Article

Antimetastatic potential of PAI-1-specific RNA aptamers

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The serine protease inhibitor plasminogen activator inhibitor-1 (PAI-1) is increased in several cancers, including breast, where it is associated with a poor outcome. Metastatic breast cancer has a dismal prognosis, as evidenced by treatment goals that are no longer curative but are largely palliative in nature. PAI-1 competes with integrins and the urokinase plasminogen activator receptor on the surface of breast cancer cells for binding to vitronectin. This results in the detachment of tumor cells from the extracellular matrix, which is critical to the metastatic process. For this reason, we sought to isolate RNA aptamers that disrupt the interaction between PAI-1 and vitronectin. Through utilization of combinatorial chemistry techniques, aptamers have been selected that bind to PAI-1 with high affinity and specificity. We identified two aptamers, WT-15 and SM-20, that disrupt the interactions between PAI-1 and heparin, as well as PAI-1 and vitronectin, without affecting the antiprotease activity of PAI-1. Furthermore, SM-20 prevented the detachment of breast cancer cells (MDA-MB-231) from vitronectin in the presence of PAI-1, resulting in an increase in cellular adhesion. Therefore, the PAI-1 aptamer SM-20 demonstrates therapeutic potential as an antimetastatic agent and could possibly be used as an adjuvant to traditional chemotherapy for breast cancer.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Blake et al. developed two aptamers, SM-20 and WT-15, which bind PAI-1 with high specificity and affinity. Both aptamers inhibited the PAI-1 interactions with heparin and vitronectin, but neither aptamer disrupted the PAI-1 antiprotease activity [109]. SM-20 increased cellular adhesion in breast cancer cells by limiting vitronectin detachment from breast cancer cells in the presence of PAI-1 [109]. ...
... Both aptamers inhibited the PAI-1 interactions with heparin and vitronectin, but neither aptamer disrupted the PAI-1 antiprotease activity [109]. SM-20 increased cellular adhesion in breast cancer cells by limiting vitronectin detachment from breast cancer cells in the presence of PAI-1 [109]. These results suggested that SM-20 is a promising antimetastatic agent that could be used to treat breast cancer patients [109]. ...
... SM-20 increased cellular adhesion in breast cancer cells by limiting vitronectin detachment from breast cancer cells in the presence of PAI-1 [109]. These results suggested that SM-20 is a promising antimetastatic agent that could be used to treat breast cancer patients [109]. These two aptamers prevented PAI-1 from inhibiting the migration of endothelial and smooth muscle cells, suggesting that they may limit the adverse effects of increased PAI-1 on vascular disease pathogenesis [110]. ...
Article
Full-text available
Aptamers are single-stranded DNA or RNA sequences that bind target molecules with high specificity and affinity. Aptamers exhibit several notable advantages over protein-based therapeutics. Aptamers are non-immunogenic, easier to synthesize and modify, and can bind targets with greater affinity. Due to these benefits, aptamers are considered a promising therapeutic candidate to treat various conditions, including hematological disorders and cancer. An active area of research involves developing aptamers to target blood coagulation factors. These aptamers have the potential to treat cardiovascular diseases, blood disorders, and cancers. Although no aptamers targeting blood coagulation factors have been approved for clinical use, several aptamers have been evaluated in clinical trials and many more have demonstrated encouraging preclinical results. This review summarized our knowledge of the aptamers targeting proteins involved in coagulation, anticoagulation, fibrinolysis, their extensive applications as therapeutics and diagnostics tools, and the challenges they face for advancing to clinical use.
... Aptamers have been developed to a variety of proteins including growth factors, receptor proteins, coagulation proteins, viruses, and many more [17][18][19]. We and others recently developed RNA molecules to PAI-1 to combat its activity by disrupting its ability to associate with vitronectin [20,21]. Additionally, these aptamers altered cell migration, adhesion and angiogenesis when administered exogenously [22]. ...
... The RNA aptamers (WT15, SM20, and Sel 2) were transcribed as detailed previously (20). The cDNAs were transcribed to RNA using a DuraScribe T7 transcription kit (Epicenter Biotechnologies, Madison WI). ...
... The pre amplification step was performed at 94°C for 5 minutes and the post-amplification step was at 72°C for 5 minutes. The RNA expression of the aptamers were determined by using the primers to the 'fixed' regions of the aptamers [20]. ...
Article
Full-text available
Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential.
... We chose thrombin and ApoE in order to compare the affinity of our aptamers to previously published aptamers for these targets [20][21][22] . PAI-1 and 4-1BB were chosen because, although RNA aptamer have been reported [23,24] revious attempts at generating natural DNA aptamers for these proteins via SELEX were unsuccessful and ultimately required the use of chemically modified bases [8,23,24] , suggesting that natural DNA may lack the chemical and/or structural diversity to yield useful aptamers for these two proteins. ...
... We chose thrombin and ApoE in order to compare the affinity of our aptamers to previously published aptamers for these targets [20][21][22] . PAI-1 and 4-1BB were chosen because, although RNA aptamer have been reported [23,24] revious attempts at generating natural DNA aptamers for these proteins via SELEX were unsuccessful and ultimately required the use of chemically modified bases [8,23,24] , suggesting that natural DNA may lack the chemical and/or structural diversity to yield useful aptamers for these two proteins. ...
Article
We report an aptamer discovery technology that reproducibly yields higher affinity aptamers in fewer rounds compared to conventional selection. Our method (termed particle display) transforms libraries of solution-phase aptamers into aptamer particles, each displaying many copies of a single sequence on its surface. We then use fluorescence-activated cell sorting (FACS) to individually measure the relative affinities of >10(8) aptamer particles and sort them in a high-throughput manner. Through mathematical analysis, we identified experimental parameters that enable optimal screening, and demonstrate enrichment performance that exceeds the theoretical maximum achievable with conventional selection by many orders of magnitude. We used particle display to obtain high-affinity DNA aptamers for four different protein targets in three rounds, including proteins for which previous DNA aptamer selection efforts have been unsuccessful. We believe particle display offers an extraordinarily efficient mechanism for generating high-quality aptamers in a rapid and economic manner, towards accelerated exploration of the human proteome.
... Nuclease-resistant 2'-fluorpyrimidines RNA aptamers against human wild type PAI-1 and a stable mutated PAI-1, were selected by SELEX and named WT-15 and SM-20, respectively. The SM-20, was able to restore breast cancer cell adhesion by about 90% [126] and did not modify PAI-1 function in fibrinolysis and opening new potential clinical applications. Finally, two other 2'-fluorpyrimidines RNA aptamers, selected to inhibit vitronectin binding, are candidates for pharmacological intervention on PAI-1 modulation: one recognizes the native PAI-1, the other recognizes both the native and denatured form of PAI-1 [127]. ...
... ANG9-4 stimulates HUVEC apoptosis, and ANG9-4 could be a tool for blocking tumor growth, angiogenesis and metastasis. A pegylated RNA ap- RET D4 pheochromocytoma [6,123] PAI-1 WT-15; SM-20 breast cancer [126] PDGF-B AX102 ovarian cancer [129,130] v 3 integrin Aptv 3 anti-angiogenetic [132] Ang1 ANG9-4 anti-angiogenetic [133] Ang2 ND colonadenocarcinoma [134] CD44 TAs potentially in carcinomas, stem cells Stem cell marker [25,136,137] OPN OPN-R3 breast cancer [139,140] TLR9 CPG 7909; IMO 2055 leukemia; carcinomas [141,142] p68 RNA helicase RNA14-16 colonrectal tumor [143] high metastatic cells E37; E10 potentially for metastasis [146] GSH GSHapt5.39; GSHaptclass-I breast cancer [147] Ku protein SC4 breast cancer [148] hnRNP A1 BC15 breast, cervix, colon and lung cancers [11] NF-kB A-p50 lung,cervix cancers [150,151] eEF1A GTn haematologic and solid cancers [156,[158][159][160] PTP1B ND potentially for cancers [153] KRAS V12 ND potentially for cancers [154] tamer for angiopoietin-2 (Ang2) inhibits Tie2 phosphorylation in CT26 murine colon adenocarcinoma cells and reduces by 50% the tumor angiogenesis and growth in mice bearing CT26 colon adenocarcinoma xenografts [134]. ...
Article
Full-text available
Aptamer researches applied to the treatment of human cancers have increased since their discovery in 1990. This is due to different factors including: 1) the technical possibility to select, by SELEX-based procedures, specific aptamers targeting virtually any given molecule, 2) the aptamer favorable bio-activity in vivo, 3) the low production costs and 4) the ease synthesis and storage for the marketing. In the field of cancer treatments, aptamers have been studied as tumor-specific agents driving drugs into cancer cells; additionally they have been used as anti-neoplastic agents, able to inhibit tumor cell growth and dissemination when administered alone or in combination with conventional anti-neoplastic drugs. Aptamers are gaining an increased interest for pharmaceutical companies and some of them are under clinical evaluation trials. In this review we update the findings about the use of aptamers as "escort" molecules able to drive drugs into the cells and as antineoplastic drugs. Current anti-neoplastic treatments suffer from the intrinsic toxicity related to the un-specific targeting of both normal and tumorigenic proliferating cells. The aptamers could be useful to improve: 1) the selective targeting of molecules essential for the viability and expansion of tumor cells and/or the selective driving of chemotherapies into tumor cells, thus resulting in higher effectiveness and lower systemic side-effects compared to conventional anti-neoplastic drugs alone and 2) to improve the therapeutic index of currently used chemotherapies. Even if some problems related to the in vivo stability and pharmacokinetic/dynamics of aptamers remain to be improved, their potential use in the treatment of different human cancers is getting closer and closer to a practical therapeutic use.
... Aptamers in the past few decades have struggled to find their therapeutic niche and distinguish themselves from antibodies, small molecules, and other classes of therapeutics 28,29 . However, the ease with which oligonucleotides can be chemically conjugated to small molecules and the ability of aptamers to selectively bind surfaces of enzymes such as exosites [18][19][20][30][31][32][33][34][35][36][37][38][39] makes them particularly suitable for this type of rational drug design. Notably, although in HD22-7A-DAB the aptamer binds to the exosite II of thrombin, in theory, any aptamer which binds outside of enzyme's catalytical center can be utilized to develop an effective EXACT inhibitor. ...
Article
Full-text available
Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor’s selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.
... In another refinement, the mutated but active form of protein, in place of cells, was used to overcome the difficulties of protein-based aptamers in targeting biomarkers in their native conformations in cells. WT15 and SM20 are two aptamers [46] synthesized against the wild-type Plasminogen activator inhibitor-1 (PAI-1), and its mutated version having native conformations. The resultant aptamers were highly specific for the PAI-1 in its wild form. ...
... RNA aptamers are single-stranded nucleic acids that can tightly bind to specific targets and are used for various diagnostic and therapeutic applications [131]. By using combinatorial chemistry techniques, Blake et al. identified the RNA aptamers SM-20 and WT-15 that bind to PAI-1 with high affinity and specificity and thereby disrupt the interaction of PAI-1 with vitronectin and heparin [132]. The disruption in the PAI-1vitronectin interaction shows anti-metastatic potential. ...
Article
Full-text available
Fibrinolysis is a crucial physiological process that helps to maintain a hemostatic balance by counteracting excessive thrombosis. The components of the fibrinolytic system are well established and are associated with a wide array of physiological and pathophysiological processes. The aberrant expression of several components, especially urokinase-type plasminogen activator (uPA), its cognate receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), has shown a direct correlation with increased tumor growth, invasiveness, and metastasis. As a result, targeting the fibrinolytic system has been of great interest in the field of cancer biology. Even though there is a plethora of encouraging preclinical evidence on the potential therapeutic benefits of targeting the key oncogenic components of the fibrinolytic system, none of them made it from “bench to bedside” due to a limited number of clinical trials on them. This review summarizes our existing understanding of the various diagnostic and therapeutic strategies targeting the fibrinolytic system during cancer.
... In this respect, a few RNA aptamers have been developed in order to interfere with the interactions between PAI-1 and its binding partners. WT-15 and SM-20 are able to disrupt the functional interaction between vitronectin and PAI-1 without compromising the PA-inhibitory function of PAI-1 (211). Expression of these aptamers in human breast cancer cells decreased cell migration and invasion and additionally decreased PAI-1 and uPA levels while increasing the stable PAI-1/uPA complex (212). ...
Article
Full-text available
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) superfamily with antiprotease activity, is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being crucially involved in fibrinolysis and wound healing, PAI-1 plays a pivotal role in various acute and chronic pathophysiological processes, including cardiovascular disease, tissue fibrosis, cancer, and age-related diseases. In the prospect of treating the broad range of PAI-1-related pathologies, many efforts have been devoted to developing PAI-1 inhibitors. The use of these inhibitors, including low molecular weight molecules, peptides, antibodies, and antibody fragments, in various animal disease models has provided ample evidence of their beneficial effect in vivo and moved forward some of these inhibitors in clinical trials. However, none of these inhibitors is currently approved for therapeutic use in humans, mainly due to selectivity and toxicity issues. Furthermore, the conformational plasticity of PAI-1, which is unique among serpins, poses a real challenge in the identification and development of PAI-1 inhibitors. This review will provide an overview of the structural insights into PAI-1 functionality and modulation thereof and will highlight diverse approaches to inhibit PAI-1 activity.
... This approach takes the idea of hybrid-SELEX but utilizes stably mutated active forms of the protein rather than cells during selection and has been shown to be effective in generating aptamers highly specific for proteins both in native and non-native forms. Examples of aptamers generated by this modified version of protein-targeting SELEX are the aptamers WT15 and SM20 (Blake et al., 2009), which were generated to target the plasminogen activator inhibitor-1 (PAI-1) wild type protein, or a stably mutated version of PAI-1 which maintains the protein in its active conformation, respectively. Utilizing two separate selections against wild type PAI-1 and the stably mutated version of PAI-1, the aptamers generated from both selections were shown to be highly specific for the wild type version of the protein. ...
Article
Full-text available
Despite major advances, cancer remains one of the largest burdens of disease worldwide. One reason behind this is that killing tumor cells without affecting healthy surrounding tissue remains a largely elusive prospect, despite the widespread availability of cytotoxic chemotherapeutic agents. To meet these modern healthcare requirements, it is essential to develop precision therapeutics that minimise off-target side-effects for various cancer types. To this end, highly specific molecular targeting agents against cancer are of great interest. These agents may work by targeting intracellular signalling pathways following receptor binding, or via internalization and targeting to specific subcellular compartments. DNA aptamers represent a promising molecular tool in this arena that can be used for both specific cell surface targeting and subsequent internalization and can also elicit a functional effect upon internalization. This review examines various cancer targeting cell-internalizing aptamers, with a particular focus towards functional aptamers that do not require additional conjugation to nanoparticles or small molecules to elicit a biological response. With a deeper understanding and precise exploitation of cancer specific molecular pathways, functional intracellular DNA aptamers may be a powerful step towards more widespread development of precision therapeutics.
... PAI-1 competes with integrins and uPAR on the surface of breast cancer cells for binding to VN causing detachment of cells from the ECM, which is critical to the metastatic process. With the intent to block the interaction between PAI-1 and VN, 2 F-Py RNA aptamers were isolated against PAI-1 that prevented the detachment of MDA-MB-231 cells from VN in the presence of PAI-1, resulting in an increase in cellular adhesion [130]. Later, the feasibility to express functional aptamers inside TNBC and endothelial cells by transfection of PAI-1 specific aptamers was demonstrated [131]. ...
Article
Full-text available
Compared to other breast cancers, triple-negative breast cancer (TNBC) usually affects younger patients, is larger in size, of higher grade and is biologically more aggressive. To date, conventional cytotoxic chemotherapy remains the only available treatment for TNBC because it lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2), and no alternative targetable molecules have been identified so far. The high biological and clinical heterogeneity adds a further challenge to TNBC management and requires the identification of new biomarkers to improve detection by imaging, thus allowing the specific treatment of each individual TNBC subtype. The Systematic Evolution of Ligands by EXponential enrichment (SELEX) technique holds great promise to the search for novel targetable biomarkers, and aptamer-based molecular approaches have the potential to overcome obstacles of current imaging and therapy modalities. In this review, we highlight recent advances in oligonucleotide aptamers used as imaging and/or therapeutic agents in TNBC, discussing the potential options to discover, image and hit new actionable targets in TNBC.
