Article

New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1

Authors:
  • Instituto de Biomedicina de Valencia, CSIC, Spain
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

We isolated from Saccharomyces cerevisiae two mutants, esc1-1 and ESC3-1, in which genes FBP1, ICL1 or GDH2 were partially derepressed during growth in glucose or galactose. The isolation was done starting with a triple mutant pyc1 pyc2 mth1 unable to grow in glucose-ammonium medium and selecting for mutants able to grow in the non-permissive medium. HXT1 and HXT2 which encode glucose transporters were expressed at high glucose concentrations in both esc1-1 and ESC3-1 mutants, while derepression of invertase at low glucose concentrations was impaired. REG1, cloned as a suppressor of ESC3-1, was not allelic to ESC3-1. Two-hybrid analysis showed an increased interaction of the protein kinase Snf1 with Snf4 in the ESC3-1 mutant; this was not due to mutations in SNF1 or SNF4. ESC3-1 did not bypass the requirement of Snf1 for derepression. We hypothesize that ESC3-1 either facilitates activation of Snf1 or interferes with its glucose-dependent inactivation.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Strain RSC89 was constructed by transforming wild-type strain DBY746 with a reg1::kanMX4 cassette obtained by amplification from the BY4741 reg1 deletion mutant with oligonucleotides 5=-reg1_disr and 3=-reg1_disr. Strain RSC90 was prepared by disruption of SNF1 with a 3.9-kbp snf1:: LEU2 cassette from BamHI-and HindIII-digested plasmid pCC107 (33) in the RSC89 background. Strain ASC15 was made by deletion of the PHO4 gene in strain RSC22 (see above) with a deletion cassette (1.6 kbp) obtained from the pho4::kanMX4 BY4741 deletion mutant. ...
Article
Full-text available
The yeast Saccharomyces cerevisiae has two main high-affinity inorganic phosphate (Pi) transporters, Pho84 and Pho89, that are functionally relevant at acidic/neutral pH and alkaline pH, respectively. Upon Pi starvation, PHO84 and PHO89 are induced by the activation of the PHO regulon by the binding of the Pho4 transcription factor to specific promoter sequences. We show that PHO89 and PHO84 are induced by alkalinization of the medium with different kinetics and that the network controlling Pho89 expression in response to alkaline pH differs from that of other members of the PHO regulon. In addition to Pho4, the PHO89 promoter is regulated by the transcriptional activator Crz1 through the calcium-activated phosphatase calcineurin, and it is under the control of several repressors (Mig2, Nrg1, and Nrg2) coordinately regulated by the Snf1 protein kinase and the Rim101 transcription factor. This network mimics the one regulating expression of the Na+-ATPase gene ENA1, encoding a major determinant for Na+ detoxification. Our data highlight a scenario in which the activities of Pho89 and Ena1 are functionally coordinated to sustain growth in an alkaline environment.
... The SAC1 protein is strikingly similar to Na + / SO 4 2− transporters (SLT genes) which are found in animal cells Pootakham and Grossman 2009), but it appears to have a regulatory function. A similar situation has been reported for Snf3p, which is a yeast hierarchical regulator that resembles the hexose transporter (Ozcan et al. 1996(Ozcan et al. , 1998Rodriguez et al. 2003). These observations raise the possibility that polypeptides that originally functioned to bind and transport specific substrates into the cell may have evolved into regulatory elements critical for sensing extracellular or intracellular SO 4 2− levels. ...
Chapter
Full-text available
Photosynthetic organisms have developed elaborate mechanisms to acquire macronutrients and to adjust to conditions in which those nutrients become limiting to growth. Some of the responses of photosynthetic organisms to macronutrient limitation may be specific for a particular nutrient and involve the development of various mechanisms to scavenge the limiting nutrient from the external milieu, which may require elevated synthesis of high affinity transport systems, the redistribution of internal nutrient stores and the synthesis of hydrolytic enzymes that release the nutrient from organic substrates in the soil. Other responses may be of a more general nature, occurring during a number of different nutrient limitation conditions, and involve modifying the biosynthetic machinery of the cell, including the photosynthetic apparatus. In this review we focus on the acquisition of the macronutrients nitrogen, sulfur and phosphorus from the environment, and the ways in which the unicellular green alga Chlamydomonas reinhardtii acclimates to changes in its nutrient environment. Keywordsammonium–assimilation–macronutrients–nitrate nutrient deprivation–phosphate–phosphorus–sulfur–transport
Article
Eukaryotic cells possess an exquisitely interwoven and fine-tuned series of signal transduction mechanisms with which to sense and respond to the ubiquitous fermentable carbon source glucose. The budding yeast Saccharomyces cerevisiae has proven to be a fertile model system with which to identify glucose signaling factors, determine the relevant functional and physical interrelationships, and characterize the corresponding metabolic, transcriptomic, and proteomic readouts. The early events in glucose signaling appear to require both extracellular sensing by transmembrane proteins and intracellular sensing by G proteins. Intermediate steps involve cAMP-dependent stimulation of protein kinase A (PKA) as well as one or more redundant PKA-independent pathways. The final steps are mediated by a relatively small collection of transcriptional regulators that collaborate closely to maximize the cellular rates of energy generation and growth. Understanding the nuclear events in this process may necessitate the further elaboration of a new model for eukaryotic gene regulation, called "reverse recruitment." An essential feature of this idea is that fine-structure mapping of nuclear architecture will be required to understand the reception of regulatory signals that emanate from the plasma membrane and cytoplasm. Completion of this task should result in a much improved understanding of eukaryotic growth, differentiation, and carcinogenesis.
