James R Woodgett

James R Woodgett
Mount Sinai Hospital, Toronto · Lunenfeld-Tanenbaum Research Institute (LTRI)

B.Sc., Ph.D.

About

411
Publications
89,006
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
57,115
Citations
Citations since 2017
37 Research Items
11526 Citations
201720182019202020212022202305001,0001,5002,000
201720182019202020212022202305001,0001,5002,000
201720182019202020212022202305001,0001,5002,000
201720182019202020212022202305001,0001,5002,000
Introduction
Senior Scientist at the Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, working on signalling pathways in general but focused on the roles of GSK-3 in a variety of physiological contexts as well as other protein kinases implicated in diabetes, cancer and physiatrics disorders.
Additional affiliations
November 2005 - February 2021
Mount Sinai Hospital, Toronto
Position
  • Senior Researcher
Description
  • Director of Research 2005-2021, Senior Scientist 2021-
November 1992 - present
University of Toronto
November 1992 - October 2005
University Health Network

Publications

Publications (411)
Article
Functional differentiation of the two isoforms of the protein-serine/threonine kinase, glycogen synthase kinase-3 (GSK-3), is an unsettled area of research. The isoforms are highly similar in structure and are largely redundant, though there is also evidence for specific roles. Identification of isoform-specific protein interactors may elucidate th...
Article
BACKGROUND Heart failure is the leading cause of mortality, morbidity, and health care expenditures worldwide. Numerous studies have implicated GSK-3 (glycogen synthase kinase-3) as a promising therapeutic target for cardiovascular diseases. GSK-3 isoforms seem to play overlapping, unique and even opposing functions in the heart. Previously, we hav...
Article
Full-text available
Glycogen synthase kinase-3 (GSK3) mediates phosphorylation of several hundred proteins, and its aberrant activity is associated with an array of prevalent disorders. The two paralogs, GSK3α and GSK3β, are expressed ubiquitously and fulfill common as well as unique tasks throughout the body. In the CNS, it is established that GSK3 is involved in syn...
Article
Background Glycogen synthase kinase-3 (GSK-3) inhibitors are considered to activate Wnt/β-catenin, which remains a controversial topic in melanoma treatment. Objective Here, we have developed Pym-5, an attractive GSK-3 inhibitor. Using Pym-5 as a chemical tool to probe the GSK-3 biology, we aimed to investigate the potential of GSK-3 inhibition as...
Article
Full-text available
Cardiomyopathy is an irreparable loss and novel strategies are needed to induce resident cardiac progenitor cell (CPC) proliferation in situ to enhance the possibility of cardiac regeneration. Here, we sought to identify the potential roles of glycogen synthase kinase-3β (GSK-3β), a critical regulator of cell proliferation and differentiation, in C...
Conference Paper
The cardiomyocytes are terminally differentiated cells and ischemia-induced cardiomyopathy is an irreparable loss. Novel strategies are needed to induce resident cardiac progenitor cells (CPCs) proliferation in situ to enhance the possibility of cardiac regeneration. Here we sought to identify a potential role for glycogen synthase kinase-3β (GSK-3...
Preprint
Full-text available
Cardiomyopathy is an irreparable loss and novel strategies are needed to induce resident cardiac progenitor cell (CPC) proliferation in situ to enhance the possibility of cardiac regeneration. Here we identify a potential role for glycogen synthase kinase-3β (GSK-3β), a critical regulator of cell proliferation and differentiation, in CPC proliferat...
Article
p62/SQSTM1 is a multifunctional, cytoplasmic protein with fundamental roles in autophagy and antioxidant responses. Here we showed that p62 translocated from the cytoplasm to the nucleus in nigral dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid (MPTP)-induced mouse model of Parkinson’s disease (PD). We found that p62 was physica...
Article
Full-text available
Glycogen synthase kinase (GSK) 3 acts to negatively regulate multiple signaling pathways, including canonical Wnt signaling. The two mammalian GSK3 proteins (alpha and beta) are at least partially redundant. While Gsk3a KO mice are viable and display a metabolic phenotype, abnormal neuronal development, and accelerated aging, Gsk3b KO animals die l...
Article
Acute kidney injury (AKI) is characterized by injury to the tubular epithelium that leads to the sudden loss of renal function. Proper tubular regeneration is essential to prevent progression to chronic kidney disease. In this study, we examined the role of FoxM1, a forkhead box family member transcription factor in tubular repair after AKI. Renal...
Article
Full-text available
Glycogen synthase kinase-3 (GSK-3) dysregulation has been implicated in nigral dopaminergic neurodegeneration, one of the main pathological features of Parkinson’s disease (PD). The two isoforms, GSK-3α and GSK-3β, have both been suggested to play a detrimental role in neuronal death. To date, several studies have focused on the role of GSK-3β on P...
