed E(a) increases when the hydrogen atoms of the N-acetyl group are replaced with one, two and three F atoms and that a good linear correlation exists between the activation barrier E(a) and the σ* Taft electronic parameter of the fluoro-substituted N-acetyl groups.
Article
Full-text available
O-GlcNAcylation is the addition of β-D-N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. O-linked N-acetylglucosamine (O-GlcNAc) was not discovered until the early 1980s and still remains difficult to detect and quantify. Nonetheless, O-GlcNAc is highly abundant and cycles on proteins with a timescale similar to protein phosphorylation. O-GlcNAc occurs in organisms ranging from some bacteria to protozoans and metazoans, including plants and nematodes up the evolutionary tree to man. O-GlcNAcylation is mostly on nuclear proteins, but it occurs in all intracellular compartments, including mitochondria. Recent glycomic analyses have shown that O-GlcNAcylation has surprisingly extensive cross talk with phosphorylation, where it serves as a nutrient/stress sensor to modulate signaling, transcription, and cytoskeletal functions. Abnormal amounts of O-GlcNAcylation underlie the etiology of insulin resistance and glucose toxicity in diabetes, and this type of modification plays a direct role in neurodegenerative disease. Many oncogenic proteins and tumor suppressor proteins are also regulated by O-GlcNAcylation. Current data justify extensive efforts toward a better understanding of this invisible, yet abundant, modification. As tools for the study of O-GlcNAc become more facile and available, exponential growth in this area of research will eventually take place.
Article
Full-text available
Cardiovascular function is regulated at multiple levels. Some of the most important aspects of such regulation involve alterations in an ever-growing list of posttranslational modifications. One such modification orchestrates input from numerous metabolic cues to modify proteins and alter their localization and/or function. Known as the beta-O-linkage of N-acetylglucosamine (ie, O-GlcNAc) to cellular proteins, this unique monosaccharide is involved in a diverse array of physiological and pathological functions. This review introduces readers to the general concepts related to O-GlcNAc, the regulation of this modification, and its role in primary pathophysiology. Much of the existing literature regarding the role of O-GlcNAcylation in disease addresses the protracted elevations in O-GlcNAcylation observed during diabetes. In this review, we focus on the emerging evidence of its involvement in the cardiovascular system. In particular, we highlight evidence of protein O-GlcNAcylation as an autoprotective alarm or stress response. We discuss recent literature supporting the idea that promoting O-GlcNAcylation improves cell survival during acute stress (eg, hypoxia, ischemia, oxidative stress), whereas limiting O-GlcNAcylation exacerbates cell damage in similar models. In addition to addressing the potential mechanisms of O-GlcNAc-mediated cardioprotection, we discuss technical issues related to studying protein O-GlcNAcylation in biological systems. The reader should gain an understanding of what protein O-GlcNAcylation is and that its roles in the acute and chronic disease settings appear distinct.
Article
Ser(Thr)-O-linked beta-N-acetylglucosamine (O-GlcNAc) is a ubiquitous modification of nucleocytoplasmic proteins. Extensive crosstalk exists between O-GlcNAcylation and phosphorylation, which regulates signaling in response to nutrients/stress. The development of novel O-GlcNAc detection and enrichment methods has improved our understanding of O-GlcNAc functions. Mass spectrometry has revealed O-GlcNAc's many interactions with phosphorylation-mediated signaling. However, mechanisms regulating O-GlcNAcylation and phosphorylation are quite different. Phosphorylation is catalyzed by hundreds of distinct kinases. In contrast, in mammals, uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyl transferase (OGT) and beta-D-N-acetylglucosaminidase (OGA) are encoded by single highly conserved genes. Both OGT's and OGA's specificities are determined by their transient associations with many other proteins to create a multitude of specific holoenzymes. The extensive crosstalk between O-GlcNAcylation and phosphorylation represents a new paradigm for cellular signaling.
Article
The dynamic post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc), termed O-GlcNAcylation, is an important mechanism for modulating cellular signaling pathways. O-GlcNAcylation impacts transcription, translation, organelle trafficking, proteasomal degradation and apoptosis. O-GlcNAcylation has been implicated in the etiology of several human diseases including type-2 diabetes and neurodegeneration. This review describes the pair of enzymes responsible for the cycling of this post-translational modification: O-GlcNAc transferase (OGT) and beta-N-acetylglucosaminidase (OGA), with a focus on the function of their structural domains. We will also highlight the important processes and substrates regulated by these enzymes, with an emphasis on the role of O-GlcNAc as a nutrient sensor impacting insulin signaling and the cellular stress response. Finally, we will focus attention on the many ways by which O-GlcNAc cycling may affect the cellular machinery in the neuroendocrine and central nervous systems.
Article
Full-text available
To further understand the roles of protein glycosylation in eukaryotes, we globally identified glycan-containing proteins in yeast. A fluorescent lectin binding assay was developed and used to screen protein microarrays containing over 5000 proteins purified from yeast. A total of 534 yeast proteins were identified that bound either Concanavalin A (ConA) or Wheat-Germ Agglutinin (WGA); 406 of them were novel. Among the novel glycoproteins, 45 were validated by mobility shift upon treatment with EndoH and PNGase F, thereby extending the number of validated yeast glycoproteins to 350. In addition to many components of the secretory pathway, we identified other types of proteins, such as transcription factors and mitochondrial proteins. To further explore the role of glycosylation in mitochondrial function, the localization of four mitochondrial proteins was examined in the presence and absence of tunicamycin, an inhibitor of N-linked protein glycosylation. For two proteins, localization to the mitochondria is diminished upon tunicamycin treatment, indicating that protein glycosylation is important for protein function. Overall, our studies greatly extend our understanding of protein glycosylation in eukaryotes through the cataloguing of glycoproteins, and describe a novel role for protein glycosylation in mitochondrial protein function and localization.
Article
Synapsin 2 proteins are key elements of the synaptic machinery and still hold the centre stage in neuroscience research. Although fully sequenced at the nucleic acid level in mouse and rat, structural information on amino acid sequences and post-translational modifications (PTMs) is limited. Knowledge on protein sequences and PTMs, however, is mandatory for several purposes including conformational studies and the generation of antibodies. Hippocampal proteins from rat and mouse were extracted, run on two-dimensional gel electrophoresis and multi-enzyme digestion was carried out to generate peptides for mass spectrometrical analysis [nano-LC-ESI-(CID/ETD)-MS/MS]. As much as 12 synapsin 2 proteins (6 alpha and 6 beta isoforms) in the mouse and 13 synapsin 2 proteins (6 alpha and 7 beta isoforms) were observed in the rat. Protein sequences were highly identical to nucleic acid sequences, and only few amino acid exchanges probably representing polymorphisms or sequence conflicts were detected. Mouse and rat synapsins 2a differed in three amino acids, while rat and mouse synapsins 2b differed in two amino acids. As much as 13 phosphorylation sites were determined by MS/MS data in rat and mouse hippocampus and 5 were verified by phosphatase treatment. These findings are important for interpretation of previous results and design of future studies on synapsins.
Article
The modification of Ser and Thr residues of cytoplasmic and nuclear proteins with a monosaccharide of O-linked beta-N-acetylglucosamine is an essential and dynamic post-translational modification of metazoans. Deletion of the O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, is lethal in mammalian cells highlighting the importance of this post-translational modification in regulating cellular function. O-GlcNAc is believed to modulate protein function in a manner analogous to protein phosphorylation. Notably, on some proteins O-GlcNAc and O-phosphate modify the same Ser/Thr residue, suggesting that a reciprocal relationship exists between these two post-translational modifications. In this chapter we describe the most robust techniques for the detection and purification of O-GlcNAc modified proteins, and discuss some more specialized techniques for site-mapping and detection of O-GlcNAc during mass spectrometry.
Article
Full-text available
O-Linked N-acetylglucosamine (O-GlcNAc) is a cytosolic and nuclear carbohydrate post-translational modification most abundant in brain. We recently reported uniquely extensive O-GlcNAc modification of proteins that function in synaptic vesicle release and post-synaptic signal transduction. Here we examined potential roles for O-GlcNAc in mouse hippocampal synaptic transmission and plasticity. O-GlcNAc modifications and the enzyme catalyzing their addition (O-GlcNAc transferase) were enriched in hippocampal synaptosomes. Pharmacological elevation or reduction of O-GlcNAc levels had no effect on Schaffer collateral CA1 basal hippocampal synaptic transmission. However, in vivo elevation of O-GlcNAc levels enhanced long term potentiation (LTP), an electrophysiological correlate to some forms of learning/memory. Reciprocally, pharmacological reduction of O-GlcNAc levels blocked LTP. Additionally, elevated O-GlcNAc led to reduced paired-pulse facilitation, a form of short term plasticity attributed to presynaptic mechanisms. Synapsin I and II are presynaptic proteins that increase synaptic vesicle availability for release when phosphorylated, thus contributing to hippocampal synaptic plasticity. Synapsins are among the most extensively O-GlcNAc-modified proteins known. Elevating O-GlcNAc levels increased phosphorylation of Synapsin I/II at serine 9 (cAMP-dependent protein kinase substrate site), serine 62/67 (Erk 1/2 (MAPK 1/2) substrate site), and serine 603 (calmodulin kinase II site). Activation-specific phosphorylation events on Erk 1/2 and calmodulin kinase II, two proteins required for CA1 hippocampal LTP establishment, were increased in response to elevation of O-GlcNAc levels. Thus, O-GlcNAc is a novel regulatory signaling component of excitatory synapses, with specific roles in synaptic plasticity that involve interplay with phosphorylation.
Article
The synthesis of some analogues of O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenylcarbamate, PUGNAc, an inhibitor of β-N-acetylglucosaminidases, is described. The analogues were tested against a range of β-N-acetylglucosaminidases to establish any biological activity. As well, the analogues were tested as inhibitors of a uridine diphosphate-N-acetyl-D-glucosamine: polypeptidyl transferase, OGT, a critical protein involved in the post-translational modification of nuclear and cytosolic proteins by N-acetyl-d-glucosamine.