Article
Full-text available
Adaptive response of the yeast Saccharomyces cerevisiae to environmental alkalinization results in remodeling of gene expression. A key target is the gene ENA1, encoding a Na(+)-ATPase, whose induction by alkaline pH has been shown to involve calcineurin and the Rim101/Nrg1 pathway. Previous functional analysis of the ENA1 promoter revealed a calcineurin-independent pH responsive region (ARR2, 83 nucleotides). We restrict here this response to a small (42 nucleotides) ARR2 5.-region, named MCIR (minimum calcineurin independent response), which contains a MIG element, able to bind Mig1,2 repressors. High pH-induced response driven from this region was largely abolished in snf1 cells and moderately reduced in a rim101 strain. Cells lacking Mig1 or Mig2 repressors had a near wild type response, but the double mutant presented a high level of expression upon alkaline stress. Deletion of NRG1 (but not of NRG2) resulted in increased expression. Induction from the MCIR region was marginal in a quadruple mutant lacking Nrg1,2 and Mig1,2 repressors. In vitro band shift experiments demonstrated binding of Nrg1 to the 5. end of the ARR2 region. Furthermore, we show that Nrg1 binds in vivo around the MCIR region under standard growth conditions, and that binding is largely abolished after high pH stress. Therefore, the calcineurin-independent response of the ENA1 gene is under the regulation of Rim101 (through Nrg1) and Snf1 (through Nrg1 and Mig2). Accordingly, induction by alkaline stress of the entire ENA1 promoter in a snf1 rim101 mutant in the presence of the calcineurin inhibitor FK506 is completely abolished. Thus, the transcriptional response to alkaline stress of the ENA1 gene integrates three different signaling pathways.
Article
Full-text available
Failure to use glucose as carbon source results in transcriptional activation of numerous genes whose expression is otherwise repressed. HXT2 encodes a yeast high affinity glucose transporter that is only expressed under conditions of glucose limitation. We show that HXT2 is rapidly and potently induced by environmental alkalinization, and this requires both the Snf1 and the calcineurin pathways. Regulation by calcineurin is mediated by the transcription factor Crz1, which rapidly translocates to the nucleus upon high pH stress, and acts through a previously unnoticed Crz1-binding element (calcineurin-dependent response element) in the HXT2 promoter (-507 GGGGCTG -501). We demonstrate that, in addition to HXT2, many other genes required for adaptation to glucose shortage, such as HXT7, MDH2, or ALD4, transcriptionally respond to calcium and high pH signaling through binding of Crz1 to their promoters. Therefore, calcineurin-dependent transcriptional regulation appears to be a common feature for many genes encoding carbohydrate-metabolizing enzymes. Remarkably, extracellular calcium allows growth of a snf1 mutant on low glucose in a calcineurin/Crz1-dependent manner, indicating that activation of calcineurin is sufficient to override a major deficiency in the glucose-repression pathway. We propose that alkalinization of the medium results in impaired glucose utilization and that activation of certain glucose-metabolizing genes by calcineurin contributes to yeast survival under this stress situation.
Article
Full-text available
Missense mutations in the SNF3 gene of Saccharomyces cerevisiae were previously found to cause defects in both glucose repression and derepression of the SUC2 (invertase) gene. In addition, the growth properties of snf3 mutants suggested that they were defective in uptake of glucose and fructose. We have cloned the SNF3 gene by complementation and demonstrated linkage of the cloned DNA to the chromosomal SNF3 locus. The gene encodes a 3-kilobase poly(A)-containing RNA, which was fivefold more abundant in cells deprived of glucose. The SNF3 gene was disrupted at its chromosomal locus by several methods to create null mutations. Disruption resulted in growth phenotypes consistent with a defect in glucose uptake. Surprisingly, gene disruption did not cause aberrant regulation of SUC2 expression. We discuss possible mechanisms by which abnormal SNF3 gene products encoded by missense alleles could perturb regulatory functions.
Article
Full-text available
We have identified in the promoter of the FBP1 gene from Saccharomyces cerevisiae, which codes for fructose-1,6-bisphosphatase, two elements which can form specific DNA.protein complexes and which confer glucose-repressed expression to an heterologous reporter gene. Complex formation and activation of transcription by either element require a functional CAT1 gene and are not blocked by a hap2-1 mutation, although this mutation interferes with maximal expression of the FBP1 gene. A sequence from one of the elements acts as a weak upstream activating sequence, but its activity can be stimulated up to 10-fold by neighboring sequences. A further element of the promoter has been characterized, which forms a specific DNA.protein complex only when a nuclear extract from derepressed cells is used. This element does not activate transcription in a heterologous promoter. The DNA sequences of the three elements involved in protein binding, defined by DNase I footprinting, have no homology with consensus sequences for known activating factors.