Preprint
Glycogen synthase kinase (GSK) 3 acts to negatively regulate multiple signaling pathways, including canonical Wnt signaling. The two mammalian GSK3 proteins (alpha and beta) are at least partially redundant. While Gsk3a KO mice are viable and display a metabolic phenotype, abnormal neuronal development and accelerated aging, Gsk3b KO animals die la...
Article
Full-text available
Glycogen synthase kinase-3 (GSK-3) is a widely expressed serine/threonine kinase regulates a variety of cellular processes including proliferation, differentiation and death. Mammals harbor two structurally similar isoforms GSK-3α and β that have overlapping as well as unique functions. Of the two, GSK-3β has been studied (and reviewed) in far grea...
Article
Full-text available
Triple-negative breast cancer (TNBC) has been subdivided into six distinct subgroups: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem–like (MSL), immunomodulatory (IM), and luminal androgen receptor (LAR). We recently identified a subgroup of TNBC with loss of the tumor suppressor PTEN and five specific microRNAs that exhi...
Preprint
Full-text available
Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed serine/threonine kinase, that exists as two isoforms in mammals, GSK-3α and GSK-3β, that are key downstream mediators of the phosphatidylinositol 3′ kinase, Wnt, Notch and other pathways. Here, we report that simultaneous inactivation of both GSK-3α and GSK-3β during early thymocyte ont...
Article
Abstract Podocytes are key cells in maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Glycogen synthase kinase 3 (GSK3) is a multi‐functional serine/threonine kinase existing as two distinct but related isoforms (α and β). In the podocyte it has previously been reported that inhibition of the β isoform is be...
Article
The strength of the scientific process is its immunity from human frailties. The built-in error correction and robustness of principles protect and nurture truth, despite both intended and unintended errors and naivety. What it doesn't secure is understanding of how the scientific sausage is made. Here, a scientific journey revolving around a singl...
Article
Chronic pressure-overload (PO)- induced cardiomyopathy is one of the leading causes of left ventricular (LV) remodeling and heart failure. The role of the α isoform of glycogen synthase kinase-3 (GSK-3α) in PO-induced cardiac remodeling is unclear and its downstream molecular targets are largely unknown. To investigate the potential roles of GSK-3α...
Preprint
Full-text available
Stabilized β-catenin expression is a well described initiator of mammary tumorigenesis in the mouse and elevated nuclear expression of this protein has been observed in human triple-negative tumor samples. However, the importance of stabilized β-catenin to continued tumor growth after initiation, and in the context of other driver mutations, has ye...
Article
Full-text available
Background Triple-negative breast cancer (TNBC) represents a heterogeneous group of ER- and HER2-negative tumors with poor clinical outcome. We recently reported that Pten-loss cooperates with low expression of microRNA-145 to induce aggressive TNBC-like lesions in mice. To systematically identify microRNAs that cooperate with PTEN-loss to induce a...
Article
Full-text available
Albuminuria affects millions of people, and is an independent risk factor for kidney failure, cardiovascular morbidity and death. The key cell that prevents albuminuria is the terminally differentiated glomerular podocyte. Here we report the evolutionary importance of the enzyme Glycogen Synthase Kinase 3 (GSK3) for maintaining podocyte function in...
Article
Full-text available
Danshen, the dried root of Salvia miltiorrhiza , one of the most investigated medicinal plants with well-defined phytochemical constituents, has shown prominent clinical outcomes for antioxidant, anti-inflammatory, and anticoagulant activities to attain vascular protection and additional benefits for cancer therapy. More recently, activation of neu...
Article
Full-text available
Stabilized β-catenin expression is a well described initiator of mammary tumorigenesis in the mouse and elevated nuclear expression has been observed in human triple-negative tumor samples. However, the importance of stabilized β-catenin to continued tumor growth after initiation, and in the context of other driver mutations, has yet to be elucidat...
Article
While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is...
Article
GTPase of immunity-associated protein 5 (Gimap5) has been linked with lymphocyte survival, autoimmunity and colitis, but its mechanisms of action are unclear. Here we show that Gimap5 is essential for inactivation of glycogen synthase kinase-3β (GSK3β) following T cell activation. In the absence of Gimap5, constitutive GSK3β activity constrains c-M...
Article
Full-text available
CDK4/6 inhibitors are effective against cancer cells expressing the tumor suppressor RB1, but not RB1-deficient cells, posing the challenge of how to target RB1 loss. In triple-negative breast cancer (TNBC), RB1 and PTEN are frequently inactivated together with TP53. We performed kinome/phosphatase inhibitor screens on primary mouse Rb/p53-, Pten/p...
Article
While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is...