... Targeting PAi-1 Using RNA Aptamers and Peptide inhibitors RNA aptamers are oligonucleotides that are capable of folding into complex structures and then bind to various macromolecules with high affinity and selectivity (250). Two RNA aptamers WT-15 and SM-20 have been shown to disrupt the PAI-1 and vitronectin interaction without causing any effect on the ability of PAI-1 to inhibit uPA (251). It has been shown that the vitronectin and PAI-1 interaction promotes metastasis by causing the detachment of tumor cells from the ECM (252). ...
Article
Full-text available
The plasminogen activator (PA) system is an extracellular proteolytic enzyme system associated with various physiological and pathophysiological processes. A large body of evidence support that among the various components of the PA system, urokinase-type plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitor-1 and -2 (PAI-1 and PAI-2) play a major role in tumor progression and metastasis. The binding of uPA with uPAR is instrumental for the activation of plasminogen to plasmin, which in turn initiates a series of proteolytic cascade to degrade the components of the extracellular matrix, and thereby, cause tumor cell migration from the primary site of origin to a distant secondary organ. The components of the PA system show altered expression patterns in several common malignancies, which have identified them as ideal diagnostic, prognostic, and therapeutic targets to reduce cancer-associated morbidity and mortality. This review summarizes the various components of the PA system and focuses on the role of uPA–uPAR in different biological processes especially in the context of malignancy. We also discuss the current state of knowledge of uPA–uPAR-targeted diagnostic and therapeutic strategies for various malignancies.
... In blood, PAI-1 occurs in two main active and latent forms. The latent PAI-1 is functionally inactive whilst the active PAI-1 efficiently suppresses target proteases (Blake et al., 2009). All serpins are made of 400 residues with a molecular weight of 38 to 70 kDa (reliant on glycosylation levels). ...
Article
Discovery of biosensors has acquired utmost importance in the field of healthcare. Recent advances in biological techniques and instrumentation involving nanomaterials, surface plasmon resonance, and aptasensors have developed innovative biosensors over classical methods. Integrated approaches provided a better perspective for developing specific and sensitive devices with wide potential applications. Type 2 diabetes mellitus is a complex disease affecting almost every tissue and organ system, with metabolic complications extending far beyond impaired glucose metabolism. Although there is no known cure for Type 2 diabetes, early diagnosis and interventions are critical to prevent this disease and can postpone or even prevent the serious complications that are associated with diabetes. Biomarkers for type 2 diabetes are useful for prediction and intervention of the disease at earlier stages. Proper selection of biomarkers that represent health and disease states is vital for disease diagnosis and treatment by detecting it before it manifests. In this respect, we provide an overview of different types of biosensors being used, ranging from electrochemical, fluorescence-based, nanomonitors, SPR-based, and field-effect transistor biosensors for early detection and management of diabetes with focus on prediabetes. In the future, novel non-invasive technologies combined with blood and tissue-based biomarkers will enable the detection, prevention, and treatment of diabetes and its complications long before overt disease develops.
... Given that inhibition of PAI-1 augments the activities of the endogenous plasminogen activators, PAI-1 has been recognized as a potential therapeutic target for fibrinolytic treatment of thrombotic disorders [2,3]. Many laboratories, including ours [4], have developed PAI-1 antagonists, which include small molecules [5][6][7][8][9][10], monoclonal antibodies [11,12], peptides [13] and RNA aptamers [14]. Despite the efforts to develop PAI-1 antagonists, none have entered clinical use. ...
Article
Plasminogen activator inhibitor 1 (PAI-1) is the main inhibitor of tissue-type and urokinase-type plasminogen activators (t/uPA) and plays an important role in the fibrinolytic system. Inhibition of PAI-1 activity prevents thrombosis and accelerates fibrinolysis, indicating that PAI-1 inhibitors may be used as effective antithrombotic agents. We previously designed a PAI-1 inhibitor (PAItrap) which is a variant of inactivated urokinase protease domain. In the present study, we tried to fuse PAItrap with human serum albumin (HSA) to develop a long-acting PAI-1 inhibitor. Unfortunately, the fusion protein PAItrap-HSA lost some potency compared to PAItrap (33 nM vs 10 nM). Guided by computational method, we carried out further optimisation to enhance inhibitory potency for PAI-1. The new PAItrap, denominated PAItrap(H37R)-HSA, which combined fused HSA and a H37R mutation in PAItrap, gave a six-fold improvement IC50 (5 nM) for human active PAI-1 compared to PAItrap-HSA, and showed much longer plasma half-life (200-fold) compared to PAItrap. We further demonstrated that the PAItrap(H37R)-HSA inhibited exogenous or endogenous PAI-1 to promote fibrinolysis in fibrin-clot lysis assay. PAItrap(H37R)-HSA inhibits murine PAI-1 with IC50 value of 12 nM, allowing the inhibitor evaluated in murine models. Using an intravital microscopy, we demonstrated that PAItrap(H37R)-HSA blocks thrombus formation and platelet accumulation in vivo in a laser-induced vascular injury mouse model. Additionally, mouse tail bleeding assay showed that PAItrap(H37R)-HSA did not affect the global haemostasis. These results suggest that PAItrap(H37R)-HSA have the potential benefit to prevent thrombosis and accelerates fibrinolysis mediated by PAI-1.
... Given that inhibition of PAI-1 augments the activities of the endogenous plasminogen activators, PAI-1 has been recognized as a potential therapeutic target for fibrinolytic treatment of thrombotic disorders [2,3]. Many laboratories, including ours [4], have developed PAI-1 antagonists, which include small molecules [5][6][7][8][9][10], monoclonal antibodies [11,12], peptides [13] and RNA aptamers [14]. Despite the efforts to develop PAI-1 antagonists, none have entered clinical use. ...
Article
Fibrinolysis is a process responsible for the dissolution of formed thrombi to re-establish blood flow after thrombus formation. Plasminogen activator inhibitor-1 (PAI-1) inhibits urokinase-type and tissue-type plasminogen activator (uPA and tPA) and is the major negative regulator of fibrinolysis. Inhibition of PAI-1 activity prevents thrombosis and accelerates fibrinolysis. However, a specific antagonist of PAI-1 is currently unavailable for therapeutic use. We screened a panel of uPA variants with mutations at and near the active site to maximize their binding to PAI-1 and identified a potent PAI-1 antagonist, PAItrap. PAItrap is the serine protease domain of urokinase containing active-site mutation (S195A) and four additional mutations (G37bR-R217L-C122A-N145Q). PAItrap inhibits human recombinant PAI-1 with high potency (Kd = 0.15 nM) and high specificity. In vitro using human plasma, PAItrap showed significant thrombolytic activity by inhibiting endogenous PAI-1. In addition, PAItrap inhibits both human and murine PAI-1, allowing the evaluation in murine models. In vivo, using a laser-induced thrombosis mouse model in which thrombus formation and fibrinolysis are monitored by intravital microscopy, PAItrap reduced fibrin generation and inhibited platelet accumulation following vascular injury. Therefore, this work demonstrates the feasibility to generate PAI-1 inhibitors using inactivated urokinase.
... PAI-1 is therefore a potential target for treatments of thrombosis and cancer. During the past decades, many efforts have been made to the development of PAI-1 inactivators, and several small molecules (Table 1) [14][15][16][17][18][19][20][36][37] , monoclonal antibodies [21] , peptide [22] and RNA aptamers [23] have been reported. ...
Article
Full-text available
PAI-1 is the primary physiologic inhibitor of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) and plays important roles in a number of physiologic processes including fibrinolysis, angiogenesis, wound healing, and cell migration. PAI-1 has been proposed as a potential target for inhibitor development and many inhibitors have been reported. However, little was known about the inhibitory mechanism of these inhibitors. Here we determine the crystal structure of PAI-1 in complex with a reported inhibitor, sodium gallate. The PAI-1:gallate structure shows that gallate inserts into the cavity formed by helix D, helix E, helix F and ?-strand 2A. This work provides insights into the inhibitory mechanism of gallate and lays out structural basis for further PAI-1 inhibitor design.
... We therefore conclude that the binding area for paionap-5 and -40 must be a hotspot for a large fraction of the enriched aptamer sequences. Interestingly, a selection for aptamers against PAI-1 by another group resulted in aptamers binding to the vitronectin binding area (26). ...
Article
Full-text available
Nucleic acid aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX) has shown great promise for use in the development of research tools, therapeutics and diagnostics. Typically, aptamers are identified from libraries containing up to 10(16) different RNA or DNA sequences by 5-10 rounds of affinity selection towards a target of interest. Such library screenings can result in complex pools of many target-binding aptamers. New high-throughput sequencing techniques may potentially revolutionise aptamer selection by allowing quantitative assessment of the dynamic changes in the pool composition during the SELEX process and by facilitating large-scale post-SELEX characterisation. In the present study, we demonstrate how high-throughput sequencing of SELEX pools, before and after a single round of branched selection for binding to different target variants, can provide detailed information about aptamer binding sites, preferences for specific target conformations, and functional effects of the aptamers. The procedure was applied on a diverse pool of 2'-fluoropyrimidine-modified RNA enriched for aptamers specific for the serpin plasminogen activator inhibitor-1 (PAI-1) through five rounds of standard selection. The results demonstrate that it is possible to perform large-scale detailed characterisation of aptamer sequences directly in the complex pools obtained from library selection methods, thus without the need to produce individual aptamers. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
... PAI1 and urokinase are recommended as prognostic markers in breast cancer (41). An inhibitor of PAI1 (42) and PAI1-specific RNA aptamers (43) have been developed for pre-clinical studies of their potential anticancer application (42). Considering that PAI1 exacerbates bone loss in metastasis, it may be suitable to include skeletal health as an end-point measurement in studies that assess PAI1 inhibition in cancer prevention and treatment. ...
Article
Full-text available
This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (Pai1(-/-)) on the bone structure in male C57BL/6 mice bearing Lewis lung carcinoma (LLC) in lungs. Significant reduction in bone volume fraction (BV/TV), trabecular number (Tb.N) and bone mineral density (BMD) in femurs and vertebrae were found in LLC-bearing mice compared to non-tumor-bearing mice. In LLC-bearing mice, the high-fat diet compared to the AIN93G control diet significantly reduced BV/TV, Tb.N and BMD in femurs and BV/TV in vertebrae. The high-fat diet significantly reduced BMD in vertebrae in wild-type mice but not in Pai1(-/-) mice. Compared to wild-type mice, PAI1 deficiency significantly increased BV/TV and Tb.N in femurs. The plasma concentration of osteocalcin was significantly lower and that of tartrate-resistant acid phosphatase 5b (TRAP5b) was significantly higher in LLC-bearing mice. The high-fat diet significantly reduced plasma osteocalcin and increased TRAP5b. Deficiency in PAI1 prevented the high-fat diet-induced increases in plasma TRAP5b. These findings demonstrate that a high-fat diet enhances, whereas PAI1 deficiency, attenuates metastasis-associated bone loss, indicating that a high-fat diet and PAI1 contribute to metastasis-associated bone deterioration. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
... Inhibit cancer cell activity Alpha-fetoprotein 264 33 Fibroblast growth factor 2, basic 265 0.35 Vascular endothelial growth factor 266 0.14 Platelet-derived growth factor 267 0.1 Keratinocyte growth factor 268 0.0002 Neutrophil elastase 269 N/A Nuclear factor-kB 270 1 Lymphocyte function-associated antigen 1 271 500 avb3 integrin 272 2 Tenascin C 68 4 Gonadotropin-releasing hormone 1 273 50 E2F transcription factor 274 15 Neurotensin 1 275 1.5 Angiopoietin 1 276 2.8 Angiopoietin 2 277 0.06 Plasminogen activator inhibitor 1 278 N/A Amylin 279 3 Mucin 1 280 0.135 Substance P 223 40 Ghrelin 281 35 Nucleolin (AS1411) 153 N/A Tumor necrosis factor super-family member 4-1BB 282 40 Tumor necrosis factor super-family member OX40 283 8 Wilms tumor protein 284 700 B-catenin 285 5 Glutathione 286 41.8 Osteopontin 287 57.2 p68 71 30.8 Table 3 Strategies of modifications to aptamers Modification Details 2 0 -OH on sugar residues 2 0 -Fluoro, 288 2 0 -NH 2 , 289 2 0 -O-methyl, 290 View Article Online often compromised. ...
Article
Aptamers are single-stranded DNA or RNA oligomers, identified from a random sequence pool, with the ability to form unique and versatile tertiary structures that bind to cognate molecules with superior specificity. Their small size, excellent chemical stability and low immunogenicity enable them to rival antibodies in cancer imaging and therapy applications. Their facile chemical synthesis, versatility in structural design and engineering, and the ability for site-specific modifications with functional moieties make aptamers excellent recognition motifs for cancer biomarker discovery and detection. Moreover, aptamers can be selected or engineered to regulate cancer protein functions, as well as to guide anti-cancer drug design or screening. This review summarizes their applications in cancer, including cancer biomarker discovery and detection, cancer imaging, cancer therapy, and anti-cancer drug discovery. Although relevant applications are relatively new, the significant progress achieved has demonstrated that aptamers can be promising players in cancer research.
... Plasminogen activator inhibitor-1 together with uPA has been recommended as prognostic biomarkers in breast cancer [36]. RNA aptamers specific to PAI-1 were generated for preclinical testing for potential clinical applications [37]. PAI-039, a small molecule inhibitor of PAI-1 that was investigated clinically for treatments of acute and arterial thrombosis [38], has been tested for its efficacy in preclinical tumor angiogenesis mouse models [39]. ...
Article
Full-text available
This study investigated the effects of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma (LLC) in plasminogen activator inhibitor-1 deficient (PAI-1-/-) and wild-type mice. The high-fat diet increased the number of pulmonary metastases by 60% (p<0.01), tumor cross-sectional area by 82% (p<0.05) and tumor volume by 130% (p<0.05) compared to the AIN93G diet. Deficiency in PAI-1 reduced the number of metastases by 35% (p<0.01) compared to wild-type mice. In mice fed the high-fat diet, PAI-1 deficiency reduced tumor cross-sectional area by 52% (p<0.05) and tumor volume by 61% (p<0.05) compared to their wild-type counterparts; however, PAI-1 deficiency affected neither area nor volume in mice fed the AIN93G diet. Adipose and plasma concentrations of PAI-1 were significantly higher in high-fat fed wild-type mice than in their AIN93G-fed counterparts. Adipose and plasma PAI-1 were not detectable in PAI-1-/- mice regardless of the diet. Mice deficient in PAI-1 showed significantly greater plasma concentrations of monocyte chemotactic protein-1, tumor necrosis factor-α, leptin, vascular endothelial growth factor, tissue inhibitor of metalloproteinase-1 and insulin compared to wild-type mice, indicating a compensatory overproduction of inflammatory cytokines, angiogenic factors and insulin in the absence of PAI-1. We conclude that PAI-1 produced by the host, including that by adipose tissue, promotes high-fat enhanced metastasis of LLC.
... AS1411 aptamer binds nucleolin on the surface of cancer cells and induces apoptosis. [76,77] Another aptamer, called SM20, isolated against plasminogen activator inhibitor-1, has demonstrated in vitro therapeutic potential as an antimetastatic agent and could possibly be used as an adjuvant to traditional chemotherapy for breast cancer [78]. There are several aptamers that have been recently isolated for potential treatment of other cancers such as glioblastoma (79) , T cell leukemia798081, and epithelial cancer cells in the breast, colon, lung, ovaries and pancreas [82]. ...
Article
Full-text available
This review describes recent progress made in the aptamer and application of biomedically relevant aptamers and relates them to their future clinical prospects. Aptamers are single-stranded nucleic acid or amino acid polymers that recognize and bind to targets with high affinity and selectivity. In nature they exist as a nucleic acid based genetic regulatory element called a riboswitch. Aptamers, simply described as chemical antibodies, are synthetic oligonucleotide ligands or peptides that can be isolated in vitro against diverse targets including toxins, bacterial and viral proteins, virus-infected cells, cancer cells and whole pathogenic microorganisms. They are isolated by the technique called SELEX-systematic evolution of ligands by exponential enrichment. The applications of aptamers range from diagnostics and biosensing, target validation, targeted drug delivery, therapeutics, templates for rational drug design to biochemical screening of small molecule leads compounds, in virology,as novel radio pharmaceuticals.