Article
Full-text available
Glucose in ethanol-glycerol mixtures inhibits growth of Saccharomyces cerevisiae mutants lacking phosphoglycerate mutase. A suppressor mutation that relieved glucose inhibition was isolated. This mutation, DGT1-1 (decreasing glucose transport), was dominant and produced pleiotropic effects even in an otherwise wild-type background. Growth of the DGT1-1 mutant in glucose was dependent on respiration, and no ethanol was detected in the medium within 7 h of glucose addition. When grown on glucose, the mutant had a reduced glucose uptake and both the low- and high-affinity transport systems were affected. In galactose-grown cells, only the high-affinity glucose transport system was detected. This system had similar kinetic characteristics in the wild type and in the mutant. Catabolite repression of several enzymes was absent in the mutant during growth in glucose but not during growth in galactose. In contrast with the wild type, the mutant grown in glucose had high transcription of the glucose transporter gene SNF3 and no transcription of HXT1 and HXT3. Expression of multicopy plasmids carrying the HXT1, HXT2, or HXT3 gene allowed partial recovery of both fermentative capacity and catabolite repression in the mutant. The results suggest that DGT1 codes for a regulator of the expression of glucose transport genes. They also suggest that glucose flux might determine the levels of molecules implicated as signals in catbolite repression.
Article
Full-text available
The SNF1 protein kinase of Saccharomyces cerevisiae is required to relieve glucose repression of transcription. To identify components of the SNF1 pathway, we isolated multicopy suppressors of defects caused by loss of SNF4, an activator of the SNF1 kinase. Increased dosage of the MSN3 gene restored invertase expression in snf4 mutants and also relieved glucose repression in the wild type. Deletion of MSN3 caused no substantial phenotype, and we identified a homolog, MTH1, encoding a protein 61% identical to MSN3. Both are also homologous to chicken fimbrin, human plastin, and yeast SAC6 over a 43-residue region. Deletion of MSN3 and MTH1 together impaired derepression of invertase in response to glucose limitation. Finally, MSN3 physically interacts with the SNF1 protein kinase, as assayed by a two-hybrid system and by in vitro binding studies. MSN3 is the same gene as STD1, a multicopy suppressor of defects caused by overexpression of the C terminus of TATA-binding protein (R. W. Ganster, W. Shen, and M. C. Schmidt, Mol. Cell. Biol. 13:3650-3659, 1993). Taken together, these data suggest that MSN3 modulates the regulatory response to glucose and may couple the SNF1 pathway to transcription.
Article
Full-text available
Glucose is the preferred carbon source for most eukaryotic cells and has profound effects on many cellular functions. How cells sense glucose and transduce a signal into the cell is a fundamental, unanswered question. Here we describe evidence that two unusual glucose transporters in the yeast Saccharomyces cerevisiae serve as glucose sensors that generate an intracellular glucose signal. The Snf3p high-affinity glucose transporter appears to function as a low glucose sensor, since it is required for induction of expression of several hexose transporter (HXT) genes, encoding glucose transporters, by low levels of glucose. We have identified another apparent glucose transporter, Rgt2p, that is strikingly similar to Snf3p and is required for maximal induction of gene expression in response to high levels of glucose. This suggests that Rgt2p is a high glucose-sensing counterpart to Snf3p. We identified a dominant mutation in RGT2 that causes constitutive expression of several HXT genes, even in the absence of the inducer glucose. This same mutation introduced into SNF3 also causes glucose-independent expression of HXT genes. Thus, the Rgt2p and Snf3p glucose transporters appear to act as glucose receptors that generate an intracellular glucose signal, suggesting that glucose signaling in yeast is a receptor-mediated process.
Article
Full-text available
How eukaryotic cells sense availability of glucose, their preferred carbon and energy source, is an important, unsolved problem. Bakers' yeast (Saccharomyces cerevisiae) uses two glucose transporter homologs, Snf3 and Rgt2, as glucose sensors that generate a signal for induction of expression of genes encoding hexose transporters (HXT genes). We present evidence that these proteins generate an intracellular glucose signal without transporting glucose. The Snf3 and Rgt2 glucose sensors contain unusually long C-terminal tails that are predicted to be in the cytoplasm. These tails appear to be the signaling domains of Snf3 and Rgt2 because they are necessary for glucose signaling by Snf3 and Rgt2, and transplantation of the C-terminal tail of Snf3 onto the Hxt1 and Hxt2 glucose transporters converts them into glucose sensors that can generate a signal for glucose-induced HXT gene expression. These results support the idea that yeast senses glucose using two modified glucose transporters that serve as glucose receptors.
Article
Full-text available
The Snf1 protein kinase family has been conserved in eukaryotes. In the yeast Saccharomyces cerevisiae, Snf1 is essential for transcription of glucose-repressed genes in response to glucose starvation. The direct interaction between Snf1 and its activating subunit, Snf4, within the kinase complex is regulated by the glucose signal. Glucose inhibition of the Snf1-Snf4 interaction depends on protein phosphatase 1 and its targeting subunit, Reg1. Here we show that Reg1 interacts with the Snf1 catalytic domain in the two-hybrid system. This interaction increases in response to glucose limitation and requires the conserved threonine in the activation loop of the kinase, a putative phosphorylation site. The inhibitory effect of Reg1 appears to require the Snf1 regulatory domain because a reg1Delta mutation no longer relieves glucose repression of transcription when Snf1 function is provided by the isolated catalytic domain. Finally, we show that abolishing the Snf1 catalytic activity by mutation of the ATP-binding site causes elevated, constitutive interaction with Reg1, indicating that Snf1 negatively regulates its own interaction with Reg1. We propose a model in which protein phosphatase 1, targeted by Reg1, facilitates the conformational change of the kinase complex from its active state to the autoinhibited state.
Article
Full-text available
The Snf1 protein kinase is a central component of the signaling pathway for glucose repression in yeast. Recent studies have addressed the regulation of Snf1 kinase activity and elucidated mechanisms by which Snf1 controls repression and activation of glucose-repressed genes. Important advances include evidence that Snf1 regulates the localization of the Mig1 repressor and that Snf1 functions at multiple points to control Cat8 and Sip4, the activators of gluconeogenic genes.