Article
The involvement of glucose in fundamental metabolic pathways represents a core element of biology. Late in the 20th century, a unique glucose-derived signal was discovered, which appeared to be involved in a variety of cellular processes, including mitosis, transcription, insulin signaling, stress responses, and potentially, Alzheimer's disease, and diabetes. By definition, this glucose-fed signaling system was a post-translational modification to proteins. However, unlike classical cotranslational N-glycosylation occurring in the endoplasmic reticulum and Golgi apparatus, this process occurs elsewhere throughout the cell in a highly dynamic fashion, similar to the quintessential post-translational modification, phosphorylation. This more recently described post-translational modification, the beta-O-linkage of N-acetylglucosamine (i.e., O-GlcNAc) to nucleocytoplasmic proteins, represents an under-investigated area of biology. This signaling system operates in all of the tissues examined and seems to have persisted throughout all multicellular eukaryotes. Thus, it comes with little surprise that O-GlcNAc signaling is an integral system and viable target for biomedical investigation. This system may be a boundless source for insight into a variety of diseases and yield numerous opportunities for drug design. This Perspective will address recent insights into O-GlcNAc signaling in the cardiovascular system as a paradigm for its involvement in other biological systems.
Article
In order to understand whether there is a specific role for the posttranslational N-acetylglucosamine modification linked O-glycosidically (O-GlcNAc) to serine and threonine residues of proteins during development and/or ageing of the brain, we investigated the O-GlcNAc expression of early postnatal cerebellar neurons as well as of mouse brain of different ages. In all cells either in culture or of cryosections mainly the nuclei and nuclear membranes were stained with an O-GlcNAc specific monoclonal antibody. In cerebellar neurons in culture the level of expression could be manipulated by directly interfering with either the biosynthesis of GlcNAc or the removal of O-GlcNAc from proteins confirming the dynamic nature of this protein modification. O-GlcNAc was ubiquitously expressed in mouse brains from embryonic day 10 until late adulthood with some variations in expression strength from cell to cell. In addition, no significant difference in O-GlcNAc expression of subcellular fractions from brains of mice which age at an accelerated rate could be detected compared to normal mice. Taken together these observations support the view that the O-GlcNAc modification has important functional roles for physiological processes of neural cell throughout development, in adulthood and ageing.
Article
The addition of O-linked N-acetylglucosamine (O-GlcNAc) to target proteins may serve as a signaling modification analogous to protein phosphorylation. Like phosphorylation, O-GlcNAc is a dynamic modification occurring in the nucleus and cytoplasm. Various analytical methods have been developed to detect O-GlcNAc and distinguish it from glycosylation in the endomembrane system. Many target molecules have been identified; these targets are typically components of supramolecular complexes such as transcription factors, nuclear pore proteins, or cytoskeletal components. The enzymes responsible for O-GlcNAc addition and removal are highly conserved molecules having molecular features consistent with a signaling role. The O-GlcNAc transferase and O-GlcNAcase are likely to act in consort with kinases and phosphatases generating various isoforms of physiological substrates. These isoforms may differ in such properties as protein-protein interactions, protein stability, and enzymatic activity. Since O-GlcNAc plays a critical role in the regulation of signaling pathways of higher plants, the glycan modification is likely to perform similar signaling functions in mammalian cells. Glucose and amino acid metabolism generates hexosamine precursors that may be key regulators of a nutrient sensing pathway involving O-GlcNAc signaling. Altered O-linked GlcNAc metabolism may also occur in human diseases including neurodegenerative disorders, diabetes mellitus and cancer.
Article
Recently, perturbations in the regulation of O-GlcNAc were implicated in the etiology of type II diabetes, cancer, and neurodegenerative diseases. O-GlcNAc, the modification of Ser and Thr residues of nuclear and cytoplasmic proteins with O-linked β-N-acetylglucosamine, is one of a growing number of posttranslational modifications of proteins thought to modulate the function/activity of proteins in cells. This paper reviews the current understanding of the importance of the unique carbohydrate modification O-GlcNAc, in regulating functions within the cell.
Article
The hexosamine biosynthesis pathway plays a role in the modification of cellular proteins via the provision of substrate for addition of O-linked N-acetylglucosamine (GlcNAc). The relative importance of the GlcNAc modification of proteins to insulin secretion from pancreatic beta-cells has not been investigated and so remains unclear. In the present study, we show that inhibition of the hexosamine biosynthesis pathway decreases insulin secretion from mouse islets in response to a number of secretagogues, including glucose. This impairment in beta-cell function could not be attributed to reduced islet insulin content, altered ATP levels, or cell death and was restored with the addition of N-acetylglucosamine, a substrate that enters the pathway below the point of inhibition. Western blot analysis revealed that decreased islet protein glycosylation paralleled the decrease in insulin secretion following inhibition of the pathway. In conclusion, the data suggest a role for the hexosamine biosynthesis pathway in regulating the secretion of insulin by altering protein glycosylation. This finding may have implications for the development of type 2 diabetes, as chronic increase in flux through the hexosamine biosynthesis pathway may lead to the deterioration of beta-cell function via abnormal protein glycosylation.
Article
Type 2 diabetes mellitus results from a complex interaction between nutritional excess and multiple genes. Whereas pancreatic beta-cells normally respond to glucose challenge by rapid insulin release (first phase insulin secretion), there is a loss of this acute response in virtually all of the type 2 diabetes patients with significant fasting hyperglycemia. Our previous studies demonstrated that irreversible intracellular accumulation of a glucose metabolite, protein O-linked N-acetylglucosamine modification (O-GlcNAc), is associated with pancreatic beta-cell apoptosis. In the present study, we show that streptozotocin (STZ), a non-competitive chemical blocker of O-GlcNAcase, induces an insulin secretory defect in isolated rat islet cells. In contrast, transgenic mice with down-regulated glucose to glucosamine metabolism in beta-cells exhibited an enhanced insulin secretion capacity. Interestingly, the STZ blockade of O-GlcNAcase activity is also associated with a growth hormone secretory defect and impairment of intracellular secretory vesicle trafficking. These results provide evidence for the roles of O-GlcNAc in the insulin secretion and possible involvement of O-GlcNAc in general glucose-regulated hormone secretion pathways.
Article
O-linked N-acetylglucosamine (O-GlcNAc) is a highly dynamic post-translational modification of cytoplasmic and nuclear proteins. Although the function of this abundant modification is yet to be definitively elucidated, all O-GlcNAc proteins are phosphoproteins. Further, the serine and threonine residues substituted with O-GlcNAc are often sites of, or close to sites of, protein phosphorylation. This implies that there may be a dynamic interplay between these two post-translational modifications to regulate protein function. In this review, the functions of some of the proteins that are modified by O-GlcNAc will be considered in the context of the potential role of the O-GlcNAc modification. Furthermore, predictions will be made as to how cellular function and developmental regulation might be affected by changes in O-GlcNAc levels.
Article
Full-text available
Identifying sites of post-translational modifications on proteins is a major challenge in proteomics. O-Linked beta-N-acetylglucosamine (O-GlcNAc) is a dynamic nucleocytoplasmic modification more analogous to phosphorylation than to classical complex O-glycosylation. We describe a mass spectrometry-based method for the identification of sites modified by O-GlcNAc that relies on mild beta-elimination followed by Michael addition with dithiothreitol (BEMAD). Using synthetic peptides, we also show that biotin pentylamine can replace dithiothreitol as the nucleophile. The modified peptides can be efficiently enriched by affinity chromatography, and the sites can be mapped using tandem mass spectrometry. This same methodology can be applied to mapping sites of serine and threonine phosphorylation, and we provide a strategy that uses modification-specific antibodies and enzymes to discriminate between the two post-translational modifications. The BEMAD methodology was validated by mapping three previously identified O-GlcNAc sites, as well as three novel sites, on Synapsin I purified from rat brain. BEMAD was then used on a purified nuclear pore complex preparation to map novel sites of O-GlcNAc modification on the Lamin B receptor and the nucleoporin Nup155. This method is amenable for performing quantitative mass spectrometry and can also be adapted to quantify cysteine residues. In addition, our studies emphasize the importance of distinguishing between O-phosphate versus O-GlcNAc when mapping sites of serine and threonine post-translational modification using beta-elimination/Michael addition methods.
Article
O-Linked N-acetylglucosamine (GlcNAc) transferase (OGT) mediates a novel hexosamine-dependent signal transduction pathway. Yet, little is known about the regulation of ogt gene expression in mammals. We report the sequence and characterization of the mouse ogt locus and provide a comparison with the human and rat ogt genes. The mammalian ogt genes are similar in structure and exhibit approximately 80% sequence identity. The mouse and human ogt genes contain two potential promoters producing four major transcripts. By analyzing 56 human cDNA clones and other existing expressed sequence tags, we found that at least three protein products differing at their amino terminus result from alternative splicing. We used OGT-specific antisera to demonstrate the presence of these isoforms in HeLa cells. The longest form is a nucleocytoplasmic OGT (ncOGT) with 12 tetratricopeptide repeats (TPRs); a shorter form of OGT encodes a mitochondrially sequestered enzyme with 9 TPRs and an N-terminal mitochondrion-targeting sequence (mOGT). An even shorter form of OGT (sOGT) contains only 2 TPRs. The genomic organization of OGT appears to be highly conserved throughout metazoan evolution. These results provide the basis for a more detailed analysis of the significance and regulation of the nucleocytoplasmic and mitochondrial isoforms of OGT in mammals.
Article
Evidence suggests that glucosamine inhibits distal components regulating insulin-stimulated GLUT4 translocation to the plasma membrane. Here we assessed whether key membrane docking and fusion events were targeted. Consistent with a plasma membrane-localized effect, 3T3-L1 adipocytes exposed to glucosamine displayed an increase in cell-surface O-linked glycosylation and a simultaneously impaired mobilization of GLUT4 by insulin. Analysis of syntaxin 4 and SNAP23, plasma membrane-localized target receptor proteins (t-SNAREs) for the GLUT4 vesicle, showed that they were not cell-surface targets of O-linked glycosylation. However, the syntaxin 4 binding protein, Munc18c, was targeted by O-linked glycosylation. This occurred concomitantly with a block in insulin-stimulated association of syntaxin 4 with its cognate GLUT4 vesicle receptor protein (v-SNARE), VAMP2. In conclusion, our data suggest that the mechanism by which glucosamine inhibits insulin-stimulated GLUT4 translocation involves modification of Munc18c.