... 18 PAI-1 aptamers with similar properties, although different in sequence, were also developed and characterized by Fortenberry and co-workers. 19,20 However, the underlying changes in the structural dynamics of PAI-1, when bound to RNA aptamers, have not been investigated. Here we have investigated the effect of the high affinity aptamers on the dynamics of PAI-1 by hydrogen/ deuterium exchange mass spectrometry (HDX-MS) (see Methods section and Supporting Information (SI) Figure S1). ...
Article
RNA aptamers, selected from large synthetic libraries, are attracting increasing interest as protein ligands, with potential uses as prototype pharmaceuticals, conformational probes, and reagents for specific quantification of protein levels in biological samples. Very little is known, however, about their effects on protein conformation and dynamics. We have employed hydrogen/deuterium exchange (HDX) mass spectrometry to study the effect of RNA aptamers on the structural flexibility of the serpin plasminogen activator inhibitor-1 (PAI-1). The aptamers have characteristic effects on the biochemical properties of PAI-1. In particular, they are potent inhibitors of the structural transition of PAI-1 from the active state to the inactive, so-called latent state. This transition is one of the largest conformational changes of a folded protein domain without covalent modification. Binding of the aptamers to PAI-1 is associated with substantial and wide-spread protection against deuterium uptake in PAI-1. The aptamers induce protection against exchange with the solvent both in the protein-aptamer interface as well as in other specific areas. Interestingly, the aptamers induce substantial protection against exchange in α-helices B, C and I. This observation substantiates the relevance of structural instability in this region for transition to the latent state and argues for involvement of flexibility in regions not commonly associated with regulation of latency transition in serpins.
... The aptamer, OPN-R3, isolated against osteopontin significantly decreased local progression and distant metastases of breast cancer in vivo [51]. A third antimetastatic aptamer, SM20, isolated against plasminogen activator inhibitor-1, also has therapeutic potential [52]. Other aptamers are also being investigated for their efficacy against various cancers (glioblastoma, T-cell leukemia, and epithelial cancer cells in the breast, colon, ovaries, pancreas, and cervix) [47,53,54]. ...
Article
Full-text available
Aptamers are single-stranded oligonucleotides that fold into well-defined three-dimensional shapes, allowing them to bind their targets with high affinity and specificity. They can be generated through an in vitro process called "Systemic Evolution of Ligands by Exponential Enrichment" and applied for specific detection, inhibition, and characterization of various targets like small organic and inorganic molecules, proteins, and whole cells. Aptamers have also been called chemical antibodies because of their synthetic origin and their similar modes of action to antibodies. They exhibit significant advantages over antibodies in terms of their small size, synthetic accessibility, and ability to be chemically modified and thus endowed with new properties. The first generation of aptamer drug "Macugen" was available for public use within 25 years of the discovery of aptamers. With others in the pipeline for clinical trials, this emerging field of medical biotechnology is raising significant interest. However, aptamers pose different problems for their development than for antibodies that need to be addressed to achieve practical applications. It is likely that current developments in aptamer engineering will be the basis for the evolution of improved future bioanalytical and biomedical applications. The present review discusses the development of aptamers for therapeutics, drug delivery, target validation and imaging, and reviews some of the challenges to fully realizing the promise of aptamers in biomedical applications.
... In a recent study Blake et al. selected two RNA aptamers that target the vitronectin/PAI-1 interaction with the aim that this aptamers would increase cell adhesion in order to reduce breast cancer metastasis [149]. One of this aptamers (SM-20) was able to prevent the detachment of breast cancer cells from vitronectin in the presence of PAI-1 resulting in an increase in cellular adhesion. ...
Article
Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) and is consequently one the most important inhibitors of the plasminogen/plasmin system. PAI-1 attenuates fibrinolysis and increased levels of active PAI-1 have been associated with an increased risk for cardiovascular diseases. PAI-1 knock-out mice as well as PAI-1 overexpressing mice have been generated and characterized to study the role of PAI-1 in vivo. A number of PAI-1 inhibitors have been generated to study the pharmacological effect of PAI-1 inhibition in vitro and in vivo. The current review provides an overview of 1) the biochemical features of PAI-1, 2) the role of PAI-1 in diverse pathologies, 3) the in vitro and in vivo data obtained with PAI-1 inhibitors and 4) the vitronectin, glycosylation and species dependency of PAI-1 inhibition.
... However, no further characterization was undertaken in this study. Recently, 29-F-Y RNA aptamers have also been selected toward the inhibitor of uPA, PAI-1 (Blake et al. 2009; Madsen et al. 2010). Our selection identified 29 aptamer candidates of different sequence after eight rounds of selection. ...
Article
Full-text available
The serine proteinase urokinase-type plasminogen activator (uPA) is widely recognized as a potential target for anticancer therapy. Its association with cell surfaces through the uPA receptor (uPAR) is central to its function and plays an important role in cancer invasion and metastasis. In the current study, we used systematic evolution of ligands by exponential enrichment (SELEX) to select serum-stable 2'-fluoro-pyrimidine-modified RNA aptamers specifically targeting human uPA and blocking the interaction to its receptor at low nanomolar concentrations. In agreement with the inhibitory function of the aptamers, binding was found to be dependent on the presence of the growth factor domain of uPA, which mediates uPAR binding. One of the most potent uPA aptamers, upanap-12, was analyzed in more detail and could be reduced significantly in size without severe loss of its inhibitory activity. Finally, we show that the uPA-scavenging effect of the aptamers can reduce uPAR-dependent endocytosis of the uPA-PAI-1 complex and cell-surface associated plasminogen activation in cell culture experiments. uPA-scavenging 2'-fluoro-pyrimidine-modified RNA aptamers represent a novel promising principle for interfering with the pathological functions of the uPA system.
... The plasminogen activator inhibitor-1 (PAI-1) is overexpressed in breast cancer cells and binds to vitronectin, leading to the loss of adhesion. A 2'-FY aptamer known as SM-30, specific for plasminogen activator inhibitor-1 (PAI-1), restores cell adhesion to vitronectin-coated plates in vitro [92,93]. Another type of therapeutic signaling modulation is the targeting of nuclear factor κB (NF-κB) inside cells. ...
Article
Full-text available
It was only relatively recently discovered that nucleic acids participate in a variety of biological functions, besides the storage and transmission of genetic information. Quite apart from the nucleotide sequence, it is now clear that the structure of a nucleic acid plays an essential role in its functionality, enabling catalysis and specific binding reactions. In vitro selection and evolution strategies have been extremely useful in the analysis of functional RNA and DNA molecules, helping to expand our knowledge of their functional repertoire and to identify and optimize DNA and RNA molecules with potential therapeutic and diagnostic applications. The great progress made in this field has prompted the development of ex vivo methods for selecting functional nucleic acids in the cellular environment. This review summarizes the most important and most recent applications of in vitro and ex vivo selection strategies aimed at exploring the therapeutic potential of nucleic acids.
... The dissociation constants of published aptamertarget complexes seem to be similar to those of antibody-antigens; however, this emerging class of biorecognition molecules is superior to antibodies in many additional aspects. 3 Besides the obvious advantages of the in vitro selection, aptamers, owing to their nucleic acid composition, are amenable to well controlled chemical modifications, have good chemical stability, and are easy to handle; thus, they could prevail over antibodies in various areas of life sciences, the pharmaceutical industry, 4,5 and bioanalysis. 6 Apparently, most of the routine immunoanalytical methodologies were seamlessly adapted to detect aptamer-ligand interactions. ...
Article
Specific detection of virus strains by affinity-based bioassays is often limited by the availability of ligands able to differentiate among close homologues of virus coat proteins. As viruses are prone to mutation, the ligand generation should, in addition, be fast enough to allow rapid identification of new varieties. These two criteria are difficult to be fulfilled by antibodies; however, they open up opportunities for aptamer-based detection. Here we report on the feasibility of selectively detecting the apple stem pitting virus (ASPV) coat proteins (PSA-H, MT32) using original DNA aptamers. Surface plasmon resonance (SPR) imaging was used together with aptamer-modified sensor chips to optimize the aptamer immobilization for highest sensitivity and to characterize the aptamer-virus coat protein binding. Different parameters affecting this binding, such as the aptamer flanking, surface coverage, and type of spacer molecules, were identified and their influence was determined. A direct label-free method is proposed for assessing the ASPV based on the detection of the respective virus coat proteins in plant extracts.
Article
Full-text available
Background: SERPINE1 , a serine protease inhibitor involved in the regulation of the plasminogen activation system, was recently identified as a cancer-related gene. However, its clinical significance and potential mechanisms in pan-cancer remain obscure. Methods: In pan-cancer multi-omics data from public datasets, including The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), and online web tools were used to analyze the expression of SERPINE1 in different cancers and its correlation with prognosis, genetic alteration, DNA promoter methylation, biological processes, immunoregulator expression levels, immune cell infiltration into tumor, tumor mutation burden (TMB), microsatellite instability (MSI), immunotherapy response and drug sensitivity. Further, two single-cell databases, Tumor Immune Single-cell Hub 2 (TISCH2) and CancerSEA, were used to explore the expression and potential roles of SERPINE1 at a single-cell level. The aberrant expression of SERPINE1 was further verified in clear cell renal cell carcinoma (ccRCC) through qRT-PCR of clinical patient samples, validation in independent cohorts using The Gene Expression Omnibus (GEO) database, and proteomic validation using the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Results: The expression of SERPINE1 was dysregulated in cancers and enriched in endothelial cells and fibroblasts. Copy number amplification and low DNA promoter methylation could be partly responsible for high SERPINE1 expression. High SERPINE1 expression was associated with poor prognosis in 21 cancers. The results of gene set enrichment analysis (GSEA) indicated SERPINE1 involvement in the immune response and tumor malignancy. SERPINE1 expression was also associated with the expression of several immunoregulators and immune cell infiltration and could play an immunosuppression role. Besides, SERPINE1 was found to be related with TMB, MSI, immunotherapy response and sensitivity to several drugs in cancers. Finally, the high expression of SERPINE1 in ccRCC was verified using qRT-PCR performed on patient samples, six independent GEO cohorts, and proteomic data from the CPTAC database. Conclusion: The findings of the present study revealed that SERPINE1 exhibits aberrant expression in various types of cancers and is associated with cancer immunity and tumor malignancy, providing novel insights for individualized cancer treatment.
Article
The leading cause of death in adults in the United States is cardiovascular disease, with mortality and morbidity mainly attributed to thromboembolism. Heparin is the most common therapy used for treating venous and arterial thrombosis. Heparin effectively accelerates the inhibition of coagulation proteases thrombin and factor Xa through the serine protease inhibitor (serpin) antithrombin (AT). Heparin is an essential therapeutic anticoagulant because of its effectiveness and the availability of protamine sulfate as an antidote. However, heparin therapy has several limitations. Thus, new anticoagulants, including direct thrombin inhibitors (ie, argatroban) and low-molecular-weight heparins (ie, fondaparinux), are used to treat some thromboembolic disorders. We developed and characterized a family of novel RNA-based aptamers that bind AT using two novel selection schemes. One of the aptamers, AT-16, accelerates factor Xa inhibition by AT in the absence of heparin. AT-16's effect on thrombin inhibition by AT is less effective compared to factor Xa. AT-16 induces a conformational change in AT that is different from that induced by heparin. This study demonstrates that an AT-specific RNA aptamer, AT-16, exhibits a positive allosteric modulator effect on AT's inhibition of factor Xa.
Chapter
Fibrinolysis is identified to play a crucial role in pathological and physiological processes. It counteracts excessive blood clotting to maintain hemostatic balance. However, its association with cancer is known from many years with the evidence that aberrant expression of any of its components leads to enhanced tumor growth, invasion, and progression. Malfunctioning of fibrinolytic system is found associated with various pathologies that majorly include inflammation, neuropathies, thrombosis, and metastasis. For this reason, fibrinolytic system can also be considered in designing cancer therapies. In breast cancer, with the disease progression, malignant cells invade within the blood stream and reach to the distant non-breast tissues. Although it is a complex process, yet homeostatic elements are considered major factors that facilitate the invasion, cellular transformation, tumor cell survival, proliferation, angiogenesis, and metastasis of breast cancer cells.A pool of preclinical evidence is available for the therapeutic potential of fibrinolytic system yet it lacks in clinical trial-based evidence. Through this chapter, we aim to highlight importance of targeting main oncogenic components of fibrinolytic system and to provide comprehensive overview of the roles played via fibrinolytic component and their activation. Furthermore, we will discuss possible diagnostic and therapeutic strategies of fibrinolytic system during progression and spread of breast cancers.KeywordsFibrinolytic systemBreast cancerPathologiesDiagnostic and therapeutic targets
Article
Background COVID-19 causes hypercoagulability, but the association between coagulopathy and hypoxemia in critically ill patients has not been thoroughly explored. We hypothesized that severity of coagulopathy would be associated with ARDS severity, major thrombotic events, and mortality in patients requiring ICU-level care. Methods Viscoelastic testing by ROTEM and coagulation factor biomarker analyses were performed in this prospective observational cohort study of critically ill COVID-19 patients from April 2020 to October 2020. Statistical analyses were performed to identify significant coagulopathic biomarkers such as fibrinolysis-inhibiting plasminogen activator inhibitor-1 (PAI-1) and their associations with clinical outcomes such as mortality, extracorporeal membrane oxygenation (ECMO) requirement, occurrence of major thrombotic events, and severity of hypoxemia (PaO2/FiO2 categorized into mild, moderate, and severe per the Berlin Criteria). Results In total, 53/55 (96%) of the cohort required mechanical ventilation and 9/55 (16%) required ECMO. ECMO-naïve patients demonstrated Lysis Indices at 30 minutes indicative of fibrinolytic suppression on ROTEM. Survivors demonstrated less procoagulate acute phase reactants such as MP-Tissue Factor levels (OR 0.14 (0.02, 0.99), p = 0.049). Those who did not experience significant bleeding events had smaller changes in ADAMTS13 levels compared to those that did (OR 0.05 (0, .7), p = 0.026). Elevations in PAI-1 (OR 1.95 (1.21, 3.14), p = 0.006), d-dimer (OR 3.52 (0.99, 12.48), p = 0.05), and factor VIII (no clot 1.15 ± 0.28 versus clot 1.42 ± 0.31, p = 0.003) were also demonstrated in ECMO-naïve patients who experienced major thrombotic events. PAI-1 levels were significantly elevated during periods of severe compared to mild and moderate ARDS (severe 44.2 ± 14.9 ng/mL versus mild 31.8 ± 14.7 ng/mL and moderate 33.1 ± 15.9 ng/mL, p = 0.029 and 0.039 respectively). Conclusion Increased inflammatory and pro-coagulant markers such as PAI-1, MP- Tissue Factor, vWF levels are associated with severe hypoxemia and major thrombotic events, implicating fibrinolytic suppression in the microcirculatory system and subsequent micro- and macrovascular thrombosis in severe COVID-19.
Article
Precision medicine holds great promise to harness genetic and epigenetic cues for targeted treatment of a variety of diseases, ranging from many types of cancers, neurodegenerative diseases, to cardiovascular diseases. The proteomic profiles resulting from the unique genetic and epigenetic signatures represent a class of relatively well accessible molecular targets for both interrogation (e.g., diagnosis, prognosis) and intervention (e.g., targeted therapy) of these diseases. Aptamers are promising for such applications by specific binding with cognate disease biomarkers. Nucleic acid aptamers are a class of DNA or RNA with unique three-dimensional conformations that allow them to tightly bind with target molecules. Aptamers can be relatively easily screened, synthesized, programmably designed, and chemically modified for various biomedical applications, including targeted therapy. Aptamers can be chemically modified to resist enzymatic degradation or optimize their pharmacological behaviors, which ensured their chemical integrity and bioavailability under physiological conditions. In this review, we will focus on recent progress and discuss the challenges and opportunities in the research areas of aptamer-based targeted therapy in the forms of aptamer therapeutics or aptamer-drug conjugates (ApDCs).