Article
Full-text available
The kinetics of glucose transport and the transcription of all 20 members of the HXT hexose transporter gene family were studied in relation to the steady state in situ carbon metabolism of Saccharomyces cerevisiae CEN.PK113-7D grown in chemostat cultures. Cells were cultivated at a dilution rate of 0.10 h-1 under various nutrient-limited conditions (anaerobically glucose- or nitrogen-limited or aerobically glucose-, galactose-, fructose-, ethanol-, or nitrogen-limited), or at dilution rates ranging between 0.05 and 0.38 h-1 in aerobic glucose-limited cultures. Transcription of HXT1-HXT7 was correlated with the extracellular glucose concentration in the cultures. Transcription of GAL2, encoding the galactose transporter, was only detected in galactose-limited cultures. SNF3 and RGT2, two members of the HXT family that encode glucose sensors, were transcribed at low levels. HXT8-HXT17 transcripts were detected at very low levels. A consistent relationship was observed between the expression of individual HXT genes and the glucose transport kinetics determined from zero-trans influx of 14C-glucose during 5 s. This relationship was in broad agreement with the transport kinetics of Hxt1-Hxt7 and Gal2 deduced in previous studies on single-HXT strains. At lower dilution rates the glucose transport capacity estimated from zero-trans influx experiments and the residual glucose concentration exceeded the measured in situ glucose consumption rate. At high dilution rates, however, the estimated glucose transport capacity was too low to account for the in situ glucose consumption rate.
Article
Full-text available
The Std1 protein modulates the expression of glucose-regulated genes, but its exact molecular role in this process is unclear. A two-hybrid screen for Std1-interacting proteins identified the hydrophilic C-terminal domains of the glucose sensors, Snf3 and Rgt2. The homologue of Std1, Mth1, behaves differently from Std1 in this assay by interacting with Snf3 but not Rgt2. Genetic interactions between STD1, MTH1, SNF3, andRGT2 suggest that the glucose signaling is mediated, at least in part, through interactions of the products of these four genes. Mutations in MTH1 can suppress the raffinose growth defect of a snf3 mutant as well as the glucose fermentation defect present in cells lacking both glucose sensors (snf3 rgt2). Genetic suppression by mutations in MTH1 is likely to be due to the increased and unregulated expression of hexose transporter genes. In media lacking glucose or with low levels of glucose, the hexose transporter genes are subject to repression by a mechanism that requires the Std1 and Mth1 proteins. An additional mechanism for glucose sensing must exist since a strain lacking all four genes (snf3 rgt2 std1 mth1) is still able to regulateSUC2 gene expression in response to changes in glucose concentration. Finally, studies with green fluorescent protein fusions indicate that Std1 is localized to the cell periphery and the cell nucleus, supporting the idea that it may transduce signals from the plasma membrane to the nucleus.
Article
Full-text available
A family of glucose transporters mediates glucose uptake in Saccharomyces cerevisiae. We show that the dominant mutation GSF4-1, which impairs glucose repression of SUC2, results in a nonfunctional chimera of the transporters Hxt1p and Hxt4p. Hxt1/4p inhibits the function of wild-type glucose transporters. Similar mutations may facilitate analysis of the major facilitator superfamily.
Chapter
This chapter discusses one-step gene disruption in yeast. The method can be used to determine whether a gene is essential by first disrupting the gene in a diploid. The one-step gene disruption technique requires cloning of a selectable gene fragment into the region to be disrupted. Cloning techniques have permitted the isolation of numerous yeast genes. For genes cloned by complementation, it is necessary to demonstrate that a fragment codes for the wild-type gene, not for a phenotypic suppressor. For disruptions of essential genes, the recessive lethal phenotype becomes tightly linked to the insertion that is nonreverting and can be used as a selectable marker for further genetic manipulation. The resultant chromosomal insertion is nonreverting and contains a genetically linked marker.
Article
In Saccharomyces cerevisiae wird die Synthese von Alkoholdehydrogenase, Malatdehydrogenase, Isocitratlyase und Malatsynthase durch Glucose reprimiert. Bei Malatdehydrogenase bewirkt Glucose ausser der Hemmung der Enzym-Synthese eine rasche Abnahme der Aktivität. Da alle genannten Enzyme an der Neubildung von Kohlenhydrat aus Alkohol beteiligt sind, dient dieser “Glucose-Effekt” der Unterdrückung der bei Anwesenheit von Glucose im Nährmedium nicht notwen-digen Gluconeogenese. 2-Desoxyglucose und Glucosamin wirken ebenso reprimierend auf die Enzym-Synthese wie Glucose. Da beide Substanzen in Hefe nicht abgebaut, sondern ledig-lich mit ATP phosphoryliert werden, kann man annehmen, dass die Repression der Synthese von Alkoholdehydrogenase, Malatdehydrogenase, Isocitratlyase und Malatsynthase nicht durch Metabolite, sondern durch Glucose selbst oder Glucose-6-phos-phat oder eventuell durch veränderte Konzentrationen an ATP bzw. ADP verur-sacht wird.