Article
Full-text available
GTPase of immunity-associated protein 5 (Gimap5) is linked with lymphocyte survival, autoimmunity, and colitis, but its mechanisms of action are unclear. Here, we show that Gimap5 is essential for the inactivation of glycogen synthase kinase-3β (GSK3β) following T cell activation. In the absence of Gimap5, constitutive GSK3β activity constrains c-M...
Article
Full-text available
Glycogen synthase kinase 3 (GSK3) is a highly conserved protein kinase regulating key cellular functions. Its two isoforms, GSK3α and GSK3β, are encoded by distinct genes. In most tissues the two isoforms are functionally interchangeable, except in the developing embryo where GSK3β is essential. One functional allele of either of the two isoforms i...
Article
The decision between T cell activation and tolerance is governed by the spatial and temporal integration of diverse molecular signals and events occurring downstream of TCR and costimulatory or coinhibitory receptor engagement. The PI3K-protein kinase B (PKB; also known as Akt) signaling pathway is a central axis in mediating proximal signaling eve...
Article
Previous studies had shown that xanthatin, a natural xanthanolide sesquiterpene lactone, could induce mitotic arrest and apoptosis in non-small cell lung cancer (NSCLC) cells. Here, we examined whether the DNA damage response (DDR) could be a primary cytotoxic event underlying xanthatin-mediated anti-tumor activity. Using EdU incorporation assay in...
Article
Full-text available
Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed protein kinase that sits at the nexus of multiple signaling pathways. Its deep integration into cellular control circuits is consummate to its implication in diseases ranging from mood disorders to diabetes to neurodegenerative diseases and cancers. The selectivity and insulation of suc...
Article
Full-text available
B cells predominate in a quiescent state until an antigen is encountered, which results in rapid growth, proliferation and differentiation of the B cells. These distinct cell states are probably accompanied by differing metabolic needs, yet little is known about the metabolic control of B cell fate. Here we show that glycogen synthase kinase 3 (Gsk...
Article
Full-text available
The prion protein (PrP) evolved from the subbranch of ZIP metal ion transporters comprising ZIPs 5, 6 and 10, raising the prospect that the study of these ZIPs may reveal insights relevant for understanding the function of PrP. Building on data which suggested PrP and ZIP6 are critical during epithelial-to-mesenchymal transition (EMT), we investiga...
Chapter
Glycogen synthase kinase-3 (GSK-3) is an unusual protein-serine kinase in that it is primarily regulated by inhibition and lies downstream of multiple cell signaling pathways. This raises a variety of questions in terms of its physiological role(s), how signaling specificity is maintained and why so many eggs have been placed into one basket. There...
Article
Emerging evidence has shown that GSK3β plays oncogenic roles in multiple tumour types; however, the underlying mechanisms remain largely unknown. Here, we show that nuclear GSK3β is responsible for the accumulation of the histone demethylase KDM1A and critically regulates histone H3K4 methylation during tumorigenesis. GSK3β phosphorylates KDM1A Ser...
Article
Chronic pressure-overload (PO) induced-dilated cardiomyopathy (DCM) is one of the leading causes of left ventricular (LV) remodeling and heart failure. The role of glycogen synthase kinase-3α (GSK-3α) in PO-induced remodeling is not clear and existing dataset with global transgenic and knockout (KO) models show opposing roles. We sought to identify...
Chapter
By catalysing reversible phosphorylation of their substrates, protein kinases play pleiotropic roles in cells and act as predominant arbiters in the coordination of cellular responses to their environment. Despite large variation in biological functions between kinases, there is great structural conservation across the human kinome. Besides structu...
Article
Xanthatin, a xanthanolide sesquiterpene lactone isolated from Xanthium strumarium L. (Asteraceae), has prominent anti-tumor activity. Initial mechanism of action studies suggested xanthatin triggered activation of Wnt/β-catenin. We examined the effects of xanthatin on signaling pathways in A459 lung cancer cells and mouse embryonic fibroblasts to a...
Article
Full-text available
Rationale: Cardiac myocyte-specific deletion of either Glycogen Synthase Kinase (GSK)3A or GSK3B leads to cardiac protection following myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration due to the fact that all GSK-3-targeted drugs including the drugs already in c...
Article
Background: Polymorphisms in human GIMAP5 have been associated with auto-immune/inflammatory diseases, while in mice loss of Gimap5 causes impaired T cell survival/proliferation and severe early onset CD4+ T cell dependent colitis. The latter was associated with an abnormal Treg/Th17 balance. Despite the important role of Gimap5 in T cell survival...
Article
The Heat Shock Protein 90 (HSP90)-Cell Division Cycle 37 (CDC37) chaperones are key regulators of protein kinase folding and maturation. Recent evidence suggests thermodynamic properties of kinases, rather than primary sequences, are recognized by the chaperones. In concordance, we observed a striking difference in HSP90-binding between wild-type (...