Article
Urokinase plasminogen activator (uPA) and its inhibitor plasminogen activator inhibitor‐1 (PAI‐1) are established independent biomarkers for high metastasis risk in breast cancer. In this study, we investigated the regulatory activity of (−)‐epigallocatechin‐3‐gallate (EGCG) and its derivatives on uPA and PAI‐1 expression and thereby their anti‐metastatic potential. EGCG showed only marginal effects on the uPA system and on the metastatic behavior of breast cancer cells (MDA‐MB‐231). However, the EGCG derivative 3e with a methyl‐substituted carbonate substituent at the 4″‐position showed potent inhibition of PAI‐1 (62%) and uPA (50%) expression. The Ras‐extracellular‐signal‐regulated kinase (ERK), p38 mitogen‐activated protein kinase (MAPK), and phosphatidylinositol‐3‐kinase (PI3K)/Akt/NF‐κB pathways, which regulate uPA and PAI‐1 expression, were also affected by 3e (25%, 45%, and 25% reduction, respectively). In line with these findings, substantial reduction in metastatic behavior of MDA‐MB‐231 cells, such as adhesion (40%), invasion (56%), and migration (40%), was observed in the presence of 3e. It is also noteworthy that, in MDA‐MB‐231 cells, 3e did not exert any beneficial effect on the expression of matric metalloprotein (MMP) 2 and 9, which indicates that the anti‐metastatic activity of 3e in MDA‐MB‐231 cells is not related to its regulation of the expression of MMPs. Taken together, we have shown that the EGCG derivative 3e could suppress the metastatic behavior of MDA‐MB‐231 cells through regulation of uPA and PAI‐1.
Article
[Despite as a major inhibitor of urokinase (uPA), paradoxically,] Plasminogen activator inhibitor-1 (PAI-1) has been validated to be highly expressed in various types of tumor biopsy tissues or plasma compared with controls based on huge clinical data bases analysis, more importantly, PAI-1 alone or in conjunction with uPA have been identified as prognostic for disease progression and relapse in certain cancer types. particularly in breast cancer. In addition to play important roles in cell adhesion, migration and invasion, PAI-1 has been reported to induce tumor vascularization and thus promote cell dissemination and tumor metastasis. Furthermore, there are many tumor promoting factors involved in the modulation of PAI-1 expression and activity, which will strengthen the pro-tumorigenic roles of PAI-1. Undoubtedly, PAI-1 may be a promising target for therapeutic intervention of specific cancer treatment. In fact, some PAI-1 inhibitors are currently being evaluated in cancer therapy, which may be developed to new antitumor agents in the future.
Article
The pathophysiology of sickle cell disease (SCD) is dependent on the polymerization of deoxygenated sickle hemoglobin (HbS), leading to erythrocyte deformation (sickling) and vaso-occlusion within the microvasculature. Following deoxygenation, there is a delay time before polymerization is initiated, during which nucleation of HbS monomers occurs. An agent with the ability to extend this delay time or slow polymerization would therefore hold a therapeutic, possibly curative, potential. We used the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method to screen for HbS-binding RNA aptamers modified with nuclease-resistant 2'-fluoropyrimidines. Polymerization assays were employed to identify aptamers with polymerization-inhibitory properties. Two noncompeting aptamers, DE3A and OX3B, were found to bind hemoglobin, significantly increase the delay time, and reduce the rate of polymerization of HbS. These modifiable, nuclease-resistant aptamers are potential new therapeutic agents for SCD.
Article
Western medicine often aims to specifically treat diseased tissues or organs. However, the majority of current therapeutics failed to do so owing to their limited selectivity and the consequent "off-target" side effects. Targeted therapy aims to enhance the selectivity of therapeutic effects and reduce adverse side effects. One approach towards this goal is to utilize disease-specific ligands to guide the delivery of less-specific therapeutics, such that the therapeutic effects can be guided specifically to diseased tissues or organs. Among these ligands, aptamers, also known as chemical antibodies, have emerged over the past decades as a novel class of targeting ligands that are capable of specific binding to disease biomarkers. Compared with other types of targeting ligands, aptamers have an array of unique advantageous features, which make them promising to develop aptamer-drug conjugates (ApDCs) for targeted therapy. In this review article, we will discuss ApDCs for targeted drug delivery in chemotherapy, gene therapy, immunotherapy, photodynamic therapy, and photothermal therapy, primarily of cancer.
Article
Recombinant tissue-type plasminogen activator (tPA, trade name Alteplase), currently the only drug approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of cerebral ischaemic stroke, has been implicated in a number of adverse effects reportedly mediated by interactions with the low-density lipoprotein (LDL) family receptors, including neuronal cell death and an increased risk of cerebral haemorrhage. The tissue-type plasminogen activator is the principal initiator of thrombolysis in human physiology, an effect that is mediated directly via localised activation of the plasmin zymogen plasminogen at the surface of fibrin clots in the vascular lumen. Here, we sought to identify a ligand to tPA capable of inhibiting the relevant LDL family receptors without interfering with the fibrinolytic activity of tPA. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to isolate tPA-binding RNA aptamers, which were characterised in biochemical assays of tPA association to low density lipoprotein receptor-related protein-1 (LRP-1, an LDL receptor family member); tPA-mediated in vitro and ex vivo clot lysis; and tPA-mediated plasminogen activation in the absence and presence of a stimulating soluble fibrin fragment. Two aptamers, K18 and K32, had minimal effects on clot lysis, but were able to efficiently inhibit tPA-LRP-1 association and LDL receptor family-mediated endocytosis in human vascular endothelial cells and astrocytes. These observations suggest that coadministration alongside tPA may be a viable strategy to improve the safety of thrombolytic treatment of cerebral ischaemic stroke by restricting tPA activity to the vascular lumen.
Article
Full-text available
Plasminogen activator inhibitor-1 (PAI-1; SERPINE1) inhibits the plasminogen activators: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Elevated levels of PAI-1 have been correlated with an increased risk for cardiovascular disease. Pharmacologically suppressing PAI-1 might prevent, or successfully treat PAI-1 related vascular diseases. This can potentially be accomplished by using small RNA molecules (aptamers). This study's goal is to develop RNA aptamers to a region of PAI-1 that will prevent the ability of PAI-1 to interact with the plasminogen activators. The aptamers were generated through a systematic evolution of ligands via exponential enrichment approach that ensures the creation of RNA molecules that bind to our target protein, PAI-1. In vitro assays were used to determine the effect of these aptamers on PAI-1's inhibitory activity. Three aptamers that bind to PAI-1 with affinities in the nanomolar range were isolated. The aptamer clones R10-4 and R10-2 inhibited PAI-1's antiproteolytic activity against tPA and disrupted PAI-1's ability to form a stable covalent complex with tPA. Increasing aptamer concentrations correlated positively with an increase in cleaved PAI-1. To the best of our knowledge, this is the first report of RNA molecules that inhibit the antiproteolytic activity of PAI-1.
Article
The hallmark of serpins is the ability to undergo the so-called "stressed-to-relaxed" switch during which the surface-exposed reactive center loop (RCL) becomes incorporated as strand 4 in central beta-sheet A. RCL insertion drives not only the inhibitory reaction of serpins with their target serine proteases but also the conversion to the inactive latent state. RCL insertion is coupled to conformational changes in the flexible joint region flanking beta-sheet A. One interesting serpin is plasminogen activator inhibitor-1 (PAI-1), a fast and specific inhibitor of the serine proteases tissue-type and urokinase-type plasminogen activator. Via its flexible joints' region, native PAI-1 binds vitronectin and relaxed, protease-complexed PAI-1 certain endocytosis receptors. From a library of 35-nucleotides long 2'-fluoropyrimidine-containing RNA oligonucleotides, we have isolated two aptamers binding PAI-1 by the flexible joint region with low nanomolar K(D) values. One of the aptamers exhibited measurable binding to native PAI-1 only, while the other also bound relaxed PAI-1. While none of the aptamers inhibited the antiproteolytic effect of PAI-1, both aptamers inhibited vitronectin binding and the relaxed PAI-1-binding aptamer also endocytosis receptor binding. The aptamer binding exclusively to native PAI-1 increased the half-life for the latency transition to more than 6 h, manyfold more than vitronectin. Contact with Lys124 in the flexible joint region was critical for strong inhibition of the latency transition and the lack of binding to relaxed PAI-1. We conclude that aptamers yield important information about the serpin conformational switch and, because they can compete with high-affinity protein-protein interactions, may provide leads for pharmacological intervention.
Article
Introduction: Plasminogen activator inhibitor-1 (PAI-1), the serine protease inhibitor (serpin), binds to and inhibits the plasminogen activators-tissue-type plasminogen activator (tPA) and the urokinase-type plasminogen activator (uPA). This results in both a decrease in plasmin production and a decrease in the dissolution of fibrin clots. Elevated levels of PAI-1 are correlated with an increased risk for cardiovascular disease and have been linked to obesity and metabolic syndrome. Consequently, the pharmacological suppression of PAI-1 might prevent or treat vascular disease. Areas covered: This article provides an overview of the patenting activity on PAI-1 inhibitors. Patents filed by pharmaceutical companies or individual research groups are described, and the biological and biochemical evaluation of the inhibitors, including in vitro and in vivo studies, is discussed. An overview of patents pertaining to using these inhibitors for treating various diseases is also included. Expert opinion: Although there is still no PAI-1 inhibitor being evaluated in a clinical setting or approved for human therapy, research in this field has progressed, and promising new compounds have been designed. Most research has focused on improving the pharmacological profile of these compounds, which will hopefully allow them to proceed to clinical studies. Despite the need for further testing and research, the potential use of PAI-1 inhibitors for treating cardiovascular disease appears quite promising.
Article
Plasminogen activator inhibitor-1 (PAI-1), a serpin, is the physiological inhibitor of tissue-type and urokinase-type plasminogen activators and thus also an inhibitor of fibrinolysis and tissue remodeling. It is a potential therapeutic target in many pathological conditions, including thrombosis and cancer. Several types of PAI-1 antagonist have been developed, but the structural basis for their action has remained largely unknown. Here we report X-ray crystal structure analysis of PAI-1 in complex with a small-molecule antagonist, embelin. We propose a mechanism for embelin-induced rapid conversion of PAI-1 into a substrate for its target proteases and the subsequent slow conversion of PAI-1 into an irreversibly inactivated form. Our work provides structural clues to an understanding of PAI-1 inactivation by small-molecule antagonists and an important step toward the design of drugs targeting PAI-1.
Article
The last two decades have witnessed the development and application of nucleic acid aptamers in a variety of fields, including target analysis, disease therapy, and molecular and cellular engineering. The efficient and widely applicable aptamer selection, reproducible chemical synthesis and modification, generally impressive target binding selectivity and affinity, relatively rapid tissue penetration, low immunogenicity, and rapid systemic clearance make aptamers ideal recognition elements for use as therapeutics or for in vivo delivery of therapeutics. In this feature article, we discuss the development and biomedical application of nucleic acid aptamers, with emphasis on cancer cell aptamer isolation, targeted cancer therapy, oncology biomarker identification and drug discovery.
Article
The serine protease inhibitor (serpin) plasminogen activator inhibitor-1 (PAI-1) is associated with the pathophysiology of several diseases, including cancer and cardiovascular disease. The extracellular matrix protein vitronectin increases at sites of vessel injury and is also present in fibrin clots. Integrins present on the cell surface bind to vitronectin and anchor the cell to the extracellular matrix. However, the binding of PAI-1 to vitronectin prevents this interaction, thereby decreasing both cell adhesion and migration. We previously developed PAI-1-specific RNA aptamers that bind to (or in the vicinity of) the vitronectin binding site of PAI-1. These aptamers prevented cancer cells from detaching from vitronectin in the presence of PAI-1, resulting in an increase in cell adhesion. In the current study, we used in vitro assays to investigate the effects that these aptamers have on human aortic smooth muscle cell (HASMC) and human umbilical vein endothelial cell (HUVEC) migration, adhesion, and proliferation. The PAI-1-specific aptamers (SM20 and WT15) increased attachment of HASMCs and HUVECs to vitronectin in the presence of PAI-1 in a dose-dependent manner. Whereas PAI-1 significantly inhibited cell migration through its interaction with vitronectin, both SM20 and WT15 restored cell migration. The PAI-1 vitronectin binding mutant (PAI-1AK) did not facilitate cell detachment or have an effect on cell migration. The effect on cell proliferation was minimal. Additionally, both SM20 and WT15 promoted tube formation on matrigel that was supplemented with vitronectin, thereby reversing the PAI-1's inhibition of tube formation. Collectively, results from this study show that SM20 and WT15 bind to the PAI-1's vitronectin binding site and interfere with its effect on cell migration, adhesion, and tube formation. By promoting smooth muscle and endothelial cell migration, these aptamers can potentially eliminate the adverse effects of elevated PAI-1 levels in the pathogenesis of vascular disease.
Article
A brief historical introduction describes early attempts to silence specific genes using the antisense oligonucleotides that flourished in the 1980s. Early aspirations for therapeutic applications were almost extinguished by the unexpected complexity of oligonucleotide pharmacology. Once the biochemistry and molecular biology behind some of the pharmacology was worked out, new approaches became apparent for using oligonucleotides to treat disease. The biochemistry of small nucleic acids is outlined in Section 2. Various approaches employing oligonucleotides to control cellular functions are reviewed in Section 3. These include antisense oligonucleotides and siRNA that bind to RNA, antigene oligonucleotides that bind to DNA, and aptamers, decoys, and CpG oligonucleotides that bind to proteins.
Article
The prognostic and/or predictive value of the cancer biomarkers, urokinase-type plasminogen activator (uPA) and its inhibitor (plasminogen activator inhibitor [PAI]-1), determined by ELISA in tumor-tissue extracts, was demonstrated for several cancer types in numerous clinically relevant retrospective or prospective studies, including a multicenter breast cancer therapy trial (Chemo-N0). Consequently, for the first time ever for any cancer biomarker for breast cancer, uPA and PAI-1 have reached the highest level of evidence, level-of-evidence-1. At present, two other breast cancer therapy trials, NNBC-3 and Plan B, also incorporating uPA and PAI-1 as treatment-assignment tools are in effect. Furthermore, small synthetic molecules targeting uPA are currently in Phase II clinical trials in patients afflicted with advanced cancer of the ovary, breast or pancreas.
Article
Full-text available
Nucleic acid aptamers can be selected from pools of random-sequence oligonucleotides to bind a wide range of biomedically relevant proteins with affinities and specificities that are comparable to antibodies. Aptamers exhibit significant advantages relative to protein therapeutics in terms of size, synthetic accessibility and modification by medicinal chemistry. Despite these properties, aptamers have been slow to reach the marketplace, with only one aptamer-based drug receiving approval so far. A series of aptamers currently in development may change how nucleic acid therapeutics are perceived. It is likely that in the future, aptamers will increasingly find use in concert with other therapeutic molecules and modalities.
Article
Aptamers, simply described as chemical antibodies, are synthetic oligonucleotide ligands or peptides that can be isolated in vitro against diverse targets including toxins, bacterial and viral proteins, virus-infected cells, cancer cells and whole pathogenic microorganisms. Aptamers assume a defined three-dimensional structure and generally bind functional sites on their respective targets. They possess the molecular recognition properties of monoclonal antibodies in terms of their high affinity and specificity. The applications of aptamers range from diagnostics and biosensing, target validation, targeted drug delivery, therapeutics, templates for rational drug design to biochemical screening of small molecule leads compounds. This review describes recent progress made in the application of biomedically relevant aptamers and relates them to their future clinical prospects.