Article
Fructose‐1,6‐bisphosphatase (Fru P 2 ase) from Saccharomyces cerevisiae is rapidly inactivated upon addition of glucose to a culture growing on non‐sugar carbon sources. Under the same conditions the Fru P 2 ases from Schizosaccharomyces pombe or Escherichia coli expressed in S. cerevisiae were not affected. A chimaeric protein confaining the first 178 amino acids from the N‐terminal half of S. cerevisiae Fru P 2 ase fused to E. coli β‐galactosidase was susceptible to catabolite inactivation. Elimination of a putative destruction box, RAELVNLVG…KK….K., beginning at amino acid 60 did not prevent catabolite inactivation. Similarly a change of the vacuole‐targeting sequence QKKLD, amino acids 80–84, to QKNSD did not affect significantly the course of inactivation of β‐galactosidase. A fusion protein carrying only the first 138 amino acids from Fru P 2 ase was inactivated at a higher rate than the one carrying the first 178, suggesting the existence of a protective region between amino acids 138 and 178. A fusion protein carrying the first 81 amino acids from Fru P 2 ase was inactivated by glucose at a similar rate to the one carrying the 178 amino acids, but one with only the first 18 amino acids was resistant to catabolite inactivation. Inactivation of Fru P 2 ase in mutants ubr1 that lack a protein required for ubiquitin‐dependent proteolysis, or pral that lack vacuolar protease A, proceeded as in a wild type. Our results suggest that at least two domains of Fru P 2 ase may mark β‐galactosidase for catabolite inactivation and that Fru P 2 ase can be inactivated by a mechanism independent of transfer to the vacuole.
Article
Yeasts with disruptions in the genes PYC1 and PYC2 encoding the isoenzymes of pyruvate carboxylase cannot grow in a glucose-ammonium medium (Stucka et al. (1991) Mol. Gen. Genet. 229, 307–315). We have isolated a dominant mutation, BPC1-1, that allows growth in this medium of yeasts with interrupted PYC1 and PYC2 genes. The BPC1-1 mutation abolishes catabolite repression of a series of genes and allows expression of the enzymes of the glyoxylate cycle during growth in glucose. A functional glyoxylate cyle is necessary for suppression as a disruption of gene ICL1 encoding isocitrate lyase abolished the phenotypic effect of BPC1-1 on growth in glucose-ammonium. Concurrent expression from constitutive promoters of genes ICL1 and MLS1 (encoding malate synthase) also suppressed the growth phenotype of pyc1 pyc2 mutants. The mutation BPC1-1 is either allelic or closely linked to the mutation DGT1-1.
Article
A gene encoding pyruvate carboxylase has previously been isolated from Saccharomyces cerevisiae. We have isolated a second gene, PYC2, from the same organism also encoding a pyruvate carboxylase. The gene PYC2 is situated on the right arm of chromosome II between the DUR 1, 2 markers and the telomere. We localized the previously isolated gene, which we designate PYC1, to chromosome VII. Disruption of either of the genes did not produce marked changes in the phenotype. However, simultaneous disruption of both genes resulted in inability to grow on glucose as sole carbon source, unless aspartate was added to the medium. This indicates that in wild-type yeast there is no bypass for the reaction catalysed by pyruvate carboxylase. The coding regions of both genes exhibit a homology of 90% at the amino acid level and 85% at the nucleotide level. No appreciable homology was found in the corresponding flanking regions. No differences in the K m values for ATP or pyruvate were observed between the enzymes obtained from strains carrying inactive, disrupted versions of one or other of the genes.
Article
Generating mutants, to identify new genes and to study their properties, is the starting point for much of molecular biology. Forward mutations and metabolic suppressors obtained by reversion can provide powerful insights into the functions and relationships of normal gene products. Similarly, mutations and intragenic revertants provide the raw material for the analysis of gene product structure-function relationships. Site-specific mutagenesis and other methods based on recombinant DNA techniques are increasingly used for these purposes, and they are clearly the methods of choice where particular changes in specified genes or genetic sites are needed. Nevertheless, classical methods, in which cells are treated with mutagens, are likely to remain the chief means for inducing mutations in many circumstances because they require no prior knowledge of gene or product and are generally applicable: the user need to only specify an appropriate alteration in phenotype. However, unless selection for the desired strain is possible, hunting for mutants can be extremely laborious and analyzing the material obtained even more so.
Article
In Saccharomyces cerevisiae, pyruvate carboxylase [EC 6.4.1.1] has an important anaplerotic role in the production of oxaloacetate from pyruvate. We report here the existence of two pyruvate carboxylase isozymes, which are encoded by separate genes within the yeast genome. Null mutants were constructed by one step gene disruption of the characterised PYC gene in the yeast genome. The mutants were found to have 10-20% residual pyruvate carboxylase activity, which was attributable to a protein of identical size and immunogenically related to pyruvate carboxylase. Immunocytochemical labelling studies on ultrathin sections of embedded whole cells from the null mutants showed the isozyme to be located exclusively in the cytoplasm. We have mapped the genes encoding both enzymes and shown the previously characterised gene, designated PYC1, to be on chromosome VII whilst PYC2 is on chromosome II.
Article
We have examined the effect of RNA polymerase II-dependent transcription on recombination between directly repeated sequences of the GAL10 gene in S. cerevisiae. Direct repeat recombination leading either to plasmid loss or conversion was examined in isogenic strains containing null mutations in the positive activator, GAL4, or the repressor, GAL80. A 15-fold increase in the rate of plasmid loss is observed in cells constitutively expressing the construct compared with cells that are not. Conversion events that retain the integrated plasmid are not stimulated by expression of the repeats. Northern analysis of strains containing plasmid inserts with various promoter mutations suggests that the stimulation in recombination is mediated by events initiating within the integrated plasmid sequences.