Article
Beta-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of nuclear and cytosolic proteins. The enzymes for its addition and removal have recently been cloned and partially characterized. While only about 80 mammalian proteins have been identified to date that carry this modification, it is clear that this represents just a small percentage of the modified proteins. O-GlcNAc has all the properties of a regulatory modification including being dynamic and inducible. The modification appears to modulate transcriptional and signal transduction events. There are also accruing data that O-GlcNAc plays a role in apoptosis and neurodegeneration. A working model is emerging that O-GlcNAc serves as a metabolic sensor that attenuates a cell's response to extracellular stimuli based on the energy state of the cell. In this review, we will focus on the enzymes that add/remove O-GlcNAc, the functional impact of O-GlcNAc modification, and the current working model for O-GlcNAc as a nutrient sensor.
Article
O-linked N-acetylglucosamine (O-GlcNAc) is a ubiquitous nucleocytoplasmic protein modification that has a complex interplay with phosphorylation on cytoskeletal proteins, signaling proteins and transcription factors. O-GlcNAc is essential for life at the single cell level, and much indirect evidence suggests it plays an important role in nerve cell biology and neurodegenerative disease. Here we show the localization of O-GlcNAc Transferase (OGTase) mRNA, OGTase protein, and O-GlcNAc-modified proteins in the rat cerebellar cortex. The sites of OGTase mRNA expression were determined by in situ hybridization histochemistry. Intense hybridization signals were present in neurons, especially in the Purkinje cells. Fluorescent-tagged antibody against OGTase stained almost all of the neurons with especially intense reactivity in Purkinje cells, within which the nucleus, perikaryon, and dendrites were most intensely stained. Using immuno-electron microscopic labeling, OGTase was seen to be enriched in euchromatin, in the cytoplasmic matrix, at the nerve terminal, and around microtubules in dendrites. In nerve terminals, immuno-gold labeling was observed around synaptic vesicles, with the enzyme more densely localized in the presynaptic terminals than in the postsynaptic ones. Using an antibody to O-GlcNAc, we found the sugar localizations reflected results seen for OGTase. Collectively, these data support hypothesized roles for O-GlcNAc in key processes of brain cells, including the regulation of transcription, synaptic vesicle secretion, transport, and signal transduction. Thus, by modulating the phosphorylation or protein associations of key regulatory and cytoskeletal proteins, O-GlcNAc is likely important to many functions of the cerebellum.
Article
Full-text available
We have established a new binding assay in which 125I-labeled synaptic vesicles are incubated with brain spectrin covalently immobilized on cellulosic membranes in a microfiltration apparatus. We obtained saturable, high affinity, salt- (optimum at 50-70 mM NaCl) and pH- (optimum at pH 7.5-7.8) dependent binding. Nonlinear regression analysis of the binding isotherm indicated one site binding with a Kd = 59 micrograms/ml and a maximal binding capacity = 1.9 micrograms vesicle protein per microgram spectrin. The fact that the binding of spectrin was via synapsin was demonstrated in three ways. (a) Binding of synaptic vesicles to immobilized spectrin was eliminated by prior extraction with 1 M KCl. When the peripheral membrane proteins in the 1 M KCl extract were separated by SDS-PAGE, transferred to nitrocellulose paper and incubated with 125I-brain spectrin, 96% of the total radioactivity was associated with five polypeptides of 80, 75, 69, 64, and 40 kD. All five polypeptides reacted with an anti-synapsin I polyclonal antibody, and the 80- and 75-kD polypeptides comigrated with authentic synapsin Ia and synapsin Ib. The 69- and 64-kD polypeptides are either proteolytic fragments of synapsin I or represent synapsin IIa and synapsin IIb. (b) Pure synapsin I was capable of competitively inhibiting the binding of radioiodinated synaptic vesicles to immobilized brain spectrin with a Kl = 46 nM. (c) Fab fragments of anti-synapsin I were capable of inhibiting the binding of radioiodinated synaptic vesicles to immobilized brain spectrin. These three observations clearly establish that synapsin I is a primary receptor for brain spectrin on the cytoplasmic surface of the synaptic vesicle membrane.
Article
Full-text available
Synapsin I is one of the major synaptic vesi-cle-associated proteins. Previous experiments implicated its crucial role in synaptogenesis and transmitter release. To better define the role of synapsin I in vivo, we used gene targeting to disrupt the murine synapsin I gene. Mutant mice lacking synapsin I appeared to develop normally and did not have gross anatomical abnormalities. However, when we examined the presyn-aptic structure of the hippocampal CA3 field in detail, we found that the sizes of mossy fiber giant terminals were significantly smaller, the number of synaptic vesi-cles became reduced, and the presynaptic structures altered , although the mossy fiber long-term potentiation remained intact. These results suggest significant contribution of synapsin I to the formation and maintenance of the presynaptic structure.
Article
Full-text available
The synapsins are a family of four neuron-specific phosphoproteins that have been implicated in the regulation of neurotransmitter release. Nevertheless, knock-out mice lacking synapsin Ia and Ib, family members that are major substrates for cAMP and Ca2+/ Calmodulin (CaM)-dependent protein kinases, show limited phenotypic changes when analyzed electrophysiologically (Rosahl, T.W., D. Spillane, M. Missler, J. Herz, D.K. Selig, J.R. Wolff, R.E. Hammer, R.C. Malenka, and T.C. Sudhof. 1995. Nature (Lond.). 375: 488-493; Rosahl, T.W., M. Geppert, D. Spillane, D., J. Herz, R.E. Hammer, R.C. Malenka, and T.C. Sudhof. 1993. Cell. 75:661-670; Li, L., L.S. Chin, O. Shupliakov, L. Brodin, T.S. Sihra, O. Hvalby, V. Jensen, D. Zheng, J.O. McNamara, P. Greengard, and P. Andersen. 1995. Proc. Natl. Acad. Sci. USA. 92:9235-9239; see also Pieribone, V.A., O. Shupliakov, L. Brodin, S. Hilfiker-Rothenfluh, A.J. Czernik, and P. Greengard. 1995. Nature (Lond.). 375:493-497). Here, using the optical tracer FM 1-43, we characterize the details of synaptic vesicle recycling at individual synaptic boutons in hippocampal cell cultures derived from mice lacking synapsin I or wild-type equivalents. These studies show that both the number of vesicles exocytosed during brief action potential trains and the total recycling vesicle pool are significantly reduced in the synapsin I-deficient mice, while the kinetics of endocytosis and synaptic vesicle repriming appear normal.
Article
Full-text available
Using a combination of conventional and affinity chromatographic techniques, we have purified a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase (O-GlcNAc transferase) over 30,000-fold from rat liver cytosol. The transferase is soluble and very large, migrating with an apparent molecular weight of 340,000 on molecular sieve chromatography. Analysis of the purified enzyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals two protein species migrating at 110 (alpha subunit) and 78 (beta subunit) kDa in approximately a two-to-one ratio. Thus, the enzyme likely exists as a heterotrimer complex with two subunits of 110 kDa and one of 78 kDa (alpha 2 beta). The alpha subunit appears to contain the enzyme's active site since it is selectively radiolabeled by a specific photoaffinity probe (4-[beta-32P]thiouridine diphosphate). Photoinactivation and photolabeling of the enzyme are dependent on time and long wavelength ultraviolet light. Photolabeling of the alpha subunit is specifically blocked by UDP. The enzyme has an extremely high affinity for UDP-GlcNAc (Km = 545 nM). This unusually high affinity for the sugar nucleotide donor probably provides the enzyme an advantage over the nucleotide transporters in the endoplasmic reticulum and Golgi apparatus which compete for available cytoplasmic UDP-GlcNAc. The multimeric state and large size of the O-GlcNAc transferase imply that its activity may be highly regulated within the cell.
Article
Full-text available
We report the purification and characterization of an active catalytic fragment of Ca2+/calmodulin-dependent protein kinase II, derived from autophosphorylation and subsequent limited chymotryptic digestion of the purified rat forebrain soluble kinase. The purified fragment was completely Ca2+/calmodulin-independent, existed as a monomer, and phosphorylated synapsin I at the same sites as does the native form of Ca2+/calmodulin-dependent protein kinase II. Kinetic studies with the purified fragment revealed a more than 10-fold increase in Vmax and a 50% decrease in Km for synthetic peptide substrates, compared with native Ca2+/calmodulin-dependent protein kinase II. No 32P-labeled autophosphorylated residues were detected in the purified active fragment, indicating that the autophosphorylation sites were not contained within this fragment. Comparative studies of this active fragment (30 kDa) and its inactive counterpart (32-kDa fragment) revealed certain structural details of both fragments. Calmodulin-overlay study, immunoblot analysis, and direct amino acid sequencing suggest that both fragments contain the entire NH2-terminal catalytic domain and were generated by distinct cleavage within the regulatory domain. The putative cleavage sites for both fragments are discussed.
Article
Full-text available
We have established a new binding assay in which 125I-labeled synaptic vesicles are incubated with brain spectrin covalently immobilized on cellulosic membranes in a microfiltration apparatus. We obtained saturable, high affinity, salt- (optimum at 50-70 mM NaCl) and pH- (optimum at pH 7.5-7.8) dependent binding. Nonlinear regression analysis of the binding isotherm indicated one site binding with a Kd = 59 micrograms/ml and a maximal binding capacity = 1.9 micrograms vesicle protein per microgram spectrin. The fact that the binding of spectrin was via synapsin was demonstrated in three ways. (a) Binding of synaptic vesicles to immobilized spectrin was eliminated by prior extraction with 1 M KCl. When the peripheral membrane proteins in the 1 M KCl extract were separated by SDS-PAGE, transferred to nitrocellulose paper and incubated with 125I-brain spectrin, 96% of the total radioactivity was associated with five polypeptides of 80, 75, 69, 64, and 40 kD. All five polypeptides reacted with an anti-synapsin I polyclonal antibody, and the 80- and 75-kD polypeptides comigrated with authentic synapsin Ia and synapsin Ib. The 69- and 64-kD polypeptides are either proteolytic fragments of synapsin I or represent synapsin IIa and synapsin IIb. (b) Pure synapsin I was capable of competitively inhibiting the binding of radioiodinated synaptic vesicles to immobilized brain spectrin with a Kl = 46 nM. (c) Fab fragments of anti-synapsin I were capable of inhibiting the binding of radioiodinated synaptic vesicles to immobilized brain spectrin. These three observations clearly establish that synapsin I is a primary receptor for brain spectrin on the cytoplasmic surface of the synaptic vesicle membrane.