Article
Full-text available
Vitronectin and plasminogen activator inhibitor-1 (PAI-1) are proteins that interact in the circulatory system and pericellular region to regulate fibrinolysis, cell adhesion, and migration. The interactions between the two proteins have been attributed primarily to binding of the somatomedin B (SMB) domain, which comprises the N-terminal 44 residues of vitronectin, to the flexible joint region of PAI-1, including residues Arg-103, Met-112, and Gln-125 of PAI-1. A strategy for deletion mutagenesis that removes the SMB domain demonstrates that this mutant form of vitronectin retains PAI-1 binding (Schar, C. R., Blouse, G. E., Minor, K. M., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309). In the current study, the complementary binding site on PAI-1 was mapped by testing for the ability of a battery of PAI-1 mutants to bind to the engineered vitronectin lacking the SMB domain. This approach identified a second, separate site for interaction between vitronectin and PAI-1. The binding of PAI-1 to this site was defined by a set of mutations in PAI-1 distinct from the mutations that disrupt binding to the SMB domain. Using the mutations in PAI-1 to map the second site suggested interactions between alpha-helices D and E in PAI-1 and a site in vitronectin outside of the SMB domain. The affinity of this second interaction exhibited a K(D) value approximately 100-fold higher than that of the PAI-1-somatomedin B interaction. In contrast to the PAI-1-somatomedin B binding, the second interaction had almost the same affinity for active and latent PAI-1. We hypothesize that, together, the two sites form an extended binding area that may promote assembly of higher order vitronectin-PAI-1 complexes.
Article
Full-text available
Osteopontin (OPN) is a secreted phosphoprotein which mediates tumorigenesis, local growth, and metastasis in a variety of cancers. It is a potential therapeutic target for the regulation of cancer metastasis. RNA aptamer technology targeting OPN may represent a clinically viable therapy. In this study, we characterize the critical sequence of an RNA aptamer, termed OPN-R3, directed against human OPN. It has a K(d) of 18 nmol/l and binds specifically to human OPN as determined by RNA electrophoretic mobility assays. In MDA-MB231 human breast cancer cells examined under fluorescence microscopy, OPN-R3 ablates cell surface binding of OPN to its cell surface CD44 and alpha(v)beta(3) integrin receptors. Critical enzymatic components of the OPN signal transduction pathways, PI3K, JNK1/2, Src and Akt, and mediators of extracellular matrix degradation, matrix metalloproteinase 2 (MMP2) and uroplasminogen activator (uPA), are significantly decreased following exposure to OPN-R3. OPN-R3 inhibits MDA-MB231 in vitro adhesion, migration, and invasion characteristics by 60, 50, and 65%, respectively. In an in vivo xenograft model of breast cancer, OPN-R3 significantly decreases local progression and distant metastases. On the basis of this "proof-of-concept" study, we conclude that RNA aptamer targeting of OPN has biologically relevance for modifying tumor growth and metastasis.
Article
Full-text available
Three chimeric mutants of plasminogen activator inhibitor 1 (PAI-1) have been constructed where the strained loop of wild type PAI-1 (wtPAI-1) has been replaced with a 19-amino acid region from either plasminogen activator inhibitor 2 (PAI-2), antithrombin III, or with an artificial serine protease inhibitor superfamily consensus strained loop. The inhibitors were expressed in Escherichia coli, and the purified proteins had specific activities toward urokinase-type plasminogen activator (uPA) or the single- and two-chain forms of tissue type plasminogen activator (tPA) that were similar to wtPAI-1. Experiments suggest that the strained loop of PAI-1 is not responsible for the transition between the latent and the active conformations or for binding to vitronectin. Second-order rate constants for the interactions with uPA and single- or two-chain tPA were similar to those of wtPAI-1. Values range from a low of 1.8 x 10(5) M-1 s-1 for the interaction of the PAI-2 chimera with single-chain tPA to a high value of 1.6 x 10(7) M-1 s-1 for the consensus mutant with two-chain tPA. This former value is 200 times higher than the reported rate constant for the interaction between PAI-2 and single-chain tPA, suggesting that structures outside of the strained loop are responsible for the major differences in specificity between PAI-1 and PAI-2.
Article
Full-text available
Vitronectin endows plasminogen activator inhibitor 1 (PAI-1), the fast-acting inhibitor of both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), with additional thrombin inhibitory properties. In view of the apparent association between PAI-1 and vitronectin in the endothelial cell matrix (ECM), we analyzed the interaction between PAI-1 and thrombin in this environment. Upon incubating 125I-labeled alpha-thrombin with endothelial cell matrix (ECM), the protease formed SDS-stable complexes exclusively with PAI-1, with subsequent release of these complexes into the supernatant. Vitronectin was required as a cofactor for the association between PAI-1 and thrombin in ECM. Metabolic labeling of endothelial cell proteins, followed by incubation of ECM with t-PA, u-PA, or thrombin, indicated that all three proteases depleted PAI-1 from ECM by complex formation and proteolytic cleavage. Proteolytically inactive thrombin as well as anticoagulant thrombin, i.e., thrombin in complex with its endothelial cell surface receptor thrombomodulin, did not neutralize PAI-1, emphasizing that the procoagulant moiety of thrombin is required for a functional interaction with PAI-1. A physiological implication of our findings may be related to the mutual neutralization of both PAI-1 and thrombin, providing a new link between plasminogen activation and the coagulation system. Evidence is provided that in ECM, procoagulant thrombin may promote plasminogen activator activity by inactivating PAI-1.
Article
Full-text available
A binding protein for plasminogen activator inhibitor 1 (PAI-1-BP) was isolated from human plasma by a four-step procedure. 1) The 7 S globulin fraction of plasma was isolated by gel filtration on Sephacryl S-300. 2) Human endothelial cell-type plasminogen activator inhibitor (PAI-1), pretreated with 12 M urea, was added to this fraction (22 micrograms of PAI-1/ml of plasma), and a PAI-1 antigen peak with apparent mass 450 kDa (representing 65% of PAI-1 antigen and 85% of PAI activity) was isolated by gel filtration of this mixture. 3) The PAI-1.PAI-1-BP complex was further purified by immunoadsorption on an immobilized murine monoclonal antibody directed against PAI-1 (MA-7D4) and by elution with 4 M KSCN. 4) The complex was then dissociated by addition of excess human tissue-type plasminogen activator (t-PA), and t-PA and PAI-1 antigen (t-PA.PAI-1 complexes and free t-PA and PAI-1) were removed by immunoadsorption on monoclonal antibodies directed against t-PA (MA-62E8) and against PAI-1 (MA-7D4 and MA-12A4). Sodium dodecyl sulfate-gel electrophoresis of the purified material under nonreducing conditions revealed two bands with apparent mass approximately equal to 150 kDa and two bands with mass 74 and 68 kDa. Reduced sodium dodecyl sulfate-gel electrophoresis displayed two main bands with apparent masses of 73 and 64 kDa. The PAI-1-BP reacts with urea-treated, but not with inactive PAI-1. t-PA dissociates the complex between PAI-1 and PAI-1-BP. PAI-1 in complex with PAI-1-BP is 2-3-fold more stable at 37 degrees C than purified PAI-1, suggesting that PAI-1-BP may stabilize PAI-1 in blood. The concentration of PAI-1-BP in plasma determined by titration with PAI-1 is approximately 130 mg/liter. The isolated PAI-1-BP was shown to be identical to S protein (vitronectin) both by cross-reactivity with monospecific rabbit antisera and by NH2-terminal amino acid sequence analysis. The gel filtration behavior, mobility on sodium dodecyl sulfate-gel electrophoresis, and concentration in plasma suggest that PAI-1-BP is a multimer (presumably a dimer) of S protein accounting for approximately 35% of the S protein in plasma.
Article
Full-text available
Conditioned medium from cultured bovine aortic endothelial cells contains an inactive plasminogen activator inhibitor (PAI). This latent PAI can be "activated" with denaturants. For example, less than 0.01 units/microliter of PAI activity was detected in untreated conditioned medium, but medium treated with sodium dodecyl sulfate (1.7 mM), guanidine HCl (4 M), urea (12 M) or KSCN (6 M) contained 0.9, 1.9, 0.8, and 0.5 units/microliter, respectively. This effect was dose-dependent with respect to the particular reagent used, and the same concentration of reagent which induced PAI activity also stimulated the ability of a component in conditioned medium to form sodium dodecyl sulfate-stable complexes with exogenously added plasminogen activators. Neither activity was stimulated by extensive dialysis or by treatment with NaCl (5 M), Na2SO4 (2.8 M), or dicetyl phosphate (0.1%). Analysis of treated and untreated conditioned medium by gel filtration revealed that the latent and active PAIs migrated with apparent Mr values of 30,000 and 50,000, respectively. Thus, "activation" is associated with an increase in the apparent Mr of the molecule. These observations suggest that activation does not result from the removal of either a small dialyzable component from the medium, or of a large Mr component that is bound to the latent PAI. Other possible mechanisms of activation are discussed. We recently isolated an active PAI from bovine endothelial cells (van Mourik, J.A., Lawrence, D.A., and Loskutoff, D.J. (1984) J. Biol. Chem. 259, 14914-14921). Monospecific antiserum to this active PAI selectivity immunoprecipitated the latent PAI from conditioned medium. These results indicate that the two PAIs are immunologically related and suggest that the latent form is converted into the active form by the sodium dodecyl sulfate present during the purification.
Article
Full-text available
We recently localized the high affinity binding site for activated type 1 plasminogen activator inhibitor (PAI-1) to the somatomedin B domain (i.e. amino acid (aa) 1-51) of vitronectin (Vn). In this study to further define this site, N-terminal Vn fragments of various lengths were expressed in Escherichia coli and tested for PAI-1 binding activity. Vn polypeptides containing aa 1-52 and 1-40 retained PAI-1 binding activity and stabilized PAI-1 to a similar extent as intact Vn, but polypeptides containing aa 1-30 did not bind to PAI-1 nor stabilize its activity. The effects of monoclonal antibodies (mAbs) to Vn on PAI-1 binding was also determined. One mAb bound to Vn and blocked its ability to bind to PAI-1. It also dissociated pre-existing PAI-1.Vn complexes, and prevented the incorporation of PAI-1 into extracellular matrix of HT 1080 cells. This mAb bound to the recombinant peptide containing aa 1-40, but not to the peptide consisting of aa 1-30. A second randomly chosen mAb with similar affinity for Vn was inactive in these assays and bound to the region between aa 52 and 239. These results indicate that the high affinity binding site for active PAI-1 in Vn is between aa 1 and 40, and that this domain may also stabilize active PAI-1.
Article
Full-text available
Kinetic studies are presented which show that native human vitronectin, but not urea-treated vitronectin, accelerates the inactivation of human alpha-thrombin by human plasminogen activator inhibitor-1 (PAI-1). We demonstrate that although urea-treated vitronectin binds PAI-1 with an affinity greater than that of native vitronectin, it does not accelerate the rate of inactivation of alpha-thrombin by PAI-1. We present evidence to suggest that the inability of urea-treated vitronectin to accelerate the reaction between alpha-thrombin and PAI-1 results at least in part from the inability of urea-treated vitronectin to bind to alpha-thrombin. The accelerated reaction between PAI-1 and alpha-thrombin can be accounted for by the formation of a tight complex between native vitronectin and PAI-1 that reacts in a saturable manner (Kd = 75 nM) with alpha-thrombin. The second-order rate constant (kI/Kd) for the reaction of the native vitronectin-PAI-1 complex with alpha-thrombin (1.64 x 10(5) M(-)-1 s-1) is 270-fold greater than the second-order rate constant for the reaction in the absence of vitronectin (610 m-1 s-1). The increase in the second-order rate constant is largely due to an increase in the affinity of alpha-thrombin for the native vitronectin-PAI-1 complex, as reflected by a greater than 25-fold reduction in the dissociation constant (Kd) observed for the vitronectin-PAI-1 complex relative to that of uncomplexed PAI-1.
Article
Full-text available
Urokinase plasminogen activator (uPA) and its receptor are key components of a cell surface proteolytic cascade used by tumor cells and capillary endothelial cells for basement membrane invasion, a process required for metastasis and angiogenesis. We have cloned, expressed, and purified the epidermal growth factor-like domain of murine uPA alone and fused it to the Fc portion of human IgG as high-affinity murine urokinase receptor antagonists. These molecules are potent inhibitors of murine urokinase binding to its receptor and inhibit angiogenesis in an in vitro model of capillary tube formation in fibrin gels. In vivo, basic fibroblast growth factor-induced neovascularization and B16 melanoma growth in syngeneic mice are also substantially suppressed by these molecules. Coupled with previous studies showing inhibition of metastasis, these findings suggest that urokinase receptor antagonists may be useful therapeutically as inhibitors of tumor progression.
Article
Full-text available
Plasminogen activator inhibitor 1 (PAI-1) binds to the somatomedin B (SMB) domain of vitronectin (VN), a domain present in at least seven other proteins. In this study, we investigate the PAI-1 binding activity of these SMB homologs and attempt to more specifically localize the PAI-1 binding site within this domain. SMBVN and several of its homologs were expressed in Escherichia coli, purified, and tested for PAI-1 binding activity in a competitive ligand binding assay. Although recombinant SMBVN was fully active in this assay, none of the homologs bound to PAI-1 or competed with VN for PAI-1 binding. These inactive homologs are structurally related to SMBVN, having 33-45% sequence identity and containing all 8 cysteines at conserved positions. Thus, homolog-scanning experiments were conducted by exchanging progressively larger portions of the NH2- or COOH-terminal regions of active SMBVN with the corresponding regions of the inactive homologs. These experiments revealed that the minimum PAI-1-binding sequence was present in the central region (residues 12-30) of SMBVN. Alanine scanning mutagenesis further demonstrated that each of the 8 cysteines as well as Gly12, Asp22, Leu24, Try27, Tyr28, and Asp34 were critical for PAI-1 binding and were required to stabilize PAI-1 activity. These results indicate that the PAI-1 binding motif is localized to residues 12-30 of SMBVN and suggest that this motif is anchored in the active conformation by disulfide bonds.
Article
Full-text available
During wound healing, migrating cells increase expression of both the vitronectin receptor (VNR) integrins and plasminogen activators. Here we report that vitronectin significantly enhances the migration of smooth muscle cells (SMCs), and that the specific VNR alpha V beta 3 is required for cell motility. We also show that the alpha V beta 3 attachment site on vitronectin overlaps with the binding site for plasminogen activator inhibitor (PAI)-1, and that the active conformation of PAI-1 blocks SMC migration. This effect requires high-affinity binding to vitronectin, and is not dependent on the ability of PAI-1 to inhibit plasminogen activators. Formation of a complex between PAI-1 and plasminogen activators results in loss of PAI-1 affinity for vitronectin and restores cell migration. These data demonstrate a direct link between plasminogen activators and integrin-mediated cell migration, and show that PAI-1 can control cell-matrix interactions by regulating the accessibility of specific cell-attachment sites. This indicates that the localization of plasminogen activators at sites of focal contact does not initiate a proteolytic cascade leading to generalized matrix destruction, but instead is required to expose cryptic cell-attachment sites necessary for SMC migration.
Article
Full-text available
Much of the controversy surrounding the binding of plasminogen activator inhibitor-1 (PAI-1) to the low density lipoprotein receptor-related protein (LRP) may be due to the labile structure of PAI-1 and the distinct conformations that it can adopt. To examine this possibility and to test the hypothesis that PAI-1 contains a specific high affinity binding site for LRP, a sensitive and quantitative assay for PAI-1 binding to LRP was developed. This assay utilizes a unique PAI-1 mutant that was constructed with a hexapeptide tag at the NH2 terminus, which is recognized by the protein kinase, heart muscle kinase and can be specifically labeled with 32P. Our results show that only 32P-PAI-1 in complex with a proteinase binds LRP with high affinity and is efficiently endocytosed by cells, indicating that a high affinity site for LRP is generated on PAI-1 only when in complex with a proteinase. In addition, PAI-1 in complex with different proteinases is shown to cross-compete for LRP binding, demonstrating that the binding site is independent of the proteinase and therefore must reside on the PAI-1 portion of the complex. Finally, mutagenesis of PAI-1 results in loss of LRP binding, confirming that the high affinity binding site is located on PAI-1 and suggesting that the LRP binding site lays within a region of PAI-1 previously shown to contain the heparin binding domain.