Chapter
This chapter initially describes the subclasses of protein kinases, provides examples of their roles in disease, and discusses methods for their characterization and functional assignments. It exemplifies the role of key protein kinases in the pathophysiology of two of the chronic diseases that affect tens of millions of people worldwide: Alzheimer...
Article
Full-text available
Breast cancer (BC) is associated with alterations in a number of growth factor and hormone-regulated signaling pathways. Mouse models of metastatic BC typically feature mutated oncoproteins that activate PI3K, Stat3, and Ras signaling, but the individual and combined roles of these pathways in BC progression are poorly understood. In this study, we...
Article
Induction of an antiviral innate immune response relies on pattern-recognition receptors including RIG-I like Receptors (RLR) to detect invading pathogens resulting in activation of multiple latent transcription factors, including Interferon Regulatory Factor 3 (IRF3). Upon sensing of viral RNA and DNA, IRF3 is phosphorylated and recruits coactivat...
Article
Full-text available
Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end-stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein k...
Article
Full-text available
In mammals, glycogen synthase kinase 3 (GSK3) comprises GSK3α and GSK3β isoforms. GSK3β has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin -mediated water permeability of collecting ducts, while the role of GSK3α has yet to be discerned. To investigate the role of GSK3α in urine concentration, we...
Article
Glycogen synthase kinase-3 (GSK-3) is one of the few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in several diseases including heart failure, bipolar disorder, diabetes mellitus, Alzheimer disease, aging, inflammation, and cancer. Furthermore, a recent clinical tr...
Article
For those that view cellular signaling as a tangled mass of cooked spaghetti, a guidebook that introduces shared principles, highlights typical behaviors, and provides clear examples of the uses for these critical pathways should be invaluable. This book provides all of that and more. But it also, perhaps inadvertently, highlights overly reductioni...
Article
Full-text available
The capacity of embryonic stem (ES) cells to differentiate into cell lineages comprising the three germ layers makes them powerful tools for studying mammalian early embryonic development in vitro. The human body consists of approximately 210 different somatic cell types, the majority of which have limited proliferative capacity. However, both stem...
Article
Rapid and lucid communication of science has never been more important. Coincidentally, powerful social media platforms allow scientists to engage with each other and with the public. Effective use of these tools can help both accelerate science and improve its appreciation.
Article
Full-text available
Balanced control of neural progenitor maintenance and neuron production is crucial in establishing functional neural circuits during brain development, and abnormalities in this process are implicated in many neurological diseases. However, the regulatory mechanisms of neural progenitor homeostasis remain poorly understood. Here, we show that mamma...
Article
Full-text available
Many components of the Wnt/β-catenin signaling pathway have critical functions in mammary gland development and tumor formation, yet the contribution of glycogen synthase kinase-3 (GSK-3α and GSK-3β) to mammopoiesis and oncogenesis is unclear. Here, we report that WAP-Cre-mediated deletion of GSK-3 in the mammary epithelium results in activation of...
Article
Full-text available
Background Injury due to myocardial infarction (MI) is largely irreversible. Once an infarct has occurred, the clinical goal becomes limiting remodeling, preserving left ventricular function, and preventing heart failure. Although traditional approaches (e.g., β-blockers) partially preserve left ventricular function, novel strategies are needed to...
Preprint
Many components of Wnt/β-catenin signaling pathway have critical functions in mammary gland development and tumor formation, yet the contribution of glycogen synthase kinase-3 (GSK-3α and GSK-3β) to mammopoiesis and oncogenesis is unclear. Here, we report that WAP-Cre-mediated deletion of GSK-3 in the mammary epithelium results in activation of Wnt...
Article
Full-text available
Background In the adult central nervous system, axonal regeneration is abortive. Regulators of microtubule dynamics have emerged as attractive targets to promote axonal growth following injury as microtubule organization is pivotal for growth cone formation. In this study, we used conditioned neurons with high regenerative capacity to further disse...
Article
BACKGROUND:-Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. Following MI, activated cardiac fibroblasts (CFs) deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate and new molecular targets are needed. METHODS AND RE...
Article
Full-text available
Neural stem cells (NSCs) can be obtained from a variety of sources, but not all NSCs exhibit the same characteristics. We have examined how the level of glycogen synthase kinase-3 activity regulates NSCs obtained from different sources: the mouse embryonic striatum, embryonic hippocampus, and mouse ES cells. Growth of striatal NSCs is enhanced by m...
Article
Full-text available
Glycogen synthase kinase 3 beta (GSK-3β) is an essential negative regulator or "brake" on many anabolic-signalling pathways including Wnt and insulin. Global deletion of GSK-3β results in perinatal lethality and various skeletal defects. The goal of our research was to determine GSK-3β cell-autonomous effects and postnatal roles in the skeleton. We...
Article
Full-text available
Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the CNS, for which only limited therapeutic interventions are available. Because MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the current study, we tested whether inhibitors of gly...