Article
Full-text available
Previous studies identified synapsin I as a potential substrate for a newly discovered growth factor-sensitive, proline-directed protein kinase originally isolated from rat pheochromocytoma. The present study describes the site-specific phosphorylation of synapsin I by highly purified preparations of proline-directed protein kinase. The incorporation of [32P]phosphate into bovine brain synapsin I was dependent upon both the amount of kinase present and the time of incubation. The maximum stoichiometry of phosphorylation approached 1 mol of phosphate/mol of synapsin I protein. When analyzed by sodium dodecyl sulfate-gel electrophoresis and autoradiography, [32P]phosphate was found to be incorporated into both synapsin Ia and Ib. Phosphoamino acid analysis demonstrated that serine residues were phosphorylated exclusively. Digestion of phosphorylated synapsin I with trypsin followed by high performance liquid chromatography (HPLC) phosphopeptide analysis indicated that the tryptic peptide containing the major phosphorylation site eluted as a single peak at approximately 17% acetonitrile. The primary structure of this phosphopeptide, determined by gas-phase sequencing, was found to be Gln-Ser-Arg-Pro-Val-Ala-Gly-Gly-Pro-Gly-Ala-Pro-Pro-Ala-Thr-Arg-Pro-Pro- Ala-Ser-Pro-Ser-Pro-Gln-Arg. Sequential Edman degradation of this HPLC-purified tryptic phosphopeptide revealed that serine 20 of this peptide was the major phosphorylated residue. This phosphoacceptor site is immediately flanked by a carboxyl-terminal proline residue, an observation that further verifies the proline-directed nature of this protein kinase. The tryptic phosphopeptide corresponds exactly to a sequence in the collagenase-sensitive, proline-rich "tail" region of bovine synapsin I. This novel phosphorylation site is close to but distinct from phosphorylation sites 2 and 3, which are known to be phosphorylated by calcium/calmodulin-dependent protein kinase II and are considered to be of regulatory importance.
Article
Full-text available
Synapsins are neuronal phosphoproteins that coat synaptic vesicles, bind to the cytoskeleton, and are believed to function in the regulation of neurotransmitter release. Molecular cloning reveals that the synapsins comprise a family of four homologous proteins whose messenger RNA's are generated by differential splicing of transcripts from two genes. Each synapsin is a mosaic composed of homologous amino-terminal domains common to all synapsins and different combinations of distinct carboxyl-terminal domains. Immunocytochemical studies demonstrate that all four synapsins are widely distributed in nerve terminals, but that their relative amounts vary among different kinds of synapses. The structural diversity and differential distribution of the four synapsins suggest common and different roles of each in the integration of distinct signal transduction pathways that modulate neurotransmitter release in various types of neurons.
Article
Full-text available
We have examined the cytoskeletal architecture and its relationship with synaptic vesicles in synapses by quick-freeze deep-etch electron microscopy (QF.DE). The main cytoskeletal elements in the presynaptic terminals (neuromuscular junction, electric organ, and cerebellar cortex) were actin filaments and microtubules. The actin filaments formed a network and frequently were associated closely with the presynaptic plasma membranes and active zones. Short, linking strands approximately 30 nm long were found between actin and synaptic vesicles, between microtubules and synaptic vesicles. Fine strands (30-60 nm) were also found between synaptic vesicles. Frequently spherical structures existed in the middle of the strands between synaptic vesicles. Another kind of strand (approximately 100 nm long, thinner than the actin filaments) between synaptic vesicles and plasma membranes was also observed. We have examined the molecular structure of synapsin 1 and its relationship with actin filaments, microtubules, and synaptic vesicles in vitro using the low angle rotary shadowing technique and QF.DE. The synapsin 1, approximately 47 nm long, was composed of a head (approximately 14 nm diam) and a tail (approximately 33 nm long), having a tadpole-like appearance. The high resolution provided by QF.DE revealed that a single synapsin 1 cross-linked actin filaments and linked actin filaments with synaptic vesicles, forming approximately 30-nm short strands. The head was on the actin and the tail was attached to the synaptic vesicle or actin filament. Microtubules were also cross-linked by a single synapsin 1, which also connected a microtubule to synaptic vesicles, forming approximately 30 nm strands. The spherical head was on the microtubules and the tail was attached to the synaptic vesicles or to microtubules. Synaptic vesicles incubated with synapsin 1 were linked with each other via fine short fibrils and frequently we identified spherical structures from which two or three fibril radiated and cross-linked synaptic vesicles. We have examined the localization of synapsin 1 using ultracryomicrotomy and colloidal gold-immunocytochemistry of anti-synapsin 1 IgG. Synapsin 1 was exclusively localized in the regions occupied by synaptic vesicles. Statistical analyses indicated that synapsin 1 is located mostly at least approximately 30 nm away from the presynaptic membrane. These data derived via three different approaches suggest that synapsin 1 could be a main element of short linkages between actin filaments and synaptic vesicles, and between microtubules and synaptic vesicles, and between synaptic vesicles in the nerve terminals.(ABSTRACT TRUNCATED AT 400 WORDS)
Article
Full-text available
The binding of synapsin I, a synaptic vesicle-associated phosphoprotein, to small synaptic vesicles has been examined. For this study, synapsin I was purified under nondenaturing conditions from rat brain, using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), and characterized. Small synaptic vesicles were purified from rat neocortex by controlled pore glass chromatography as the last purification step, and binding was characterized at an ionic strength equivalent to 40 mM NaCl. After removal of endogenous synapsin I, exogenous dephospho-synapsin I bound with high affinity (Kd, 10 +/- 6 nM) to synaptic vesicles. The binding saturated at 76 +/- 40 micrograms synapsin I/mg of vesicle protein, which corresponded to the amount found endogenously in purified vesicles. Synapsin I binding exhibited a broad pH optimum around pH 7. Other basic proteins, specifically myelin basic protein and histone H2b, did not compete with synapsin I for binding to vesicles. Other membranes purified from rat brain and membranes derived from human erythrocytes did not show the high affinity binding site for synapsin I found in vesicles. The binding of three different forms of phosphosynapsin I to vesicles was investigated. Synapsin I, phosphorylated at sites 2 and 3 by purified calcium/calmodulin-dependent protein kinase II, bound with a 5-fold lower affinity to the vesicles than did dephospho-synapsin I. In contrast, synapsin I, phosphorylated at site 1 by purified catalytic subunit of cAMP-dependent protein kinase, bound with an affinity close to that of dephospho-synapsin I. Synapsin I phosphorylated on all three sites bound to the vesicles with an affinity comparable to that of synapsin I phosphorylated on sites 2 and 3. Under conditions of higher ionic strength (150 mM NaCl equivalent), synapsin I bound with a 5-fold lower affinity to vesicles, and no effect of phosphorylation on binding was observed under these conditions.
Article
Full-text available
Synapsin I is a neuronal phosphoprotein comprised of two closely related polypeptides with apparent molecular weights of 78,000 and 76,000. It is found in association with the small vesicles clustered at the presynaptic junction. Its precise role is unknown, although it probably participates in vesicle clustering and/or release. Synapsin I is known to associate with vesicle membranes, microtubules, and neurofilaments. We have examined the interaction of purified phosphorylated and unphosphorylated bovine and human synapsin I with tubulin and actin filaments, using cosedimentation, viscometric, electrophoretic, and morphologic assays. As purified from brain homogenates, synapsin I decreases the steady-state viscosity of solutions containing F-actin, enhances the sedimentation of actin, and bundles actin filaments. Phosphorylation by cAMP-dependent kinase has minimal effect on this interaction, while phosphorylation by brain extracts or by purified calcium- and calmodulin-dependent kinase II reduces its actin-bundling and -binding activity. Synapsin's microtubule-binding activity, conversely, is stimulated after phosphorylation by the brain extract. Two complementary peptide fragments of synapsin generated by 2-nitro-5-thiocyanobenzoic cleavage and which map to opposite ends of the molecule participate in the bundling process, either by binding directly to actin or by binding to other synapsin I molecules. 2-Nitro-5-thiocyanobenzoic peptides arising from the central portion of the molecule demonstrate neither activity. In vivo, synapsin I may link small synaptic vesicles to the actin-based cortical cytoskeleton, and coordinate their availability for release in a Ca++-dependent fashion.
Article
Full-text available
Mammalian cells contain two subspecies of RNA polymerase II, designated IIO and IIA. The objectives of these studies were to determine the structural relationship between these subspecies and to determine the functional significance of these differences. Subunits IIo and IIa were purified from calf thymus, and the effect of alkaline phosphatase treatment on electrophoretic mobility and immunochemical reactivity was examined. The removal of phosphate converts subunit IIo to a form indistinguishable from that of subunit IIa. These results indicate that subunit IIo is produced by multisite phosphorylation of subunit IIa. The distribution of phosphate within subunit IIo was determined by CNBr cleavage of in vivo labeled HeLa cell RNA polymerase II. 32P-Labeled subunit IIo was purified by immunoprecipitation and cleaved with CNBr, and the resultant peptides were analyzed. The quantitative recovery of 32P in the C-terminal peptide establishes that this domain is the primary site of phosphorylation. In an effort to assess the level of phosphorylation of the transcriptionally active form of RNA polymerase II in HeLa nuclei, transcription was carried out in the presence of 4-thiouracil triphosphate and the nascent labeled transcript cross-linked to RNA polymerase. Specific photoaffinity labeling of subunit IIo was observed. Alkaline phosphatase treatment results in an increase in the mobility of photoaffinity labeled subunit IIo to approach that of subunit IIa. These results indicate that subunit IIo is a component of transcriptionally active RNA polymerase II.