Article
The one-step gene disruption techniques described here are versatile in that a disruption can be made simply by the appropriate cloning experiment. The resultant chromosomal insertion is nonreverting and contains a genetically linked marker. Detailed knowledge of the restriction map of a fragment is not necessary. It is even possible to "probe" a fragment that is unmapped for genetic functions by constructing a series of insertions and testing each one for its phenotype.
Article
Intact yeast cells treated with alkali cations took up plasmid DNA. Li+, Cs+, Rb+, K+, and Na+ were effective in inducing competence. Conditions for the transformation of Saccharomyces cerevisiae D13-1A with plasmid YRp7 were studied in detail with CsCl. The optimum incubation time was 1 h, and the optimum cell concentration was 5 x 10(7) cells per ml. The optimum concentration of Cs+ was 1.0 M. Transformation efficiency increased with increasing concentrations of plasmid DNA. Polyethylene glycol was absolutely required. Heat pulse and various polyamines or basic proteins stimulated the uptake of plasmid DNA. Besides circular DNA, linear plasmid DNA was also taken up by Cs+-treated yeast cells, although the uptake efficiency was considerably reduced. The transformation efficiency with Cs+ or Li+ was comparable with that of conventional protoplast methods for a plasmid containing ars1, although not for plasmids containing a 2 microns origin replication.
Article
We have constructed and tested a dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA. This kanMX module contains the known kanr open reading-frame of the E. coli transposon Tn903 fused to transcriptional and translational control sequences of the TEF gene of the filamentous fungus Ashbya gossypii. This hybrid module permits efficient selection of transformants resistant against geneticin (G418). We also constructed a lacZMT reporter module in which the open reading-frame of the E. coli lacZ gene (lacking the first 9 codons) is fused at its 3' end to the S. cerevisiae ADH1 terminator. KanMX and the lacZMT module, or both modules together, were cloned in the center of a new multiple cloning sequence comprising 18 unique restriction sites flanked by Not I sites. Using the double module for constructions of in-frame substitutions of genes, only one transformation experiment is necessary to test the activity of the promotor and to search for phenotypes due to inactivation of this gene. To allow for repeated use of the G418 selection some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10(-3)-10(-4). The 1.4 kb kanMX module was also shown to be very useful for PCR based gene disruptions. In an experiment in which a gene disruption was done with DNA molecules carrying PCR-added terminal sequences of only 35 bases homology to each target site, all twelve tested geneticin-resistant colonies carried the correctly integrated kanMX module.
Article
The HXT genes (HXT1 to HXT4) of the yeast Saccharomyces cerevisiae encode hexose transporters. We found that transcription of these genes is induced 10- to 300-fold by glucose. Analysis of glucose induction of HXT gene expression revealed three types of regulation: (i) induction by glucose independent of sugar concentration (HXT3); (ii) induction by low levels of glucose and repression at high glucose concentrations (HXT2 and HXT4); and (iii) induction only at high glucose concentrations (HXT1). The lack of expression of all four HXT genes in the absence of glucose is due to a repression mechanism that requires Rgt1p and Ssn6p. GRR1 seems to encode a positive regulator of HXT expression, since grr1 mutants are defective in glucose induction of all four HXT genes. Mutations in RGT1 suppress the defect in HXT expression caused by grr1 mutations, leading us to propose that glucose induces HXT expression by activating Grr1p, which inhibits the function of the Rgt1p repressor. HXT1 expression is also induced by high glucose levels through another regulatory mechanism: rgt1 mutants still require high levels of glucose for maximal induction of HXT1 expression. The lack of induction of HXT2 and HXT4 expression on high levels of glucose is due to glucose repression: these genes become induced at high glucose concentrations in glucose repression mutants (hxk2, reg1, ssn6, tup1, or mig1). Components of the glucose repression pathway (Hxk2p and Reg1p) are also required for generation of the high-level glucose induction signal for expression of the HXT1 gene. Thus, the glucose repression and glucose induction mechanisms share some of the same components and may share the same primary signal generated from glucose.
Article
In many organisms, glucose represses genes that are used to metabolize other carbon sources. Work in yeast and filamentous fungi has revealed a mechanism for glucose repression in eukaryotes that is different from that found in bacteria. Zinc finger proteins, such as Mig1 and CREA, that bind GC-boxes play a key role in mediating this response.
Article
Growth and carbon metabolism in triosephosphate isomerase (delta tpi1) mutants of Saccharomyces cerevisiae are severely inhibited by glucose. By using this feature, we selected for secondary site revertants on glucose. We defined five complementation groups, some of which have previously been identified as glucose repression mutants. The predominant mutant type, HTR1 (hexose transport regulation), is dominant and causes various glucose-specific metabolic and regulatory defects in TPI1 wild-type cells. HTR1 mutants are deficient in high-affinity glucose uptake and have reduced low-affinity transport. Transcription of various known glucose transporter genes (HXT1, HXT3, and HXT4) was defective in HTR1 mutants, leading us to suggest that HTR mutations affect a negative factor of HXT gene expression. By contrast, transcript levels for SNF3, which encodes a component of high-affinity glucose uptake, were unaffected. We presume that HTR1 mutations affect a negative factor of HXT gene expression. Multicopy expression of HXT genes or parts of their regulatory sequences suppresses the metabolic defects of HTR1 mutants but not their derepressed phenotype at high glucose concentrations. This suggests that the glucose repression defect is not a direct result of the metabolically relevant defect in glucose transport. Alternatively, some unidentified regulatory components of the glucose transport system may be involved in the generation or transmission of signals for glucose repression.
