Ramon Roca

Ramon Roca
IRTA Institute of Agrifood Research and Technology | IRTA · Ruminants Programme

About

18
Publications
1,886
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
153
Citations
Education
March 2016 - March 2020
IRTA Institute of Agrifood Research and Technology
Field of study
  • Biochemistry, molecular biology and biomedecine

Publications

Publications (18)
Article
Full-text available
Developing clinically predictive model systems for evaluating gene transfer and gene editing technologies has become increasingly important in the era of personalized medicine. Liver-directed gene therapies present a unique challenge due to the complexity of the human liver. In this work, we describe the application of whole human liver explants in...
Preprint
Full-text available
Developing clinically predictive model systems for evaluating gene transfer and gene editing technologies has become increasingly important in the era of personalized medicine. Liver-directed gene therapies present a unique challenge due to the complexity of the human liver. In this work, we describe the application of whole human liver explants in...
Preprint
Full-text available
Developing clinically predictive model systems for evaluating gene transfer and gene editing technologies has become increasingly important in the era of personalized medicine. Liver-directed gene therapies present a unique challenge due to the complexity of the human liver. In this work, we describe the application of whole human liver explants in...
Article
Full-text available
The constant increase of microorganisms resistant to antibiotics has been classified as a global health emergency, which is especially challenging when biofilms are formed. Herein, novel biofunctionalized gold surfaces with the antimicrobial multidomain recombinant protein JAMF1, both in the soluble form and nanostructured as nanoparticles, were de...
Article
A broad number of inclusion bodies (IBs) potential uses, including biocatalysis, biocompatible nanomaterials, and nanopills for biomedicine, have been described so far. Recently, it has also been shown that they can also be used as antimicrobial agents. Here, we describe the protocol used to produce and purify IBs with antimicrobial activity at des...
Article
Full-text available
Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. In the present study, we first investigated the validity of a liver xenograft mouse model...
Article
Full-text available
The antimicrobial resistance crisis calls for the discovery and production of new antimicrobials. Host defense peptides (HDPs) are small proteins with potent antibacterial and immunomodulatory activities that are attractive for translational applications, with several already under clinical trials. Traditionally, antimicrobial peptides have been pr...
Chapter
Inclusion bodies (IBs) are protein aggregates formed under recombinant protein production processes in microbial cell factories. Their characterization has shown that they are self-assembling and biologically active protein nanoparticles with promising properties for a wide range of applications, including biocatalysis, tissue engineering, and ther...
Article
Full-text available
Combining several innate immune peptides into a single recombinant antimicrobial and immunomodulatory polypeptide has been recently demonstrated. However, the versatility of the multidomain design, the role that each domain plays and how the sequence edition of the different domains affects their final protein activity is unknown. Parental multidom...
Article
Full-text available
A detailed workflow to analyze the physicochemical characteristics of mammalian matrix metalloproteinase (MMP-9) protein species obtained from protein aggregates (inclusion bodies—IBs) was followed. MMP-9 was recombinantly produced in the prokaryotic microbial cell factories Clearcoli (an engineered form of Escherichia coli) and Lactococcus lactis,...
Article
Full-text available
Background: Inclusion bodies (IBs) are biologically active protein aggregates forming natural nanoparticles with a high stability and a slow-release behavior. Because of their nature, IBs have been explored to be used as biocatalysts, in tissue engineering, and also for human and animal therapies. To improve the production and biological efficienc...
Article
Full-text available
Recent achievements in the field of immunotherapy, such as the development of engineered T cells used in adoptive cell therapy, are introducing more efficient strategies to combat cancer. Nevertheless, there are still many limitations. For example, these T cells are challenging to manufacture, manipulate, and control. Specifically, there are limita...
Article
Full-text available
Background: Although most of antimicrobial peptides (AMPs), being relatively short, are produced by chemical synthesis, several AMPs have been produced using recombinant technology. However, AMPs could be cytotoxic to the producer cell, and if small they can be easily degraded. The objective of this study was to produce a multidomain antimicrobial...
Article
Full-text available
Bacterial inclusion bodies (IBs) are protein-based nanoparticles of a few hundred nanometers formed during recombinant protein production processes in different bacterial hosts. IBs contain active protein in a mechanically stable nanostructured format that has been broadly characterized, showing promising potential in different fields such as tissu...
Article
Full-text available
The production of pure and soluble proteins is a complex, protein-dependent and time-consuming process, in particular for those prone-to-aggregate and/or difficult-to-purify. Although Escherichia coli is widely used for protein production, recombinant products must be co-purified through costly processes to remove lipopolysaccharide (LPS) and minim...
Presentation
Full-text available
The production of pure and soluble proteins is a complex, protein-dependent, and time-consuming process, in particular for those prone-to-aggregate and/or difficult-to-produce proteins. Moreover, Escherichia coli recombinant products contain lipopolysaccharide (LPS) that must be removed through costly purification processes. Interestingly, Lactococ...
Poster
A new protocol for the isolation of key recombinant proteins in livestock production using lactic acid bacteria as a cell factory.

Network

Cited By