Article
Full-text available
The substrate specificity of the multifunctional calmodulin-dependent protein kinase from skeletal muscle has been studied using a series of synthetic peptide analogs. The enzyme phosphorylated a synthetic peptide corresponding to the NH2-terminal 10 residues of glycogen synthase, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH2, stoichiometrically at Ser-7, the same residue phosphorylated in the parent protein. The synthetic peptide was phosphorylated with a Vmax of 12.5 mumol X min-1 X mg-1 and an apparent Km of 7.5 microM compared to values of 1.2 mumol X min-1 X mg-1 and 3.1 microM, respectively, for glycogen synthase. Similarly, a synthetic peptide corresponding to the NH2-terminal 23 residues of smooth muscle myosin light chain was readily phosphorylated on Ser-19 with a Km of 4 microM and a Vmax of 5.4 mumol X min-1 X mg-1. The importance of the arginine 3 residues NH2-terminal to the phosphorylated serine in each of these peptides was evident from experiments in which this arginine was substituted by either leucine or alanine, as well as from experiments in which its position in the myosin light chain sequence was varied. Positioning arginine 16 at residues 14 or 17 abolished phosphorylation, while location at residue 15 not only decreased Vmax 14-fold but switched the major site of phosphorylation from Ser-19 to Thr-18. It is concluded that the sequence Arg-X-Y-Ser(Thr) represents the minimum specificity determinant for the multifunctional calmodulin-dependent protein kinases. Studies with various synthetic peptide substrates and their analogs revealed that the specificity determinants of the multifunctional calmodulin-dependent protein kinase were distinct from several other "arginine-requiring" protein kinases.
Article
Full-text available
Synapsin I has been proposed to be involved in the modulation of neurotransmitter release by controlling the availability of synaptic vesicles for exocytosis. To further understand the role of synapsin I in the function of adult nerve terminals, we studied synapsin I-deficient mice generated by homologous recombination. The organization of synaptic vesicles at presynaptic terminals of synapsin I-deficient mice was markedly altered: densely packed vesicles were only present in a narrow rim at active zones, whereas the majority of vesicles were dispersed throughout the terminal area. This was in contrast to the organized vesicle clusters present in terminals of wild-type animals. Release of glutamate from nerve endings, induced by K+,4-aminopyridine, or a Ca2+ ionophore, was markedly decreased in synapsin I mutant mice. The recovery of synaptic transmission after depletion of neurotransmitter by high-frequency stimulation was greatly delayed. Finally, synapsin I-deficient mice exhibited a strikingly increased response to electrical stimulation, as measured by electrographic and behavioral seizures. These results provide strong support for the hypothesis that synapsin I plays a key role in the regulation of nerve terminal function in mature synapses.
Article
Full-text available
c-Myc is a helix-loop leucine zipper phosphoprotein that heterodimerizes with Max and regulates gene transcription in cell proliferation, cell differentiation, and programmed cell death. Previously, we demonstrated that c-Myc is modified by O-linked N-acetylglucosamine (O-GlcNAc) within or nearby the N-terminal transcriptional activation domain (Chou, T.-Y., Dang, C.V., and Hart, G.W. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 4417-4421). In this paper, we identified the O-GlcNAc attachment site(s) on c-Myc. c-Myc purified from sf9 insect cells was trypsinized, and its GlcNAc moieties were enzymically labeled with [3H]galactose. The [3H]galactose-labeled glycopeptides were isolated by reverse phase high performance liquid chromatography and then subjected to gas-phase sequencing, manual Edman degradation, and laser desorption/ionization mass spectrometry. These analyses show that threonine 58, an in vivo phosphorylation site in the transactivation domain, is the major O-GlcNAc glycosylation site of c-Myc. Mutation of threonine 58, frequently found in retroviral v-Myc proteins and in human Burkitt and AIDS-related lymphomas, is associated with enhanced transforming activity and tumorigenicity. The reciprocal glycosylation and phosphorylation at this biologically significant amino acid residue may play an important role in the regulation of the functions of c-Myc.
Article
Full-text available
Grb2 is a 25-kDa adaptor protein composed of a Src homology 2 (SH2) domain and two flanking Src homology 3 (SH3) domains. One function of Grb2 is to couple tyrosine-phosphorylated proteins (through its SH2 domain) to downstream effectors (through its SH3 domains). Using an overlay assay, we have identified four major Grb2-binding proteins in synaptic fractions. These proteins interact with wild-type Grb2 but not with Grb2 containing point mutations in each of its two SH3 domains corresponding to the loss of function mutants in the Caenorhabditis elegans Grb2 homologue sem-5. Two of the proteins, mSos and dynamin, were previously shown to bind Grb2. The third protein of 145 kDa is brain specific and to our knowledge has not been previously described. The fourth protein is synapsin I. Dynamin is required for synaptic vesicle endocytosis and synapsin I is thought to mediate the interaction of synaptic vesicles with the presynaptic cytomatrix. These data suggest that Grb2, or other proteins containing SH3 domains, may play a role in the regulation of the exo/endocytotic cycle of synaptic vesicles and therefore of neurotransmitter release.
Article
Full-text available
The N-terminal domain of the c-Myc protein has been reported to be critical for both the transactivation and biological functions of the c-Myc proteins. Through detailed phosphopeptide mapping analyses, we demonstrate that there is a cluster of four regulated and complex phosphorylation events on the N-terminal domain of Myc proteins, including Thr-58, Ser-62, and Ser-71. An apparent enhancement of Ser-62 phosphorylation occurs on v-Myc proteins having a mutation at Thr-58 which has previously been correlated with increased transforming ability. In contrast, phosphorylation of Thr-58 in cells is dependent on a prior phosphorylation of Ser-62. Hierarchical phosphorylation of c-Myc is also observed in vitro with a specific glycogen synthase kinase 3 alpha, unlike the promiscuous phosphorylation observed with other glycogen synthase kinase 3 alpha and 3 beta preparations. Although both p42 mitogen-activated protein kinase and cdc2 kinase specifically phosphorylate Ser-62 in vitro and cellular phosphorylation of Thr-58/Ser-62 is stimulated by mitogens, other in vivo experiments do not support a role for these kinases in the phosphorylation of Myc proteins. Unexpectedly, both the Thr-58 and Ser-62 phosphorylation events, but not other N-terminal phosphorylation events, can occur in the cytoplasm, suggesting that translocation of the c-Myc proteins to the nucleus is not required for phosphorylation at these sites. In addition, there appears to be an unusual block to the phosphorylation of Ser-62 during mitosis. Finally, although the enhanced transforming properties of Myc proteins correlates with the loss of phosphorylation at Thr-58 and an enhancement of Ser-62 phosphorylation, these phosphorylation events do not alter the ability of c-Myc to transactivate through the CACGTG Myc/Max binding site.
Article
Full-text available
We used the fluorescent membrane probe FM 1-43 to label recycling synaptic vesicles within the presynaptic boutons of dissociated hippocampal neurons in culture. Quantitative time-lapse fluorescence imaging was employed in combination with rapid superfusion techniques to study the dynamics of synaptic vesicles within single boutons. This approach enabled us to measure exocytosis and to analyze the kinetics of endocytosis and the preparation of endocytosed vesicles for re-release (repriming). Our measurements indicate that under sustained membrane depolarization, endocytosis persists much longer than exocytosis, with a t1/2 approximately 60 s (approximately 24 degrees C); once internalized, vesicles become reavailable for exocytosis in approximately 30 s. Furthermore, we have shown that endocytosis is not dependent on membrane potential and, unlike exocytosis, that it is independent of extracellular Ca2+.
Article
Full-text available
The largest subunit of mammalian RNA polymerase II (RNAP II) contains at its carboxyl terminus an unusual domain consisting of 52 tandem repeats of the consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. This domain, designated the COOH-terminal domain (CTD), is essential for viability and is extensively phosphorylated during the transition from preinitiation complex assembly to elongation (1). Indeed, phosphorylation of the CTD may play an important regulatory role in this transition. We show here that the CTD is also modified by a novel form of protein glycosylation, O-GlcNAc. This modification has been found on numerous transcription factors and other nuclear and cytosolic proteins (2). Glycopeptides obtained by proteolytic digestion of the CTD were purified by reverse-phase high performance liquid chromatography and sequenced. Results from such experiments suggest that glycosylation occurs at multiple sites throughout the CTD, similar to the phosphorylation of this domain. The carbohydrate, however, is not detectable on the phosphorylated form of the enzyme. This observation is consistent with the idea that phosphorylation and glycosylation are mutually exclusive modifications. The CTD of RNAP II, therefore, appears to exist in three distinct conformational states: unmodified, phosphorylated, and glycosylated. The differential modification of the CTD may play an important role in the regulated expression of genes transcribed by RNA polymerase II.
Chapter
This chapter discusses the applications of the cyanogens bromide reaction. Cyanogen bromide is capable of cleaving thioethers. The action of cyanogen bromide upon proteins is unique in its selective attack on methionine. The reaction of methionine with cyanogen bromide is greatly facilitated by the strong neighboring group effect exerted by the carboxyl group. Cyanogen bromide is synthesized from bromine and potassium cyanide. The selectivity of the reaction of cyanogen bromide with amino acids depends on pH. The selectivity of the cyanogen bromide reaction is demonstrated by exposure to cyanogen bromide of a standard mixture of amino acids, as is used for calibration purposes in automated amino acid analyzer systems. A number of applications to the general structural elucidation of peptides and proteins are: ribonuclease, rabbit γ-globulin, and chymotrypsin. The reaction is applied in many other instances and is useful in a number of ways, such as in the structural elucidation of peptides and proteins, the detection of multiple forms of enzymes and of oxidized residues of methionine, the preparation of physiologically active peptide fragments, the location of newly introduced cross-linkages in enzymes,and the identification and characterization of fragments from enzyme active sites.
Article
There is a variety of chemical reactions known to result in the cleavage of the peptide bond. Some are nonspecific—for instance, 6M hydrochloric acid at 110°C for 24 h hydrolyzes a polypeptide to a mixture of single amino acids. Others show some discrimination, however, as to the precise nature of the amino acid residues around the bond to be broken. Some of these methods are sufficiently specific to be of use, for instance, for generating peptides for primary structure determination. These methods usefully augment those that use proteolytic enzymes (see Chapter 32), especially since they tend to act at positions occupied by less common amino acids and so generate large peptides.