Article
Full-text available
The endothelium may play a pivotal role in hemodynamic force-induced vascular remodeling. We investigated the role of endothelial cell (EC) plasminogen activator inhibitor-1 (PAI-1) in modulating flow-induced smooth muscle cell (SMC) migration. Human SMCs cocultured with or without human ECs were exposed to static (0 mL/min) or flow (26 mL/min; shear stress 23 dyne/cm(2)) conditions for 24 hours in a perfused capillary culture system. SMC migration was then assessed with a Transwell migration assay. In the absence but not in the presence of ECs, pulsatile flow significantly increased the migration of SMCs (264+/-26%) compared with SMCs under static conditions, concomitant with a 3- and 4-fold increase in PAI-1 mRNA and protein, respectively, in cocultured ECs. In the presence of PAI-1-/- ECs, flow increased wild-type SMC migration (226+/-25%), an effect that was reversed by exogenous PAI-1. To determine whether the antimigratory activity of PAI-1 was dependent primarily on inhibition of PAs or its association with vitronectin, experiments were conducted with PAI-1R (a mutant PAI-1 that binds to vitronectin but does not inhibit PA) and PAI-1K (a mutant that inhibits PA but has reduced affinity for vitronectin). PAI-1R inhibited both basal and flow-induced migration, whereas PAI-1K inhibited flow-induced migration in the absence of any effect on baseline migration. Flow-induced EC PAI-1 inhibits flow-induced SMC migration in vitro. EC PAI-1 expression may be one of the predominant mechanisms responsible for controlling the process of vascular remodeling.
Article
Full-text available
The urokinase receptor (uPAR) is linked to cellular migration through its capacity to promote pericellular proteolysis, regulate integrin function, and mediate cell signaling in response to urokinase (uPA) binding. The mechanisms for these activities remain incompletely defined, although uPAR was recently identified as a cis-acting ligand for the beta2 integrin CD11b/CD18 (Mac-1). Here we show that a major beta1 integrin partner for uPAR/uPA signaling is alpha3. In uPAR-transfected 293 cells uPAR complexed (>90%) with alpha3beta1 and antibodies to alpha3 blocked uPAR-dependent vitronectin (Vn) adhesion. Soluble uPAR bound to recombinant alpha3beta1 in a uPA-dependent manner (K(d) < 20 nM) and binding was blocked by a 17-mer alpha3beta1 integrin peptide (alpha325) homologous to the CD11b uPAR-binding site. uPAR colocalized with alpha3beta1 in MDA-MB-231 cells and uPA (1 nM) enhanced spreading and focal adhesion kinase phosphorylation on fibronectin (Fn) or collagen type I (Col) in a pertussis toxin- and alpha325-sensitive manner. A critical role of alpha3beta1 in uPA signaling was verified by studies of epithelial cells from alpha3-deficient mice. Thus, uPAR preferentially complexes with alpha3beta1, promoting direct (Vn) and indirect (Fn, Col) pathways of cell adhesion, the latter a heterotrimeric G protein-dependent mechanism of signaling between alpha3beta1 and other beta1 integrins.
Article
Full-text available
Plasminogen activator inhibitor-1 (PAI-1), an inhibitor of urokinase plasminogen activator, is paradoxically associated with a poor prognosis in breast cancer. PAI-1 is linked to several processes in the metastatic cascade. However, the role of PAI-1 in metastatic processes, which may be independent of protease inhibitory activity, is not fully understood. We report herein that PAI-1, when added exogenously to or stably transfected in human MDA-MB-435 breast carcinoma cells, had disparate effects on adhesion to extracellular matrix proteins and motility in vitro. Specifically, exogenously added PAI-1 inhibited cell adhesion to vitronectin but not fibronectin, in agreement with the literature. By contrast, stably transfected PAI-1 stimulated adhesion to both proteins. Wild-type PAI-1 was required for this stimulation, because expression of a non-protease inhibitory P14 (T333R) PAI-1 mutant failed to enhance adhesion. Compared with non-inhibitory PAI-1, wild-type PAI-1 also increased cell motility in chemotaxic assays. Furthermore, stable transfection of a related serine protease inhibitor, plasminogen activator inhibitor-3 (PAI-3, or protein C inhibitor) gave results similar to wild-type PAI-1. The stimulatory activity of PAI-3 was not seen with a non-protease inhibitory P14 PAI-3 mutant (T341R). We show that a downstream effect of endogenous wild-type PAI-1 and PAI-3 overexpression, but not their non-inhibitory counterparts, was the altered expression of alpha(2), alpha(3), alpha(4), alpha(5), and beta(1) integrin subunits. Additionally, blocking antibodies to beta(1) integrin inhibited PAI-1-induced adhesion. Our data provide experimental support for the stimulatory and inhibitory effects of PAI-1 in metastasis and introduce PAI-3 as another serpin potentially important in malignant disease.
Article
Full-text available
Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) play an important role in the invasiveness of gliomas and other infiltrative tumors. In glioma cell lines and tumors, high grade correlates with increased expression of uPAR and uPA. We report here the downregulation of uPAR and uPA by delivery of antisense sequences of uPAR and uPA in a single adenoviral vector, Ad-uPAR-uPA (Ad, adenovirus). The bicistronic construct (Ad-uPAR-uPA) infected glioblastoma cell line had significantly reduced levels of uPAR, uPA enzymatic activity and immunoreactivity for these proteins when compared to controls. The Ad-uPAR-uPA infected cells showed a markedly lower level of invasion in the Matrigel invasion assays, and their spheroids failed to invade the fetal rat brain aggregates in the coculture system. Intracranial injection of SNB19 cells with the Ad-uPAR-uPA antisense bicistronic construct showed inhibited invasiveness and tumorigenicity. Subcutaneous injections of bicistronic antisense constructs into established tumors (U87 MG) caused regression of those tumors. Our results support the therapeutic potential of targeting the individual components of the uPAR-uPA system by using a single adenovirus construct for the treatment of glioma and other invasive cancers.
Article
Full-text available
Plasminogen activator inhibitor type-1 (PAI-1), is a unique member of serpin superfamily, the primary regulator of plasminogen activation and therefore essential factor regulating physiological thrombotic/fibrinolytic balance in vivo. Via interactions with integrins and extracellular matrix components it orchestrates also cell adhesion and migration. Therefore, PAI-1 is considered one of the key regulators of tumor invasion and metastasis, as well as cancer-related angiogenesis. This review summarizes recent findings on the structure and functional activity of the plasminogen activator inhibitor type-1, and current opinions on its role in tumorigenesis.
Article
Full-text available
Numerous nucleic acid ligands, also termed decoys or aptamers, have been developed during the past 15 years that can inhibit the activity of many pathogenic proteins. Two of them, Macugen and E2F decoy, are in phase III clinical trials. Several properties of aptamers make them an attractive class of therapeutic compounds. Their affinity and specificity for a given protein make it possible to isolate a ligand to virtually any target, and adjusting their bioavailability expands their clinical utility. The ability to develop aptamers that retain activity in multiple organisms facilitates preclinical development. Antidote control of aptamer activity enables safe, tightly controlled therapeutics. Aptamers may prove useful in the treatment of a wide variety of human maladies, including infectious diseases, cancer, and cardiovascular disease. We review the observations that facilitated the development of this emerging class of therapeutics, summarize progress to date, and speculate on the eventual utility of such agents in the clinic.
Article
Full-text available
Breakdown of the extracellular matrix is crucial for cancer invasion and metastasis. It is accomplished by the concerted action of several proteases, including the serine protease plasmin and a number of matrix metalloproteases. The activity of each of these proteases is regulated by an array of activators, inhibitors and cellular receptors. Thus, the generation of plasmin involves the pro-enzyme plasminogen, the urokinase type plasminogen activator uPA and its pro-enzyme pro-uPA, the uPA inhibitor PAI-1, the cell surface uPA receptor uPAR, and the plasmin inhibitor alpha(2)-antiplasmin. Furthermore, the regulation of extracellular proteolysis in cancer involves a complex interplay between cancer cells and non-malignant stromal cells in the expression of the molecular components involved. For some types of cancer, this cellular interplay mimics that observed in the tissue of origin during non-neoplastic tissue remodelling processes. We propose that cancer invasion can be considered as uncontrolled tissue remodelling. Inhibition of extracellular proteases is an attractive approach to cancer therapy. Because proteases have many different functions in the normal organism, efficient inhibition will have toxic side effects. In cancer invasion, like in normal tissue remodelling processes, there appears to be a functional overlap between different extracellular proteases. This redundancy means that combinations of protease inhibitors must be used. Such combination therapy, however, is also likely to increase toxicity. Therefore for each type of cancer, a combination of protease inhibitors that is optimised with respect to both maximal therapeutic effect and minimal toxic side effects need to be identified.
Article
Full-text available
The invasive ability of tumor cells plays a key role in prostate cancer metastasis and is a major cause of treatment failure. Urokinase plasminogen activator-(uPA) and its receptor (uPAR)-mediated signaling have been implicated in tumor cell invasion, survival, and metastasis in a variety of cancers. This study was undertaken to investigate the biological roles of uPA and uPAR in prostate cancer cell invasion and survival, and the potential of uPA and uPAR as targets for prostate cancer therapy. uPA and uPAR expression correlates with the metastatic potential of prostate cancer cells. Thus, therapies designed to inhibit uPA and uPAR expression would be beneficial. LNCaP, DU145, and PC3 are prostate cancer cell lines with low, moderate, and high metastatic potential, respectively, as demonstrated by their capacity to invade the extracellular matrix. In this study we utilized small hairpin RNAs (shRNAs), also referred to as small interfering RNAs, to target human uPA and uPAR. These small interfering RNA constructs significantly inhibited uPA and uPAR expression at both the mRNA and protein levels in the highly metastatic prostate cancer cell line PC3. Our data demonstrated that uPA-uPAR knockdown in PC3 cells resulted in a dramatic reduction of tumor cell invasion as indicated by a Matrigel invasion assay. Furthermore, simultaneous silencing of the genes for uPA and uPAR using a single plasmid construct expressing shRNAs for both uPA and uPAR significantly reduced cell viability and ultimately resulted in the induction of apoptotic cell death. RNA interference for uPA and uPAR also abrogated uPA-uPAR signaling to downstream target molecules such as ERK1/2 and Stat 3. In addition, our results demonstrated that intratumoral injection with the plasmid construct expressing shRNAs for uPA and uPAR almost completely inhibited established tumor growth and survival in an orthotopic mouse prostate cancer model. These findings uncovered evidence of a complex signaling network operating downstream of uPA-uPAR that actively advances tumor cell invasion, proliferation, and survival of prostate cancer cells. Thus, RNA interference-directed targeting of uPA and uPAR is a convenient and novel tool for studying the biological role of the uPA-uPAR system and raises the potential of its application for prostate cancer therapy.
Article
Full-text available
Aptamers recognize their targets with extraordinary affinity and specificity. The aptamer-based therapeutic, Macugen, is derived from a modified 2′fluoro pyrimidine RNA inhibitor to vascular endothelial growth factor (VEGF) and is now being used to treat the wet form of age-related macular degeneration. This VEGF165 aptamer binds specifically to the VEGF165 isoform, a dimeric protein with a receptor-binding domain and a heparin-binding domain (HBD). To understand the molecular recognition between VEGF and this aptamer, binding experiments were used to show that the HBD contributes the majority of binding energy in the VEGF165–aptamer complex. A tissue culture-based competition assay demonstrated that the HBD effectively competes with VEGF165 for aptamer binding in vivo. Comparison of NMR spectra revealed that structural features of the smaller HBD–aptamer complex are present in the full-length VEGF164–aptamer complex. These data show that the HBD provides the binding site for the aptamer and is the primary determinant for the affinity and specificity in the VEGF165–aptamer complex. • age-related macular degeneration • Macugen • RNA • NMR
Article
Full-text available
A wide variety of tumor cells exhibit overexpression of urokinase plasminogen activator (uPA) and its receptor (uPAR). In breast cancer, expression of uPA and uPAR is essential for tumor cell invasion and metastasis. It is also known that uPA binds to uPAR and activates the RAS extracellular signal regulated kinase (ERK) signaling pathway. In our study, small interfering RNA (siRNA) was introduced to downregulate the expression of uPA and uPAR in two breast cancer cell lines (MDA MB 231 and ZR 75 1). uPA and uPAR were downregulated individually using single constructs, and in combination using a bicistronic construct driven by a CMV promoter in a pcDNA-3 mammalian expression vector. Reverse transcription PCR (RT-PCR) and Western blot analyses indicated downregulation at both the mRNA and protein levels. In vitro angiogenesis studies using conditioned medium in HMEC-1 cells indicated a decrease in the angiogenic potential of conditioned media from treated cells when compared to the controls. This decrease in angiogenic potential was remarkably higher with the bicistronic construct. Similarly, the invasive potential of these cells decreased dramatically when treated with the bicistronic construct, thereby suggesting a synergistic effect from the downregulation of both uPA and uPAR. Furthermore, when uPA and uPAR were downregulated simultaneously, the apoptotic cascade was triggered as indicated by the upregulation of both initiator and effector caspases as well as other pro-apoptotic molecules. A mitochondrial permeability assay and FACS analysis revealed an increase in apoptotic cells in the uPA/uPAR treatment as compared to the other treatments. This overexpression of pro-apoptotic caspases in relation to the RNAi-induced downregulation of uPA and uPAR clearly suggests the involvement of the uPA-uPAR system in cell survival and proliferation in addition to their role in tumor progression.
Article
Full-text available
Urokinase-type plasminogen activator (uPA), a highly restricted serine protease, plays an important role in the regulation of diverse physiologic and pathologic processes. Strong clinical and experimental evidence has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients. uPA has been considered as a promising molecular target for development of anticancer drugs. Here, we report the identification of several new uPA inhibitors using a high-throughput screen from a chemical library. From these uPA inhibitors, molecular modeling and docking studies identified 4-oxazolidinone as a novel lead pharmacophore. Optimization of the 4-oxazolidinone pharmacophore resulted in a series of structurally modified compounds with improved potency and selectivity. One of the 4-oxazolidinone analogues, UK122, showed the highest inhibition of uPA activity. The IC(50) of UK122 in a cell-free indirect uPA assay is 0.2 micromol/L. This compound also showed no or little inhibition of other serine proteases such as thrombin, trypsin, plasmin, and the tissue-type plasminogen activator, indicating its high specificity against uPA. Moreover, UK122 showed little cytotoxicity against CFPAC-1 cells (IC(50) >100 micromol/L) but significantly inhibited the migration and invasion of this pancreatic cancer cell line. Our data show that UK122 could potentially be developed as a new anticancer agent that prevents the invasion and metastasis of pancreatic cancer.
Article
Full-text available
Plasminogen activator inhibitor-1 (PAI-1) is a typical member of the serpin family that kinetically traps its target proteinase as a covalent complex by distortion of the proteinase domain. Incorporation of the fluorescently silent 4-fluorotryptophan analog into PAI-1 permitted us to observe changes in the intrinsic tryptophan fluorescence of two-chain tissue-type plasminogen activator (tPA) and the proteinase domain of tPA during the inhibition reaction. We demonstrated three distinct conformational changes of the proteinase that occur during complex formation and distortion. A conformational change occurred during the initial formation of the non-covalent Michaelis complex followed by a large conformational change associated with the distortion of the proteinase catalytic domain that occurs concurrently with the formation of stable proteinase-inhibitor complexes. Following distortion, a very slow structural change occurs that may be involved in the stabilization or regulation of the trapped complex. Furthermore, by comparing the inhibition rates of two-chain tPA and the proteinase domain of tPA by PAI-1, we demonstrate that the accessory domains of tPA play a prominent role in the initial formation of the non-covalent Michaelis complex.