Article
Protein phosphatase type 1 (PP1) is encoded by GLC7, an essential gene in Saccharomyces cerevisiae. The GLC7 phosphatase is required for glucose repression and appears to function antagonistically to the SNF1 protein kinase. Previously, we characterized a mutation, glc7-T152K, that relieves glucose repression but does not interfere with the function of GLC7 in glycogen metabolism. We proposed that the mutant GLC7T152K phosphatase is defective in its interaction with a regulatory subunit that directs participation of PP1 in the glucose repression mechanism. Here, we present evidence that REG1, a protein required for glucose repression, is one such regulatory subunit. We show that REG1 is physically associated with GLC7. REG1 interacts with GLC7 strongly and specifically in the two-hybrid system, and REG1 and GLC7 fusion proteins co-immunoprecipitate from cell extracts. Moreover, overexpression of a REG1 fusion protein suppresses the glc7-T152K mutant defect in glucose repression. This and other genetic evidence indicate that the two proteins function together in regulating glucose repression. These results suggest that REG1 is a regulatory subunit of PP1 that targets its activity to proteins in the glucose repression regulatory pathway.
Article
The SNF1 protein kinase is broadly conserved in eukaryotes and has been implicated in responses to environmental and nutritional stress. In yeast, the SNF1 kinase has a central role in the response to glucose starvation. SNF1 is associated with its activating subunit, SNF4, and other proteins in complexes. Using the two-hybrid system, we show that interaction between SNF1 and SNF4 is strongly regulated by the glucose signal. Moreover, this interaction is appropriately affected by mutations in regulators, including protein phosphatase 1. We show that SNF4 binds to the SNF1 regulatory domain in low glucose, whereas in high glucose the regulatory domain binds to the kinase domain of SNF1 itself. Genetic analysis further suggests that the SNF1 regulatory domain autoinhibits the kinase activity and that in low glucose SNF4 antagonizes this inhibition. Finally, these interactions have been conserved from yeast to plants, indicating that homologs of the SNF1 kinase complex respond to regulatory signals by analogous mechanisms.
Article
High levels of glucose repress expression of the SUC2 gene in the yeast Saccharomyces cerevisiae. We have discovered that low levels of glucose are required for maximal transcription of SUC2: SUC2 expression is induced about five- to ten-fold in cells growing on low levels of glucose (0.1%) compared to cells growing on galactose or glycerol. Two pieces of evidence suggest that this low-glucose-induced expression is mediated by a repression mechanism that involves an upstream repression site in the SUC2 promoter (URS(SUC2)). First, deletion of the URS(SUC2) results in expression of the SUC2 gene in the absence of glucose, and second the URS(SUC2) mediates a six-fold repression of a reporter gene when inserted into a heterologous promoter. However, this URS(SUC2) mediated repression occurs on all tested carbon sources, suggesting that this URS element acts in concert with all other promoter elements to respond to low concentrations of glucose. This repression requires the general repressor SSn6p. SNF3, which encodes a glucose transporter that appears to be a sensor of low levels of glucose, is also required for low-glucose-induced expression of SUC2.
Article
Transport across the plasma membrane is the first, obligatory step of hexose utilization. In yeast cells the uptake of hexoses is mediated by a large family of related transporter proteins. In baker's yeast Saccharomyces cerevisiae the genes of 20 different hexose transporter-related proteins have been identified. Six of these transmembrane proteins mediate the metabolically relevant uptake of glucose, fructose and mannose for growth, two others catalyze the transport of only small amounts of these sugars, one protein is a galactose transporter but also able to transport glucose, two transporters act as glucose sensors, two others are involved in the pleiotropic drug resistance process, and the functions of the remaining hexose transporter-related proteins are not yet known. The catabolic hexose transporters exhibit different affinities for their substrates, and expression of their corresponding genes is controlled by the glucose sensors according to the availability of carbon sources. In contrast, milk yeast Kluyveromyces lactis contains only a few different hexose transporters. Genes of other monosaccharide transporter-related proteins have been found in fission yeast Schizosaccharomyces pombe and in the xylose-fermenting yeast Pichia stipitis. However, the molecular genetics of hexose transport in many other yeasts remains to be established. The further characterization of this multigene family of hexose transporters should help to elucidate the role of transport in yeast sugar metabolism.
Article
Addition of glucose to yeast cells growing on less preferred carbon sources triggers profound changes in the expression levels of several genes. This paper focuses on the signal transduction pathways leading to transcriptional activation of the glycolysis in Saccharomyces cerevisiae during the transition from respiratory to fermentative growth conditions. To this end, we studied the transcriptional regulation of glycolytic genes (PFK1, PYK1 and PDC), one gluconeogenic gene (FBP1) and the two genes encoding the 6-phosphofructo-2-kinase isoenzymes (PFK26 and PFK27) during this transition. The results of experiments using glycolysis mutants, different fermentable carbon sources and 2-deoxyglucose indicate that proper transcriptional regulation of these genes is dependent on the ability to form glucose 6-phosphate by any one of the three hexose kinases. In addition, we conclude that signalling via the Ras-adenylate cyclase pathway is not necessary for the proper transcriptional response of glycolytic and gluconeogenic genes to glucose, because the transcription of these genes is not significantly affected in mutants having either high or low activities of this pathway. In contrast, the transcriptional regulation of the PFK26 and PFK27 genes is significantly altered in several of the Ras-adenylate cyclase pathway mutants studied, indicating that protein kinase A plays an important role in the transcriptional regulation of these genes.