Article
An eIF-2 associated 67-kDa protein (p(67)) protects eIF-2 alpha-subunit from eIF-2 kinase(s) catalyzed phosphorylation and promotes protein synthesis in the presence of active eIF-2 kinase(s). p(67) is a glycoprotein and contains multiple O-linked GlcNAc moieties. We have now studied the roles of hemin, p(67), and the glycosyl residues on p(67) in the regulation of eIF-2 alpha-subunit phosphorylation in reticulocyte lysates. The results are as follows: (i) Both hemin and p(67) inhibited HRI (heme-regulated protein synthesis inhibitor) and dsI (double-stranded RNA activated protein synthesis inhibitor) catalyzed phosphorylation of eIF-2 alpha-subunit in vitro. However, only hemin, and not p(67), inhibited casein kinase catalyzed phosphorylation of eIF-2 beta-subunit. (ii) Only p(67), and not hemin, inhibited eIF-2 alpha-subunit phosphorylation by eIF-2 kinase(s) in reticulocyte lysate. Significant eIF-2 alpha-subunit phosphorylation was observed even in the presence of hemin when p(67) in the reticulocyte lysate was removed by treatment with p(67) antibodies. (iii) Reticulocyte lysate contains a p(67)-deglycosylase in latent form, and hemin prevents activation of this deglycosylase. In the absence of hemin, this p(67)-deglycosylase is activated. Once activated in the absence of hemin, the activated deglycosylase deglycosylates p(67), even in the presence of hemin. This inactivates p(67) and allows eIF-2 kinase to phosphorylate eIF-2 alpha-subunit and inhibit protein synthesis. Protein synthesis in reticulocyte lysate is thus regulated by two novel cascades of covalent modifications: protein deglycosylation leading to protein phosphorylation.
Article
A technique is described for the rapid, sensitive analysis of posttranslational modifications of proteins that have been separated by 2-dimensional electrophoresis and blotted onto a membrane with a cationic surface. The isolated protein spots visualized by reverse staining of the blotting membrane are excised, washed, and subjected to chemical (cyanogen bromide) and/or enzymatic (endoproteinase Lys-C) degradation directly on the membrane. The resulting mixture of peptide fragments is extracted from the membrane into a solution that is compatible with matrix-assisted laser desorption mass spectrometric analysis and analyzed without fractionation. Relatively accurate (± 1 Da) mass determination of these peptide fragments provides a facile and sensitive means for detecting the presence of modifications and for correlating such modifications with the differential mobility of different isoforms of a given protein during 2-dimensional electrophoresis. The technique is applied to the determination of sites of phosphorylation in synapsins Ia and Ib, neuronal phosphoproteins that are believed to function in the regulation of neurotransmitter release and are substrates for cAMP and Ca2+/calmodulin-dependent protein kinases, which appear to control their biological activity.
Chapter
Cysteine is a significant amino acid residue in that it can form a disulfide bridge with another cysteine (to form cystine). Such disulfide bridges are important determinants of protein structure. No known endoproteinase shows specificity solely for cysteinyl or cystinyl residues, although endoproteinase Asp-N is able to hydrolyze bonds to the N-terminal side of aspartyl or cysteinyl residues. Modification of the former (1) can generate specificity for cysteinyl residues. Again, as discussed by Aitken (2), modification of cysteinyl to 2-aminoethylcysteinyl residues makes the bond to the C-terminal side susceptible to cleavage by trypsin or the bond to the N-terminal side sensitive to Lys-N. However, specific cleavage of bonds to the N-terminal side of cysteinyl residues may be achieved in good yield by chemical means (3). The cleavage generates a peptide blocked at its N-terminus as the cysteinyl residue is converted to an iminothiazolidinyl residue, but peptide sequencing can be carried out after conversion of this residue to an alanyl residue (4).
Article
Over the past decade, a number of nuclear and cytoplasmic proteins have been identified that are modified by single N-acetylglucosamine residues attached to the hydroxyl side chain of serines or threonines (O-GlcNAc). O-GlcNAc is a dynamic modification and therefore may act in a regulatory capacity analogous to phosphorylation. To undertake site-directed mutagenesis studies of O-GlcNAc's function, it is necessary to identify the sites of glycosylation on various proteins. The current method of site mapping, which involves galactosyltransferase labeling, generation of glycopeptides by proteolysis, purification by several rounds of HPLC, and gas-phase and manual Edman sequencing, is very tedious and requires about 10 pmol of pure, labeled glycopeptide. In this report, synthetic glycopeptides were generated and used to demonstrate that O-GlcNAc-modified peptides can be rapidly identified in complex mixtures by HPLC-coupled electrospray mass spectrometry due to the partial loss of the O-linked glycan (204 amu) at a modest orifice potential. Furthermore, the exact site of glycosylation was directly identified in the low picomole range by collision-induced dissociation (CID) of the glycopeptide after removal of the O-GlcNAc by alkaline beta-elimination. The conversion of glycosylserine to 2-aminopropenoic acid (2-ap) by beta-elimination both decreased the mass of the glycopeptide by 222 amu and resulted in a CID fragment ion representing the loss of 69 amu (2-ap) instead of 87 amu (Ser) at the position of the glycosylserine. Finally, we tested this method on an identical synthetic, alpha-linked O-GalNAc-modified peptide. Like O-GlcNAc, the O-GalNAc moiety was selectively removed at a modest orifice potential; however, the beta-elimination conditions that efficiently removed the O-GlcNAc only liberated about 20% of the O-GalNAc. We conclude that the selectivity and the sensitivity of this method will make it a powerful tool for determining the sites of O-GlcNAc modification on proteins of low abundance such as transcription factors and oncogenes. (C) 1996 Academic Press, Inc.
Article
The enzyme acylaminoacyl-peptide hydrolase represents an attractive reagent for the removal of acetylamino acids from the N-terminus of proteins prior to sequencing. However, the enzyme will not accept intact proteins as substrates, and a blocked protein must consequently be fragmented to generate a relative short blocked peptide, and all the newly generated amino termini must be blocked with an hydrolase-resistant reagent before the enzyme can be used to specifically unblock the N-terminus. When a number of N-acetylated proteins (enolase, α-crystallin, ovalbumin, cytochrome c, parvalbumin, superoxide dismutase, and myelin basic protein) were subjected to fragmentation with proteases or cyanogen bromide, treatment with succinic anhydride and exhaustive extraction with ether, and the resulting salt-free, succinylated peptides were incubated with the hydrolase, the N-terminal sequence was specifically unblocked. An aliquot of the entire peptide mixture was applied to the protein sequencer, and a single sequence, corresponding to the known N-terminal sequence starting at residue 2, was obtained. When another aliquot of the same hydrolase-treated peptide mixture was treated with the enzyme acylase I, the liberated acetylamino acid was cleaved, and the N-terminal amino acid (residue 1) could be identified by amino acid analysis. The amount of sequence information obtained from different proteins with different fragmentation methods varied considerably; in the case of parvalbumin a sequence of 12 residues was obtained, while for myelin basic protein, only 3 residues could be identified; the other proteins yielded from 5- to 9-residue sequences. Rabbit muscle acetylaminoacyl-peptide hydrolase, the enzyme used in the present studies, is itself a blocked protein and was subjected to chymotrypsin digestion, succinylation, and hydrolase digestion. Subsequent sequencing established the sequence ERQVL-, and acylase treatment gave M as the only free amino acid, demonstrating that the N-terminal sequence of this enzyme is Ac-Met-Glu-Arg-Gln-Val-Leu-, identical to the sequences deduced for other hydrolases.
Article
The nonreceptor tyrosine kinase Src is expressed at a high level in cells that are specialized for regulated secretion, such as the neuron, and is concentrated on secretory vesicles or at the site of exocytosis. To investigate the possibility that Src may play a role in regulating membrane traffic, we searched for neuronal proteins that will interact with Src. The SH3 domain of Src, but not that of the splice variant N-Src, bound to three proteins from mouse synaptosomes or PC12 cells: dynamin, synapsin Ia, and synapsin Ib. Dynamin and the synapsins coprecipitated with Src from PC12 cell extracts, and they colocalized with a subset of Src in the PC12 cell by immunofluorescence. Neither dynamin nor the synapsins were phosphorylated by Src, suggesting that the interaction of these proteins serves to direct the kinase activity of Src toward other proteins in the vesicle population. In immunoprecipitates containing Src and dynamin, the clathrin adaptor protein alpha-adaptin was also found. The association of Src and synapsin suggests a role for Src in the life cycle of the synaptic vesicle. The identification of a complex containing Src, dynamin, and alpha-adaptin indicates that Src may play a more general role in membrane traffic as well.
Article
Synapsins are a family of neuron-specific synaptic vesicle-associated phosphoproteins that have been implicated in synaptogenesis and in the modulation of neurotransmitter release. In mammals, distinct genes for synapsins I and II have been identified, each of which gives rise to two alternatively spliced isoforms. We have now cloned and characterized a third member of the synapsin gene family, synapsin III, from human DNA. Synapsin III gives rise to at least one protein isoform, designated synapsin IIIa, in several mammalian species. Synapsin IIIa is associated with synaptic vesicles, and its expression appears to be neuron-specific. The primary structure of synapsin IIIa conforms to the domain model previously described for the synapsin family, with domains A, C, and E exhibiting the highest degree of conservation. Synapsin IIIa contains a novel domain, termed domain J, located between domains C and E. The similarities among synapsins I, II, and III in domain organization, neuron-specific expression, and subcellular localization suggest a possible role for synapsin III in the regulation of neurotransmitter release and synaptogenesis. The human synapsin III gene is located on chromosome 22q12-13, which has been identified as a possible schizophrenia susceptibility locus. On the basis of this localization and the well established neurobiological roles of the synapsins, synapsin III represents a candidate gene for schizophrenia.
Article
Synapsin 1 is a nerve terminal phosphoprotein whose role seems to encompass the linking of small synaptic vesicles to the cytoskeleton. Synapsin 1 can join small synaptic vesicles to neuronal spectrin, microfilaments and microtubules; it can also bundle microtubules and microfilaments. In this paper, the mode of interaction between synapsin 1 and microtubules has been investigated. Bundling is shown to be highly cooperative: the apparent Hill coefficient is 3.06 +/- 0.3, and bundling is half-maximal at 0.63 +/- 0.02 microM. Bundling occurs either when whole synapsin 1 preparations (containing monomers and oligomers) or when monomeric synapsin 1 is added to microtubules. However, it is not clear that synapsin 1 remains monomeric in the presence of microtubules. Synapsin 1-microtubule mixtures contain two types of filament. One type is characterised by microtubules often with synapsin 1 bound to their surface. The other type is composed of filaments of diameter 15 +/- 5 nm. This filament type is granular and made up in part of 14-nm-diameter particles. These dimensions are consistent with their being made up of polymerised synapsin 1. It is possible that microtubules induce the polymerisation of synapsin 1. Synapsin 1 had independent tubulin binding sites in the N-terminal head domain and in the C-terminal tail domain. Whole synapsin 1 can interact with tubulin after it has been digested to remove the tubulin C terminus (des-C-terminal tubulin). The interaction of des-C-terminal tubulin with synapsin 1 appears to be via the head domain, since 125I-des-C-terminal tubulin only shows specific binding to the head domain on gel blots. By contrast intact tubulin binds to both head and tail domains. Binding to the tail domain can be inhibited by a synthetic peptide representing the microtubule-associated protein 2 (MAP2) binding site of class II beta tubulin. These results suggest a model for microtubule bundling by synapsin 1 in which independent sites in the head and tail domains of synapsin 1 cross-link microtubules by interactions with two distinct sites in tubulin.