Article
The plasminogen activator inhibitor from human endothelial cells (PAI- 1) exists in two forms in the culture medium: an active form that binds to and inactivates plasminogen activators and a latent form that in its native state has no anti-activator activity. Inhibitor activity associated with the latent form can be generated by treatment with protein denaturants and makes up more than 98% of the total inhibitor activity in conditioned medium. Plasminogen activator inhibitor activity is also found in cell cytosol. This inhibitor activity is stable to SDS-treatment but is not enhanced by it. We investigated the relationship between this active cell-associated inhibitor and the latent PAI-1 found in the conditioned medium. Both intracellular and extracellular inhibitors were immunoprecipitated by a monoclonal antibody produced against the latent inhibitor from HT1080 fibrosarcoma cells and electrophoresis on SDS gels of various acrylamide concentrations demonstrated that both forms had the same Mr. Incubation of cytosol inhibitor at 37 degrees C resulted in a decline in inhibitor activity with a half-life of approximately 4 hours, a rate of decline similar to that of the active PAI-1 in conditioned medium, with less than 10% of the original activity present after eight hours. This decline is accelerated at higher temperatures and is not affected by the presence of a variety of protease inhibitors. Approximately 90% of the activity can be regenerated after SDS treatment suggesting that the cell associated inhibitor, during incubation at 37 degrees C, converts to a form similar to that found in conditioned medium. Despite these similarities, the apparent Stoke's radii of the active intracellular inhibitor and the latent inhibitor in conditioned medium were significantly different with values of 2.77 nm and 2.40 nm for active and latent PAI-1, respectively. Incubation of the active form at 37 degrees C resulted in the shift of the Stoke's radius to that similar to the latent PAI-1 (2.45 nm). Thus, the active and latent PAI-1, while being immunologically similar and of the same apparent Mr, can be differentiated by their behavior on gel permeation columns. This suggests that the intracellular inhibitor is a precursor to the latent form.
Article
Background: Recent studies have suggested that vascular endothelial growth factor (VEGF) is an important stimulus for the growth of new blood vessels in the eye. Anti-VEGF therapy is thus a potential treatment for exudative macular degeneration and diabetic retinopathy. Methods: Previously described animal models of vascular leakage and ocular neovascularization, including the Miles assay, the rat corneal angiogenesis model, and the mouse retinopathy of prematurity (ROP) model, were used to study this drug. After these studies, a phase IA single ascending dose study of intravitreal injections of the drug was performed in 15 patients with subfoveal choroidal neovascularization secondary to exudative age-related macular degeneration (AMD). Results: The Miles assay model showed almost complete attenuation of VEGF-mediated vascular leakage following addition of EYE001, and the corneal angiogenesis model also showed a significant reduction in neovascularization with EYE001. The ROP model showed inhibition of 80% of the retinal neovascularization compared with controls (P = 0.0001). The phase IA safety study of patients with exudative AMD showed no significant safety issues related to the drug. Ophthalmic evaluation revealed that 80% of patients showed stable or improved vision 3 months after treatment and that 27% of eyes demonstrated a three-line or greater improvement in vision on the Early Treatment for Diabetic Retinopathy Study chart at this time. Conclusion: Anti-VEGF therapy is a promising new avenue for the treatment of neovascular diseases of the eye, including exudative macular degeneration and diabetic retinopathy. Preclinical data from studies with EYE001 support clinical evaluation of its efficacy in such diseases. This report is the first to describe administration of anti-VEGF therapy in humans for exudative macular degeneration and shows the safety of such therapy for single injections. Further clinical studies are necessary to determine the safety of multiple intravitreal injections of EYE001 and larger studies are needed to prove the efficacy of this novel, potentially therapeutic agent for neovascular AMD.
Article
Vitronectin endows plasminogen activator inhibitor 1 (PAI-1), the fast-acting inhibitor of both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), with additional thrombin inhibitory properties. In view of the apparent association between PAI-1 and vitronectin in the endothelial cell matrix (ECM), we analyzed the interaction between PAI-1 and thrombin in this environment. Upon incubating 125I-labeled alpha-thrombin with endothelial cell matrix (ECM), the protease formed SDS-stable complexes exclusively with PAI-1, with subsequent release of these complexes into the supernatant. Vitronectin was required as a cofactor for the association between PAI-1 and thrombin in ECM. Metabolic labeling of endothelial cell proteins, followed by incubation of ECM with t-PA, u-PA, or thrombin, indicated that all three proteases depleted PAI-1 from ECM by complex formation and proteolytic cleavage. Proteolytically inactive thrombin as well as anticoagulant thrombin, i.e., thrombin in complex with its endothelial cell surface receptor thrombomodulin, did not neutralize PAI-1, emphasizing that the procoagulant moiety of thrombin is required for a functional interaction with PAI-1. A physiological implication of our findings may be related to the mutual neutralization of both PAI-1 and thrombin, providing a new link between plasminogen activation and the coagulation system. Evidence is provided that in ECM, procoagulant thrombin may promote plasminogen activator activity by inactivating PAI-1.
Conference Paper
Purpose: There is evidence to suggest that anti-vascular endothelial growth factor (anti-VEGF) therapy may be useful in treating ocular neovascularization. A phase IA single intravitreal injection study of anti-VEGF therapy for patients with subfoveal choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD) revealed a good safety profile. We performed a phase II multiple injection study of anti-VEGF therapy with and without photodynamic therapy for patients with subfoveal CNV secondary to AMD to determine the safety profile of multiple injection therapy. Design: A phase II multiple-dose safety study. Participants/methods: Twenty-one patients were treated with intravitreal injection with and without photodynamic therapy. Main outcome measures: Clinical evidence of toxicity and complications. Results: No drug-related serious adverse events were revealed. Ophthalmic evaluation revealed that 87.5% of patients who received the anti-VEGF aptamer alone showed stabilized or improved vision 3 months after treatment and that 25% of eyes demonstrated a 3 line or greater improvement in vision on the Early Treatment of Diabetic Retinopathy Study chart during this period. A 60% 3 line gain at 3 months was noted in patients who received both the anti-VEGF aptamer and photodynamic therapy. Conclusions: Anti-VEGF therapy is a promising treatment for various forms of ocular neovascularization, including AMD. Multiple intravitreal injections of the anti-VEGF aptamer were well tolerated in this phase II study. Further clinical trials are necessary to demonstrate the efficacy and long-term safety of anti-VEGF therapy for AMD.
Article
The cofactors heparin, vitronectin (VN), and thrombomodulin (TM) modulate the reactivity of alpha-thrombin with plasminogen activator inhibitor (PAI-1). While heparin and VN accelerate the reaction by similar to 2 orders of magnitude, TM protects alpha-thrombin from rapid inactivation by PAI-1 in the presence of VN. To understand how these cofactors function, we studied the kinetics of PAI-1 inactivation of alpha-thrombin, the exosite 1 variant gamma-thrombin, the exosite 2 mutant R93,97,101A thrombin, and recombinant meizothrombin in both the absence and presence of these cofactors. Heparin and VN accelerated the second-order association rate constant [k(2) = (7.9 +/- 0.5) x 10(2) M-1 s(-1)] of alpha-thrombin with PAI-1 similar to 200- and similar to 240-fold, respectively. The k(2) value for gamma-thrombin [(7.9 +/- 0.7) x 10(1) M-1 s(-1)] was impaired 10-fold, but was enhanced by heparin and VN similar to 280- and similar to 75-fold, respectively. Similar to inactivation of gamma-thrombin, PAI-1 inactivation of alpha-thrombin in complex with the epidermal growth factor-like domains 4-6 of TM (TM4-6) was impaired similar to 10-fold. The exosite 2 mutant R93,97,101A thrombin, which was previously shown not to bind heparin, and meizothrombin, in which exosite 2 is masked, reacted with PAI-1 at similar rates in both the absence and presence of heparin [k(2) = (1.3-1.5) x 10(2) M-1 s(-1) for R93,97,101A thrombin and k(2) = (3.6-5.1) x 10(2) M-1 s(-1) for meizothrombin]. Unlike heparin, however, VN enhanced the k(2) of R93,97,101A thrombin and meizothrombin inactivation similar to 80- and similar to 30-fold, respectively. Continuous kinetic analysis as well as competition kinetic studies in the presence of S195A thrombin suggested that the accelerating effect of VN or heparin occurs primarily by lowering the dissociation constant (K-d) for formation of a noncovalent, Michaelis-type complex. Analysis of these results suggest that (1) heparin binds to exosite 2 of alpha-thrombin to accelerate the reaction by a template mechanism, (2) VN accelerates PAI-1 inactivation of alpha-thrombin by lowering the Ka for initial complex formation by an unknown mechanism that does not require binding to either exosite I or exosite 2 of alpha-thrombin, (3) alpha-thrombin may have a binding site for PAI-1 within or near exosite 1, and (4) TM occupancy of exosite 1 partially accounts for the protection of thrombin from rapid inactivation by PAI-1 in the presence of vitronectin.
Article
The stability of PAI-activity has been studied at different conditions. The inactivation followed first order kinetics. Lowering the temperature and decreasing the pH both, increased the stability of PAI-1 dramatically. Addition of the PAI-1 binding protein, vitronectin, to reactivated PAI-1, about doubled the half-life of PAI-1 at all conditions studied. In the presence of chloramine T, the inactivation of reactivated PAI-1 was very rapid. In this case the protective effect of purified vitronectin, human plasma or fetal calf serum, but not of bovine serum albumin, was pronounced. The stability of the spontaneously active high Mr form of PAI-1 (partially purified or in plasma), constituting a complex between PAI-1 and vitronectin, was quite similar to reactivated PAI-1 in the presence of vitronectin. Addition of pure vitronectin, human plasma or fetal calf serum to such material had no further stabilizing effect. Reactivated PAI-1, which was inactivated by incubation at physiological conditions could again be fully reactivated, in contrast to chloramine T-oxidized PAI-1, which was irreversibly inactivated.
Article
The plasminogen activator inhibitor from human endothelial cells (PAI-1) exists in two forms in the culture medium: an active form that binds to and inactivates plasminogen activators and a latent form that in its native state has no anti-activator activity. Inhibitor activity associated with the latent form can be generated by treatment with protein denaturants and makes up more than 98% of the total inhibitor activity in conditioned medium. Plasminogen activator inhibitor activity is also found in cell cytosol. This inhibitor activity is stable to SDS-treatment but is not enhanced by it. We investigated the relationship between this active cell-associated inhibitor and the latent PAI-1 found in the conditioned medium. Both intracellular and extracellular inhibitors were immunoprecipitated by a monoclonal antibody produced against the latent inhibitor from HT1080 fibrosarcoma cells and electrophoresis on SDS gels of various acrylamide concentrations demonstrated that both forms had the same Mr. Incubation of cytosol inhibitor at 37 degrees C resulted in a decline in inhibitor activity with a half-life of approximately 4 hours, a rate of decline similar to that of the active PAI-1 in conditioned medium, with less than 10% of the original activity present after eight hours. This decline is accelerated at higher temperatures and is not affected by the presence of a variety of protease inhibitors. Approximately 90% of the activity can be regenerated after SDS treatment suggesting that the cell associated inhibitor, during incubation at 37 degrees C, converts to a form similar to that found in conditioned medium. Despite these similarities, the apparent Stoke's radii of the active intracellular inhibitor and the latent inhibitor in conditioned medium were significantly different with values of 2.77 nm and 2.40 nm for active and latent PAI-1, respectively. Incubation of the active form at 37 degrees C resulted in the shift of the Stoke's radius to that similar to the latent PAI-1 (2.45 nm). Thus, the active and latent PAI-1, while being immunologically similar and of the same apparent Mr, can be differentiated by their behavior on gel permeation columns. This suggests that the intracellular inhibitor is a precursor to the latent form.
Article
Plasminogen activator inhibitor-1 (PAI-1) is a member of the serine protease inhibitor (serpin) supergene family and a central regulatory protein in the blood coagulation system. PAI-1 is unique among serpins in exhibiting distinct active and inactive (latent) conformations in vivo. Though the structure of latent PAI-1 was recently solved, the structure of the short-lived, active form of PAI-1 is not known. In order to probe the structural basis for this unique conformational change, a randomly mutated recombinant PAI-1 expression library was constructed in bacteriophage and screened for increased functional stability. Fourteen unique clones were selected, and shown to exhibit functional half-lives (T1/2S) exceeding that of wild-type PAI-1 by up to 72-fold. The most stable variant (T1/2 = 145 h) contained four mutations. Detailed analysis of these four mutations, individually and in combination, demonstrated that the markedly enhanced functional stability of the parent compound mutant required contributions from all four substitutions, with no individual T1/2 exceeding 6.6 h. The functional stability of at least eight of the remaining 13 compound mutants also required interactions between two or more amino acid substitutions, with no single variant increasing the T1/2 by > 10-fold. The nature of the identified mutations implies that the unique instability of the PAI-1 active conformation evolved through global changes in protein packing and suggest a selective advantage for transient inhibitor function.
Article
Integrin function is central to inflammation, immunity, and tumor progression. The urokinase-type plasminogen activator receptor (uPAR) and integrins formed stable complexes that both inhibited native integrin adhesive function and promoted adhesion to vitronectin via a ligand binding site on uPAR. Interaction of soluble uPAR with the active conformer of integrins mimicked the inhibitory effects of membrane uPAR. Both uPAR-mediated adhesion and altered integrin function were blocked by a peptide that bound to uPAR and disrupted complexes. These data provide a paradigm for regulation of integrins in which a nonintegrin membrane receptor interacts with and modifies the function of activated integrins.
Article
Cell migration involves the integrins, their extracellular matrix ligands, and pericellular proteolytic enzyme systems. We have studied the role of plasminogen activator inhibitor-1 (PAI-1) in cell migration, using human amnion WISH cells and human epidermoid carcinoma HEp-2 cells in an assay measuring migration from microcarrier beads and a modified Boyden-chamber assay. Active, but not latent or reactive center-cleaved, PAI-1 inhibited migration. A PAI-1 mutant without ability to inhibit plasminogen activation was as active as wild-type PAI-1 as a migration inhibitor, showing that inhibition of plasminogen activation was not involved. PAI-1 specifically interfered with intergrin- and vitronectin-mediated migration: Migration onto vitronectin-coated but not onto fibronectin-coated surfaces was inhibited by PAI-1, a cyclic RGD peptide inhibited migration, and both cell lines expressed vitronectin-binding alpha v-integrins. In addition, active PAI-1, but not latent or reactive center-cleaved PAI-1, inhibited vitronectin binding to integrins in an in vitro binding assay, without affecting binding of fibronectin. Monoclonal antibodies against the urokinase receptor, another vitronectin binding protein, did not affect cell migration in the beads assay, while some inhibitory effect was observed in the Boyden-chamber assay. We conclude that PAI-1, independently of its role as a proteinase inhibitor, inhibits cell migration by competing for vitronectin binding to integrins, while the interference of PAI-1 with binding of vitronectin to the urokinase receptor may play a secondary role. These data define a novel function for the serpin PAI-1, enabling it to regulate cell migration over vitronectin-rich extracellular matrix in the body.
Article
The tissue factor/factor VIIa complex is thought to be the primary initiator of most physiologic blood coagulation events. Because of its proximal role in this process, we sought to generate new inhibitors of tissue factor/factor VIIa activity by targeting factor VIIa. We employed a combinatorial RNA library and in vitro selection methods to isolate a high affinity, nuclease-resistant RNA ligand that binds specifically to coagulation factor VII/VIIa. This RNA inhibits the tissue factor-dependent activation of factor X by factor VIIa. Kinetic analyses of the mechanism of action of this RNA suggest that it antagonizes factor VIIa activity by preventing formation of a functional factor VII/tissue factor complex. Furthermore, this RNA significantly prolongs the prothrombin time of human plasma in a dose dependent manner, and has an in vitro half-life of approximately 15 h in human plasma. Thus, this RNA ligand represents a novel class of anticoagulant agents directed against factor VIIa.
Article
Migratory cells use both adhesion receptors and proteolytic enzymes to regulate their interaction with and response to extracellular matrices. Cooperation between integrins and proteases operates at several levels: integrin signaling induces proteases, proteases co-localize with integrins, and proteases regulate the interface between integrins and the intracellular cytoskeleton. One protease system intimately connected to integrins is the urokinase/urokinase receptor(uPAR)/plasmin system. Recent studies indicate urokinase promotes the ligand-like binding of its receptor to a set of beta1 and beta2 integrins, this binding in turn affecting integrin signaling and cell migration. The glycolipid anchor of uPAR associates with cholesterol-rich membrane rafts. Binding of uPAR to integrins may enrich integrin clusters with signaling molecules such as src-family kinases that localize to rafts and are important to integrin function. Signals derived from integrin/uPAR complexes promote the function of other integrins. Thus the urokinase/plasmin system coordinates with integrins to regulate cell: matrix interactions.