Article
Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.
Article
Glucose is the primary fuel for most cells. Because the amount of available glucose can fluctuate wildly, organisms must sense the amount available to them and respond appropriately. Altering gene expression is one of the major effects glucose has on cells. Two different glucose sensing and signal transduction pathways in the yeast S. cerevisiae--one for repression, and one for induction of gene expression--have recently come into focus. What we have learned about these glucose sensing and signaling mechanisms might shed light on how other cells sense and respond to glucose.
Article
Mutations in the GSF2 gene cause glucose starvation phenotypes in Saccharomyces cerevisiae. We have isolated the HXT1 gene, which encodes a low-affinity, high-capacity glucose transporter, as a multicopy suppressor of a gsf2 mutation. We show that gsf2 mutants accumulate Hxt1p in the endoplasmic reticulum (ER) and that Gsf2p is a 46-kDa integral membrane protein localized to the ER. gsf2 mutants also display a galactose growth defect and abnormal localization of the galactose transporter Gal2p but are not defective in function or localization of the high-affinity glucose transporter Hxt2p. These findings suggest that Gsf2p functions in the ER to promote the secretion of certain hexose transporters.
Article
We have determined that the mutant genes DGT1-1 and BPC1-1, which impair glucose transport and catabolite repression in Saccharomyces cerevisiae, are allelic forms of MTH1. Deletion of MTH1 had only slight effects on the expression of HXT1 or SNF3, but increased expression of HXT2 in the absence of glucose. A two-hybrid screen revealed that the Mth1 protein interacts with the cytoplasmic tails of the glucose sensors Snf3 and Rgt2. This interaction was affected by mutations in Mth1 and by the concentration of glucose in the medium. A double mutant, snf3 rgt2, recovered sensitivity to glucose when MTH1 was deleted, thus showing that glucose signalling may occur independently of Snf3 and Rgt2. A model for the possible mode of action of Snf3 and Rgt2 is presented.
Article
Galactose does not allow growth of pyruvate carboxylase mutants in media with ammonium as a nitrogen source, and inhibits growth of strains defective in phosphoglyceromutase in ethanol-glycerol mixtures. Starting with pyc1, pyc2, and gpm1 strains, we isolated mutants that eliminated those galactose effects. The mutations were recessive and were named dgr1-1 and dgr2-1. Strains bearing those mutations in an otherwise wild-type background grew slower than the wild type in rich galactose media, and their growth was dependent on respiration. Galactose repression of several enzymes was relieved in the mutants. Biochemical and genetic evidence showed that dgr1-1 was allelic with GAL2 and dgr2-1 with GAL4. The results indicate that the rate of galactose consumption is critical to cause catabolite repression.
Article
RNA polymerase II holoenzymes respond to activators and repressors that are regulated by signaling pathways. Here we present evidence for a "shortcut" mechanism in which the Snf1 protein kinase of the glucose signaling pathway directly regulates transcription by the yeast holoenzyme. In response to glucose limitation, the Snf1 kinase stimulates transcription by holoenzyme that has been artificially recruited to a reporter by a LexA fusion to a holoenzyme component. We show that Snf1 interacts physically with the Srb/mediator proteins of the holoenzyme in both two-hybrid and coimmunoprecipitation assays. We also show that a catalytically hyperactive Snf1, when bound to a promoter as a LexA fusion protein, activates transcription in a glucose-regulated manner; moreover, this activation depends on the integrity of the Srb/mediator complex. These results suggest that direct regulatory interactions between signal transduction pathways and RNA polymerase II holoenzyme provide a mechanism for transcriptional control in response to important signals.
Article
The Snf1/AMP-activated protein kinase family has broad roles in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1 is required for the response to glucose limitation. Snf1 kinase complexes contain the alpha (catalytic) subunit Snf1, one of the three related beta subunits Gal83, Sip1, or Sip2, and the gamma subunit Snf4. We present evidence that the beta subunits regulate the subcellular localization of the Snf1 kinase. Green fluorescent protein fusions to Gal83, Sip1, and Sip2 show different patterns of localization to the nucleus, vacuole, and/or cytoplasm. We show that Gal83 directs Snf1 to the nucleus in a glucose-regulated manner. We further identify a novel signaling pathway that controls this nuclear localization in response to glucose phosphorylation. This pathway is distinct from the glucose signaling pathway that inhibits Snf1 kinase activity and responds not only to glucose but also to galactose and sucrose. Such independent regulation of the localization and the activity of the Snf1 kinase, combined with the distinct localization of kinases containing different beta subunits, affords versatility in regulating physiological responses.
Article
The parameters and experimental conditions for this important system are constantly undergoing improvement. This newest version includes expanded tables describing interaction trap components and additional libraries compatible with the interaction trap system. It also features a new protocol on performing a hunt by interaction mating. Some of the commercial vendors selling yeast two-hybrid reagents recommend using interaction mating to perform a hunt, so this procedure should be of great interest.
HTR1/MTH1 encodes a repressor for HXT genes
  • Schulte
Schulte, F. and Ciriacy, M. (1995) HTR1/MTH1 encodes a repressor for HXT genes. Yeast 11, S239.
Assay methods for enzymes of the glyoxylate cycle
  • Dixon
Dixon, G.H. and Kornberg, H.L. (1959) Assay methods for enzymes of the glyoxylate cycle. Biochem. J. 72, 3.
Feasting, fasting and fermenting
  • Johnston