Article
Synapsin I is a synaptic vesicle-associated phosphoprotein that is involved in the modulation of neurotransmitter release. Ca2+/calmodulin-dependent protein kinase II, which phosphorylates two sites in the carboxy-terminal region of synapsin I, causes synapsin I to dissociate from synaptic vesicles and increases neurotransmitter release. Conversely, the dephosphorylated form of synapsin I, but not the form phosphorylated by Ca2+/calmodulin-dependent protein kinase II, inhibits neurotransmitter release. The amino-terminal region of synapsin I interacts with membrane phospholipids, whereas the C-terminal region binds to a protein component of synaptic vesicles. Here we demonstrate that the binding of the C-terminal region of synapsin I involves the regulatory domain of a synaptic vesicle-associated form of Ca2+/calmodulin-dependent protein kinase II. Our results indicate that this form of the kinase functions both as a binding protein for synapsin I, and as an enzyme that phosphorylates synapsin I and promotes its dissociation from the vesicles.
Article
The enzyme acylaminoacyl-peptide hydrolase represents an attractive reagent for the removal of acetylamino acids from the N-terminus of proteins prior to sequencing. However, the enzyme will not accept intact proteins as substrates, and a blocked protein must consequently be fragmented to generate a relative short blocked peptide, and all the newly generated amino termini must be blocked with an hydrolase-resistant reagent before the enzyme can be used to specifically unblock the N-terminus. When a number of N-acetylated proteins (enolase, alpha-crystallin, ovalbumin, cytochrome c, parvalbumin, superoxide dismutase, and myelin basic protein) were subjected to fragmentation with proteases or cyanogen bromide, treatment with succinic anhydride and exhaustive extraction with ether, and the resulting salt-free, succinylated peptides were incubated with the hydrolase, the N-terminal sequence was specifically unblocked. An aliquot of the entire peptide mixture was applied to the protein sequencer, and a single sequence, corresponding to the known N-terminal sequence starting at residue 2, was obtained. When another aliquot of the same hydrolase-treated peptide mixture was treated with the enzyme acylase I, the liberated acetylamino acid was cleaved, and the N-terminal amino acid (residue 1) could be identified by amino acid analysis. The amount of sequence information obtained from different proteins with different fragmentation methods varied considerably; in the case of parvalbumin a sequence of 12 residues was obtained, while for myelin basic protein, only 3 residues could be identified; the other proteins yielded from 5- to 9-residue sequences.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
The neuron-specific synaptic vesicle-associated phosphoproteins synapsin I and synapsin II were shown to contain terminal N-acetylglucosamine (GlcNAc) residues as determined by specific labeling with bovine galactosyltransferase and UDP-[3H]galactose. The beta-elimination of galactosyltransferase radiolabeled synapsin I and subsequent analysis of released saccharide on high-voltage paper electrophoresis confirmed the presence of monosaccharidic GlcNAc moieties in O-linkage to the protein. Partial cleavage of synapsin I by collagenase, 2-nitro-5-thiocyanobenzoic acid, and Staphylococcus aureus V8 protease suggests that at least three glycosylation sites exist along the molecule. Taken together these data present the first evidence that a neuron-specific protein contains O-glycosidically bound GlcNAc.
Article
This chapter discusses the solid-phase sequencing of 32P-labeled phosphopeptides at picomole and subpicomole levels. Protein phosphorylation is usually restricted to the hydroxyamino acids, serine, threonine, and tyrosine, although phosphorylation of histidine can occur in some systems. Specificity determinants for site-specific phosphorylation are usually provided by structural signals located within amino acid sequences adjacent to the phosphorylation site. Because phosphorylation sites cannot be predicted with certainty from primary structure alone, there is a need for methodology to determine the sites experimentally. Indirect detection methods for the assignment of such phosphorylation sites are based on the detection of novel Edman degradation products generated from peptides in which phosphorylserine or phosphorylthreonine groups have been specifically modified; an example of this approach is the conversion of phosphoserine residues to the phenylthiocarbamyl-S-ethylcysteine derivative. Such methods are useful for the determination of in vivo phosphorylation sites, but usually require quantities of phosphopeptides in excess of 20 pmol.
Article
We describe a simple and inexpensive method for determining the location of phosphoamino acids in an isolated phosphopeptide. Phosphopeptides are immobilized on arylamine membrane discs using water-soluble carbodiimide, and the immobilized peptides are subjected to manual Edman degradation. The use of a membrane disc resulted in excellent recovery (65 to 80%) of radiolabeled phosphate following Edman degradation. Furthermore, interference from carryover and peptide washout is reduced to a minimum. The methodology should therefore be able to generate reliable results when used to analyze phosphopeptides that contain multiple phosphorylation sites. In addition to its advantage in sensitivity, the manual sequencing method is easy to perform and does not entail any sophisticated instrumentation.
Article
This chapter discusses molecular weight analysis of proteins. The molecular weight of a protein has always been recognized as an important analytical parameter in biochemistry. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is universally used to purify proteins; molecular weights are routinely determined after separations by comparison of the migration of the protein of interest to that of a set of standard proteins. A typical protein molecular weight experiment would be to analyze the molecular weight before and after removal of carbohydrate to estimate the carbohydrate content of the glycoprotein and the mass of the deglycosylated protein. Estimates of the accuracy of SDS-PAGE protein molecular weight determination range from a few percent for well-behaved proteins in this system up to 20 or 30% for heavily glycosylated proteins. Estimates of the accuracy of SDS-PAGE protein molecular weight determination range from a few percent for well-behaved proteins in this system up to 20 or 30% for heavily glycosylated proteins.
Article
Synapsin I is a neuron-specific phosphoprotein localized to the cytoplasmic surface of synaptic vesicles. This phosphoprotein is a major substrate for cyclic AMP-dependent and calcium/calmodulin-dependent protein kinases. Its state of phosphorylation can be altered both in vivo and in vitro by a variety of physiological and pharmacological manipulations known to affect synaptic function. Recent direct evidence suggests that it may be involved in the regulation of neurotransmitter release from the nerve terminal. In the nerve terminal, synaptic vesicles are embedded in a cytoskeletal network, consisting in part of actin. We report here the ability of the dephospho-form of synapsin I to bundle F-actin. This bundling activity is reduced when synapsin I is phosphorylated by cAMP-dependent protein kinase and virtually abolished when it is phosphorylated by calcium/calmodulin-dependent protein kinase II or by both kinases. These results, demonstrating an interaction of synapsin I with actin in vitro, support the possibility that synapsin I is involved in clustering of synaptic vesicles at the presynaptic terminal and that the phosphorylation of synapsin I may be involved in regulating the translocation of synaptic vesicles to their sites of release.
Article
The amino acid sequences surrounding three major phosphorylation sites in rat and bovine synapsin I have been determined by employing automated gas-phase sequencing and manual Edman degradation of purified phosphopeptide fragments. Site 1 is a serine residue phosphorylated by cAMP-dependent protein kinase and by calcium/calmodulin-dependent protein kinase I. The sequence around site 1 was derived from tryptic/chymotryptic phosphopeptides and overlapping cyanogen bromide cleavage fragments. This sequence, identical in rat and bovine synapsin I, is Asn-Tyr-Leu-Arg-Arg-Arg-Leu-Ser(P)-Asp-Ser-Asn-Phe-Met. Site 1 is located at the NH2 terminus of the protein, within the collagenase-resistant head region. Sites 2 and 3 are serine residues phosphorylated by calcium/calmodulin-dependent protein kinase II. The sequences surrounding bovine site 2 and site 3 were derived from tryptic phosphopeptides and overlapping fragments generated by cleavage with chymotrypsin, collagenase, and endoproteinase Lys-C. The sequence around bovine site 2 is Thr-Arg-Gln-Thr-Ser(P)-Val-Ser-Gly-Gln-Ala-Pro-Pro-Lys, and the sequence around bovine site 3 is Thr-Arg-Gln-Ala-Ser(P)-Gln-Ala-Gly-Pro-Met-Pro-Arg. Sites 2 and 3 are located within the COOH-terminal, collagenase-sensitive tail region of the molecule, separated by 36 amino acids. The sequences surrounding rat site 2 and site 3 were derived from tryptic phosphopeptides. The sequence around rat site 2 is Gln-Ala-Ser(P)-Ile-Ser-Gly-Pro-Ala-Pro-Pro-Lys, and the sequence around rat site 3 is Gln-Ala-Ser(P)-Gln-Ala-Gly-Pro-Gly-Pro-Arg. Thus, the sequences surrounding the four sites that are phosphorylated by calcium/calmodulin-dependent protein kinase II, namely sites 2 and 3 in rat and bovine synapsin I, exhibit a high degree of homology.
Article
Protein kinase C, purified to homogeneity, was found to phosphorylate and activate tyrosine hydroxylase that had been partially purified from pheochromocytoma PC 12 cells. These actions of protein kinase C required the presence of calcium and phospholipid. This phosphorylation of tyrosine hydroxylase reduced the Km for the cofactor 6-methyltetrahydropterine from 0.45 mM to 0.11 mM, increased the Ki for dopamine from 4.2 microM to 47.5 microM, and produced no change in the Km for tyrosine. Little or no change in apparent Vmax was observed. These kinetic changes are similar to those seen upon activation of tyrosine hydroxylase by cAMP-dependent protein kinase. Two-dimensional phosphopeptide maps of tyrosine hydroxylase were identical whether the phosphorylation was catalyzed by protein kinase C or by the catalytic subunit of cAMP-dependent protein kinase. Both protein kinases phosphorylated serine residues. The results suggest that protein kinase C and cAMP-dependent protein kinase phosphorylate the same site(s) on tyrosine hydroxylase and activate tyrosine hydroxylase by the same mechanism.
Article
The reduction of methionine sulfoxide to methionine in peptides and proteins has been systematically investigated in terms of specific reducing agent, concentration of reducing agent, temperature, pH of the solution, and the presence of denaturing agents. While several of the reagents examined had a greater rate of reduction, N-methylmercaptoacetamide was found to be the reducing agent of choice as it was the reagent with the highest rate of reduction having no adverse interaction with other residues in peptides and proteins. Its rate of reduction increased until its concentration reached approximately 50% (). Its reducing ability was relatively independent of pH changes but decreased with increases in acetic acid concentration. Using this reagent under acid, neutral, or basic conditions at a concentration of 0.7–2.8 m, methionine sulfoxide can be completely reduced to methionine in peptides and proteins at 37°C in 12 to 24 h. The sulfoxide form of S-carbamoylmethylcysteine in peptide and proteins takes approximately five times longer to reduce than methionine sulfoxide.
Article
Analysis of peptides by reverse-phase high-pressure liquid chromatography would be simplified if retention times could be predicted by summing the contribution to retention of each of the peptide's amino acid side chains. This paper describes the derivation of values ("retention coefficients") that represent the contribution to retention of each of the common amino acids and end groups. Peptide retention times were determined on a Bio-Rad "ODS" column at room temperature with a linear gradient from 0.1 M NaclO(4), pH 7.4 or 2.1, at 0 min to 60% acetonitrile/0.1 M NaclO(4) at 80 min. The NaclO(4), a chaotropic agent, was added to improve peak shape and to minimize conformational effects. Retention coefficients for the amino acids were computed by using a Hewlett-Packard 9815A calculator programmed to change the retention coefficients for all amino acids sequentially to obtain a maximum correlation between actual and predicted retention times. Correlations of 0.999 at pH 7.4 and 0.997 at pH 2.1 were obtained for 25 peptides including glucagon, oxytocin, [Met]enkephalin, neurotensin, and somatostatin. This high degree of correlation suggests that, for peptides containing up to 20 residues, retention is primarily due to partition processes that involve all the residues. Although steric or conformational factors do have some effect on retention, the data suggest that under the above chromatographic conditions the retention of peptides containing up to 20 residues can be predicted solely on the basis of their amino acid composition. This possibility was tested by using data taken from the literature.
Article
Synapsin I, the most abundant of all neuronal phosphoproteins, is enriched in synaptic vesicles. It has been hypothesized to regulate synaptogenesis and neurotransmitter release from adult nerve terminals. The evidence for such roles has been highly suggestive but not compelling. To evaluate the possible involvement of synapsin I in synaptogenesis and in the function of adult synapses, we have generated synapsin I-deficient mice by homologous recombination. We report herein that outgrowth of predendritic neurites and of axons was severely retarded in the hippocampal neurons of embryonic synapsin I mutant mice. Furthermore, synapse formation was significantly delayed in these mutant neurons. These results indicate that synapsin I plays a role in regulation of axonogenesis and synaptogenesis.
Article
Synaptic vesicles are coated by synapsins, phosphoproteins that account for 9% of the vesicle protein. To analyse the functions of these proteins, we have studied knockout mice lacking either synapsin I, synapsin II, or both. Mice lacking synapsins are viable and fertile with no gross anatomical abnormalities, but experience seizures with a frequency proportional to the number of mutant alleles. Synapsin-II and double knockouts, but not synapsin-I knockouts, exhibit decreased post-tetanic potentiation and severe synaptic depression upon repetitive stimulation. Intrinsic synaptic-vesicle membrane proteins, but not peripheral membrane proteins or other synaptic proteins, are slightly decreased in individual knockouts and more severely reduced in double knockouts, as is the number of synaptic vesicles. Thus synapsins are not required for neurite outgrowth, synaptogenesis or the basic mechanics of synaptic vesicle traffic, but are essential for accelerating this traffic during repetitive stimulation. The phenotype of the synapsin knockouts could be explained either by deficient recruitment of synaptic vesicles to the active zone, or by impaired maturation of vesicles at the active zone, both of which could lead to a secondary destabilization of synaptic vesicles.
Article
The synaptic vesicle cycle at the nerve terminal consists of vesicle exocytosis with neurotransmitter release, endocytosis of empty vesicles, and regeneration of fresh vesicles. Of all cellular transport pathways, the synaptic vesicle cycle is the fastest and the most tightly regulated. A convergence of results now allows formulation of molecular models for key steps of the cycle. These developments may form the basis for a mechanistic understanding of higher neural function.
Article
Synapsin I, the major phosphoprotein of synaptic vesicles, is thought to play a central role in neurotransmitter release. Here we introduce a null mutation into the murine synapsin I gene by homologous recombination. Mice with no detectable synapsin I manifest no apparent changes in well-being or gross nervous system function. Thus, synapsin I is not essential for neurotransmitter release. Electrophysiology reveals that mice lacking synapsin I exhibit a selective increase in paired pulse facilitation, with no major alterations in other synaptic parameters such as long-term potentiation. In addition to potential redundant functions shared with other proteins, synapsin I in normal mice may function to limit increases in neurotransmitter release elicited by residual Ca2+ after an initial stimulus.
Article
An eIF-2 associated 67-kDa protein (p67) protects eIF-2 alpha-subunit from eIF-2 kinase(s) catalyzed phosphorylation and promotes protein synthesis in the presence of active eIF-2 kinase(s). p67 is a glycoprotein and contains multiple O-linked GlcNAc moieties. We have now studied the roles of hemin, p67, and the glycosyl residues on p67 in the regulation of eIF-2 alpha-subunit phosphorylation in reticulocyte lysates. The results are as follows: (i) Both hemin and p67 inhibited HRI (heme-regulated protein synthesis inhibitor) and dsI (double-stranded RNA activated protein synthesis inhibitor) catalyzed phosphorylation of eIF-2 alpha-subunit in vitro. However, only hemin, and not p67, inhibited casein kinase catalyzed phosphorylation of eIF-2 beta-subunit. (ii) Only p67, and not hemin, inhibited eIF-2 alpha-subunit phosphorylation by eIF-2 kinase(s) in reticulocyte lysate. Significant eIF-2 alpha-subunit phosphorylation was observed even in the presence of hemin when p67 in the reticulocyte lysate was removed by treatment with p67 antibodies. (iii) Reticulocyte lysate contains a p67-deglycosylase in latent form, and hemin prevents activation of this deglycosylase. In the absence of hemin, this p67-deglycosylase is activated. Once activated in the absence of hemin, the activated deglycosylase deglycosylates p67, even in the presence of hemin. This inactivates p67 and allows eIF-2 kinase to phosphorylate eIF-2 alpha-subunit and inhibit protein synthesis. Protein synthesis in reticulocyte lysate is thus regulated by two novel cascades of covalent modifications: protein deglycosylation leading to protein phosphorylation.
Article
Calmodulin is an important element in the regulation of nerve terminal exocytosis by Ca2+. Calmodulin has been shown to interact with the synaptic vesicle phosphoproteins synapsins Ia and Ib [Okabe, T. & Sobue, K. (1987) FEBS Lett. 213, 184-188; Hayes, N. V. L., Bennett, A. F. & Baines, A. J. (1991) Biochem. J. 275, 93-97]. These proteins are thought to provide regulated linkages between synaptic vesicles and cytoskeletal elements. It is well established that calmodulin modulates synapsin I activities via calmodulin-dependent protein-kinase-II-catalysed phosphorylation. The direct binding of calmodulin to synapsin I suggests a second mode of regulation in addition to phosphorylation. In this study, we present evidence indicating that two sites for calmodulin binding exist in the N-terminal head region of synapsins Ia and Ib. In unphosphorylated synapsin I, these sites had a Kd value of = 36 +/- 14 nM for binding to calmodulin labelled with acetyl-N'-(5-sulpho-1-naphthyl)ethylene diamine. The Kd values for synapsin I phosphorylated at various sites were as follows: site I 18 +/- 11 nM; sites II and III 35 +/- 14 nM; sites I-III 16 +/- 9 nM. The fluorescence data indicated a stoichiometry of not less than 2 mol calmodulin bound to 1 mol synapsin I at saturation in each case. Consistent with this stoichiometry, two chemically cross-linked species (96 kDa and 116 kDa) containing calmodulin and synapsin I were generated in vitro, corresponding to one and two calmodulin molecules bound/synapsin I. Defined fragments of synapsin I were generated with the reagent 2-nitro-5-thiocyanobenzoic acid, which cleaves at cysteine residues. Cysteine-specific cleavage of whole synapsin I after cross-linking to biotinylated calmodulin generated a pair of polypeptide complexes (approximately 46 kDa and 38 kDa), the masses of which indicated cross-linking of calmodulin to the N-terminal and middle regions of synapsin I. Purified N-terminal and middle fragments each showed a Ca(2+)-dependent interaction with calmodulin affinity columns. Two calmodulin-binding fragments (7.4 kDa and 6.5 kDa) were generated using Staphylococcus aureus V8 protease digestion of synapsin I. These fragments were isolated by calmodulin affinity chromatography and reverse-phase HPLC. N-terminal sequence analysis indicated that each was contained within one of the 2-nitro-5-thiocyanobenzoic-acid-derived calmodulin-binding fragments.(ABSTRACT TRUNCATED AT 400 WORDS)
Article
This chapter describes methods for the detection and initial analysis of O-linked N-acetylglucosamine (O-GlcNAc) on proteins. Although the galactosyltransferase/UDP[3H]galactose probe method is highly specific it requires amounts of protein in the low microgram range. The chapter also describes a coupled transcription/translation/lectin chromatography method for the detection of O-GIcNAc on low-abundance proteins for which a cDNA is available. This method relies on the observation that the reticulocyte lysates commonly used for in vitro translation already contain sufficient sugar nucleotide and O-GIcNAc transferases to glycosylate the translation products efficiently. Because O-GIcNAc is virtually the only GlcNAc-containing molecule in the cytoplasmic or nuclear cellular compartments, metabolic radiolabeling with [3H]glucosamine, in conjunction with subcellular fractionation, is also a useful method for identifying O-GlcNAc-bearing proteins. Galactosyltransferase is a specific and sensitive probe frequently used in the detection of O-GlcNAc on cytoplasmic and nuclear proteins. The radiolabeled products are then analyzed to determine saccharide linkage (O- or N-linkage) and structure. In some cases, this method is sensitive enough to detect O-GIcNAc in the subpicomole range.