Article
The high-affinity interaction between urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) plays an important role in pericellular plasminogen activation. Since proteolytic degradation of the extracellular matrix has an established role in tumor invasion and metastasis, the uPA-uPAR interaction represents a potential target for therapeutic intervention. By affinity maturation using combinatorial chemistry we have now developed and characterized a 9-mer, linear peptide antagonist of the uPA-uPAR interaction demonstrating specific, high-affinity binding to human uPAR (K(d) approximately 0.4 nM). Studies by surface plasmon resonance reveal that the off-rate for this receptor-peptide complex is comparable to that measured for the natural protein ligand, uPA. The functional epitope on human uPAR for this antagonist has been delineated by site-directed mutagenesis, and its assignment to loop 3 of uPAR domain III (Met(246), His(249), His(251), and Phe(256)) corroborates data previously obtained by photoaffinity labeling and provides a molecular explanation for the extreme selectivity observed for the antagonist toward human compared to mouse, monkey, and hamster uPAR. When human HEp-3 cancer cells were inoculated in the presence of this peptide antagonist, a specific inhibition of cancer cell intravasation was observed in a chicken chorioallantoic membrane assay. These data imply that design of small organic molecules mimicking the binding determinants of this 9-mer peptide antagonist may have a potential application in combination therapy for certain types of cancer.
Article
We studied the RNA aptamer Toggle-25/thrombin interaction during inhibition by antithrombin (AT), heparin cofactor II (HCII) and protein C inhibitor (PCI). Thrombin inhibition was reduced 3-fold by Toggle-25 for AT and HCII, but it was slightly enhanced for PCI. In the presence of glycosaminoglycans, AT and PCI had significantly reduced thrombin inhibition with Toggle-25, but it was only reduced 3-fold for HCII. This suggested that the primary effect of aptamer binding was through the heparin-binding site of thrombin, anion-binding exosite-2 (exosite-2). We localized the Toggle-25 binding site to Arg 98, Glu 169, Lys 174, Asp 175, Arg 245, and Lys 248 of exosite-2. We conclude that a RNA aptamer to thrombin exosite-2 might provide an effective clinical reagent to control heparin's anticoagulant action.
Article
Although plasminogen activator inhibitor 1 (PAI-1) is one of the primary regulators of the fibrinolytic system, it also has dramatic effects on cell adhesion, detachment and migration. PAI-1 also differs from other serine protease inhibitors (serpins) in that it is a trace protein in plasma, it has a short half-life in vivo, its synthesis is highly regulated, and it binds to the adhesive glycoprotein vitronectin (VN) with high affinity and specificity. These unique and diverse properties of PAI-1 probably account for the many observations in the literature that correlate abnormalities in PAI-1 gene expression with a variety of pathological conditions. In this review, we discuss the discovery, origin, properties and regulation of PAI-1, and then speculate about its potential role in vascular disease, fibrosis, obesity and the metabolic syndrome, and cancer.
Article
The activity of a set of peptidases (proteases) involved in cancer progression is collectively known as the cancer 'degradome'. Invasion and metastasis were initially considered as late events in cancer development and the processes in which proteases were involved. However, recent studies indicate that invasion and metastasis are not late events, but can occur during early stages as well. Moreover, other processes occurring in various stages of cancer progression are also protease-dependent, such as (upregulation of) cell proliferation, (downregulation of) apoptosis, involvement of white blood cells, angiogenesis and induction of multi-drug resistance. Proteolytic activity in tumours is regulated in a complex manner, as both genetically unstable cancer cells and stable stromal cells, such as fibroblasts, endothelial cells and inflammatory cells, are involved. In vitro studies and studies using animal models have clearly shown protease dependency of many processes in carcinogenesis. However, clinical trials using protease inhibitors have thus far been unsuccessful except for a few applications of matrix metalloprotease (MMP) inhibitors when used in combination with cytostatic anticancer agents and/or in the early stages of cancer. Antithrombotics, such as low-molecular-weight heparin and warfarin, were also successful in clinical trials, probably by interfering with proteases of the coagulation cascade. The two-way association between cancer and thrombosis has long been recognised in the clinic. The poor outcome of other clinical trials of protease inhibitors is probably due to the late stages of cancer of the patient populations included, and the limited understanding of the complex regulation and effects of the activity of the various proteases in tumours depending on, among others, tumour type and stage, interactions between the cancer cells, other cells and the extracellular matrix in tumours. Therefore, a better fundamental understanding of the proteolytic complexity in tumours is essential before clinical trials can be rationally designed. At present, antithrombotics, the urokinase-type plasminogen activator system, the membrane-bound membrane-type 1-MMP, cathepsin L and the proteasome seem the most promising candidates as targets for anticancer strategies in early stages of cancer in combination with cytotoxic drugs. Moreover, metronomic therapy is an attractive approach using low doses of inhibitors for prolonged periods of time without interruption to specifically target endothelial cells that are involved in angiogenesis.
Article
Proteolytic degradation of fibrin (fibrinolysis) is mediated by plasminogen and its activators, tissue-type plasminogen activator (tPA(1)) and urokinase (uPA). Fibrinolysis is critical for preventing thrombus growth and restoring blood flow following thrombotic vascular occlusion. Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) superfamily, is the principal inhibitor of tPA and uPA in the fibrinolytic system. High levels of circulating PAI-1 are associated with a number of thrombotic diseases. In animal studies, transgenic mice overexpressing human PAI-1 develop spontaneous thrombosis, whereas PAI-1-deficient mice are more resistant to venous or arterial thrombosis. Furthermore, inhibition of PAI-1 activity prevents thrombus formation in animal models. The antithrombotic effects of PAI-1 inhibition are achieved by enhancing endogenous fibrinolytic activity without directly affecting blood coagulation and platelet function. Phenotypic analysis of PAI-1 deficiency in both human and mouse suggests that inhibition of PAI-1 will not lead to severe bleeding or other major adverse effects. Thus, PAI-1 inhibitors represent a new class of antithrombotic drugs with a possible wider therapeutic index than conventional antiplatelet and anticoagulant agents. This review summarizes the role of PAI-1 in thrombotic diseases and recent progress in the development of small molecule PAI-1 inhibitors.
Article
Plasminogen activator inhibitor-1 (PAI-1) is integrally involved in tumorigenesis by impacting on both proteolytic activity and cell migration during angiogenesis. We hypothesized that an orally active small molecule inhibitor of PAI-1 (PAI-039; tiplaxtinin) could affect smooth muscle cell (SMC) attachment and migration in vitro on a vitronectin matrix, and exhibit antiangiogenic activity in vivo. In vitro assays were used to assess the mechanism of inhibition of PAI-1 by PAI-039 using wild-type PAI-1 in the presence or absence of vitronectin and wild-type PAI-1 and specific PAI-1 mutants in SMC adhesion and migration assays. An in vivo tumor angiogenesis model was used to assess the effect of PAI-039 administration on neovascularization in a Matrigel implant. PAI-039 dose-dependently inhibited soluble, but not vitronectin-bound, PAI-1. Cell adhesion assays using PAI-1 mutants unable to bind vitronectin (PAI-1K) or inactivate proteases (PAI-1R) further suggested that PAI-039 inactivated PAI-1 by binding near its vitronectin domain. In a tumor angiogenesis model, PAI-039 treatment of wild-type mice dose-dependently decreased hemoglobin concentration and endothelial cell staining within the Matrigel implant, indicating reduced angiogenesis, but exhibited no in vivo efficacy in PAI-1 null mice. Administration of an orally active PAI-1 inhibitor prevented angiogenesis in a Matrigel implant. The lack of activity of PAI-039 against wild-type PAI-1 bound to vitronectin and PAI-1K suggests PAI-039 binding near the vitronectin-binding site. Our studies further substantiate a role for PAI-1 in cellular motility and tumor angiogenesis, and suggest for the first time that these effects can be modulated pharmacologically.
Article
Selectivity, titratability, rapidity of onset, and active reversibility are desirable pharmacological properties of anticoagulant therapy administered for acute indications and collectively represent an attractive platform to maximize patient safety. A novel anticoagulation system (REG1, Regado Biosciences), developed using a protein-binding oligonucleotide to factor IXa (drug, RB006) and its complementary oligonucleotide antidote (RB007), was evaluated in healthy volunteers. The primary objective was to determine the safety profile and to characterize the pharmacodynamic responses in this first-in-human study. Regado 1a was a subject-blinded, dose-escalation, placebo-controlled study that randomized 85 healthy volunteers to receive a bolus of drug or placebo followed 3 hours later by a bolus of antidote or placebo. Pharmacodynamic samples were collected serially. Subject characteristics were the following: median age, 32 years (interquartile range, 23 to 39 years); female gender, 35%; and median weight, 79 kg (interquartile range, 70 to 87 kg). No significant differences were found in median hemoglobin, platelet, creatinine, or liver function studies. There were no significant bleeding signals associated with RB006, and overall, both drug and antidote were well tolerated. One serious adverse event, an episode of transient encephalopathy, occurred in a subject receiving the low intermediate dose of RB006. The subject's symptoms resolved rapidly, and no further sequelae occurred. A predictable dose-pharmacodynamic response, reflected in activated partial thromboplastin time measurements, was seen after administration of the bolus of drug, with a clear correlation between the peak posttreatment activated partial thromboplastin time and post hoc weight-adjusted dose of drug (correlation coefficient, 0.725; P<0.001). In subjects treated with drug, antidote administration reversed the pharmacological activity of the drug, with a rapid (mean time, 1 to 5 minutes across all dose levels) and sustained return of activated partial thromboplastin time to within the normal range. The activated clotting time followed a similar anticoagulant response and reversal pattern. As anticipated, prothrombin time remained unchanged compared with baseline. These observations represent a first-in-human experience of an RNA aptamer and its complementary oligonucleotide antidote used as an anticoagulant system. The findings contribute to an emerging platform of selective, actively reversible anticoagulant drugs for use among patients with thrombotic disorders of the venous and arterial circulations.
Article
Plasminogen activator inhibitor-1 (PAI-1) is a physiological inhibitor of urokinase (uPA), a serine protease known to promote cell migration and invasion. Intuitively, increased levels of PAI-1 should be beneficial in downregulating uPA activity, particularly in cancer. By contrast, in vivo, increased levels of PAI-1 are associated with a poor prognosis in breast cancer. This phenomenon is termed the "PAI-1 paradox". Many factors are responsible for the upregulation of PAI-1 in the tumor microenvironment. We hypothesize that there is a breast cancer predisposition to a more aggressive stage when PAI-1 is upregulated as a consequence of Metabolic Syndrome (MetS). MetS exerts a detrimental effect on the breast tumor microenvironment that supports cancer invasion. People with MetS have an increased risk of coronary heart disease, stroke, peripheral vascular disease and hyperinsulinemia. Recently, MetS has also been identified as a risk factor for breast cancer. We hypothesize the existence of the "PAI-1 cycle". Sustained by MetS, adipocytokines alter PAI-1 expression to promote angiogenesis, tumor-cell migration and procoagulant microparticle formation from endothelial cells, which generates thrombin and further propagates PAI-1 synthesis. All of these factors culminate in a chemotherapy-resistant breast tumor microenvironment. The PAI-1 cycle may partly explain the PAI-1 paradox. In this hypothesis paper, we will discuss further how MetS upregulates PAI-1 and how an increased level of PAI-1 can be linked to a poor prognosis.
Article
Active and safe reversibility of anticoagulation is an unmet need in clinical care. Factor IXa, required for rapid thrombin generation on platelet surfaces, is a novel target for modulating coagulation. REG1 comprises RB006 (drug) and RB007 (antidote). RB006, a ribonucleic acid aptamer, exerts its anticoagulant effect by selectively binding FIXa. RB007, the complementary oligonucleotide antidote, binds to RB006 by Watson-Crick base pairing, neutralizing its anti-FIXa activity. To test the multiple repeat-dose safety, intraindividual pharmacodynamic reproducibility and graded active reversibility of REG1. We randomized 39 healthy volunteers to receive either three consecutive weight-adjusted, drug-antidote treatment cycles, or double placebo. Each treatment cycle included an intravenous bolus of 0.75 mg kg(-1) RB006, followed 60 min later by a descending dose of RB007, ranging from a 2 : 1 to 0.125 : 1 antidote/drug ratio (1.5 mg kg(-1) to 0.094 mg kg(-1) RB007). Serial clinical assessments and coagulation measurements were performed through 14 days postrandomization. Repeat doses of RB006 achieved highly reproducible activated partial thromboplastin time (APTT) levels with low intrasubject variability (coefficient of variation 5.5%, intraclass correlation coefficient 5.8 at 15 min postdose), while repeat doses of RB007 reversed the APTT levels dose-dependently and reproducibly. There was no major bleeding and there were no other serious adverse events. This is the first human study demonstrating multiple repeat-dose safety, intraindividual pharmacodynamic reproducibility and graded active reversibility of an RNA aptamer-oligonucleotide antidote pair. The results lay the foundation for studying the translation of this novel anticoagulation platform to a wide variety of clinical applications.
Article
Whether selective factor IXa inhibition produces an appropriate anticoagulant effect when combined with platelet-directed therapy in patients with stable coronary artery disease is unknown. REG1 consists of RB006 (drug), an injectable RNA aptamer that specifically binds and inhibits factor IXa, and RB007 (antidote), the complementary oligonucleotide that neutralizes its anti-IXa activity. We evaluated the safety, tolerability, and pharmacodynamic profile of REG1 in a randomized, double-blind, placebo-controlled study, assigning 50 subjects with coronary artery disease taking aspirin and/or clopidogrel to 4 dose levels of RB006 (15, 30, 50, and 75 mg) and RB007 (30, 60, 100, and 150 mg). The median age was 61 years (25th and 75th percentiles, 56 and 68 years), and 80% of patients were male. RB006 increased the activated partial thromboplastin time dose dependently; the median activated partial thromboplastin time at 10 minutes after a single intravenous bolus of 15, 30, 50, and 75 mg RB006 was 29.2 seconds (25th and 75th percentiles, 28.1 and 29.8 seconds), 34.6 seconds (25th and 75th percentiles, 30.9 and 40.0 seconds), 46.9 seconds (25th and 75th percentiles, 40.3 and 51.1 seconds), and 52.2 seconds (25th and 75th percentiles, 46.3 and 58.6) (P<0.0001; normal 25th and 75th percentiles, 27 and 40 seconds). RB007 reversed the activated partial thromboplastin time to baseline levels within a median of 1 minute (25th and 75th percentiles, 1 and 2 minutes) with no rebound increase through 7 days. No major bleeding or other serious adverse events occurred. This is the first experience of an RNA aptamer drug-antidote pair achieving inhibition and active restoration of factor IXa activity in combination with platelet-directed therapy in stable coronary artery disease. The preliminary clinical safety and predictable pharmacodynamic effects form the basis for ongoing studies in patients undergoing elective revascularization procedures.
RNA Aptamer Blockade of Osteopontin Inhibits Growth and Metastasis of MDA-MB231 Breast Cancer Cells Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice
  • Z Mi
  • H Guo
  • M B Russell
  • Y Liu
  • B A Sullenger
  • P C Kuo
  • H Y Min
  • L V Doyle
  • C R Vitt
  • C L Zandonella
  • J R Stratton-Thomas
  • M A Shuman
MI, Z., GUO, H., RUSSELL, M.B., LIU, Y., SULLENGER, B.A., and KUO, P.C. (2008). RNA Aptamer Blockade of Osteopontin Inhibits Growth and Metastasis of MDA-MB231 Breast Cancer Cells. Mol. Ther. MIN, H.Y., DOYLE, L.V., VITT, C.R., ZANDONELLA, C.L., STRATTON-THOMAS, J.R., SHUMAN, M.A., and ROSENBERG, S. (1996). Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice. Cancer Res. 56, 2428–2433.
Protease crosstalk with integrins: the urokinase receptor paradigm
CHAPMAN, H.A., and WEI, Y. (2001). Protease crosstalk with integrins: the urokinase receptor paradigm. Thromb. Haemost. 86, 124–129.
United States Cancer Statistics: 2004 Incidence and Mortality
U.S. Cancer Statistics Working Group. (2007). United States Cancer Statistics: 2004 Incidence and Mortality. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute.