Pedro Antonio Mateos-Gómez

Pedro Antonio Mateos-Gómez
University of Alcalá | UAH · Department of Physiology, Biochemistry and Molecular Biology

Professor

About

27
Publications
4,771
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,766
Citations

Publications

Publications (27)
Article
Full-text available
Hypoxia is a crucial factor contributing to maintenance of atherosclerotic lesions. The ability of ABCA1 to stimulate the efflux of cholesterol from cells in the periphery, particularly foam cells in atherosclerotic plaques, is an important anti-atherosclerotic mechanism. The posttranscriptional regulation by miRNAs represents a key regulatory mech...
Article
Full-text available
According to the stem cell theory for cancer, hepatocellular carcinomas are sustained by a group of cancer stem cells (CSCs) which are responsible for resistance to chemotherapy. In the present study we aimed to examine lipid metabolism in cancer stem cells induced by long-term treatment with sorafenib and its relationship with acquisition of a CSC...
Article
Full-text available
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. HCC treatment is hindered by the frequent emergence of chemoresistance to the multikinase inhibitor sorafenib, which has been related to the presence of cancer stem cells (CSCs) that self‐renew and often escape therapy. The key metabolic sensor AMP‐activated kinase...
Article
Full-text available
Obesity, a major risk factor for chronic diseases such as type 2 diabetes (T2D), represents a serious primary health problem worldwide. Dietary habits are of special interest to prevent and counteract the obesity and its associated metabolic disorders, including lipid steatosis. Capsaicin, a pungent compound of chili peppers, has been found to amel...
Article
Full-text available
Background Current chemotherapy for castration-resistant prostate cancer is established on taxane-based compounds like docetaxel. However, eventually, the development of toxic side effects and resistance limits the therapeutic benefit being the major concern in the treatment of prostate cancer. Combination therapies in many cases, enhance drug effi...
Article
Full-text available
Capsaicin is a natural compound present in chili and red peppers and the responsible of their spicy flavor. It has recently provoked interest because of its antitumoral effects in many cell types although its action mechanism is not clearly understood. As metabolic dysregulation is one of the hallmarks of cancer cells and the key metabolic sensor i...
Article
Full-text available
Programmable nucleases, such as Cas9, are used for precise genome editing by homology-dependent repair (HDR)1,2,3. However, HDR efficiency is constrained by competition from other double-strand break (DSB) repair pathways, including non-homologous end-joining (NHEJ)4. We report the discovery of a genetically encoded inhibitor of 53BP1 that increase...
Article
Full-text available
Mammalian polymerase theta (Polθ) is a multifunctional enzyme that promotes error-prone DNA repair by alternative nonhomologous end joining (alt-NHEJ). Here we present structure-function analyses that reveal that, in addition to the polymerase domain, Polθ-helicase activity plays a central role during double-strand break (DSB) repair. Our results s...
Article
Full-text available
ELife digest DNA polymerases are enzymes that replicate DNA by using single-stranded DNA as a template. DNA replication is needed to duplicate an organism’s genome, and repair it if it is damaged. For example, when DNA double-strand breaks occur in the genome, DNA polymerases help repair these potentially lethal DNA breaks. If not repaired accurate...
Article
Full-text available
The alternative non-homologous end-joining (NHEJ) machinery facilitates several genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions. Using next-generation sequencing technology, here w...
Article
Full-text available
Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nt from...
Article
Full-text available
The mammalian telomere-binding protein Rap1 was recently found to have additional nontelomeric functions, acting as a transcriptional cofactor and a regulator of the NF-κB pathway. Here, we assess the effect of disrupting mouse Rap1 in vivo and report on its unanticipated role in metabolic regulation and body-weight homeostasis. Rap1 inhibition cau...
Article
Full-text available
Coronavirus (CoV) transcription requires a high frequency recombination process that links newly synthesized minus subgenomic RNA copies to the leader region, which is present only once at the 5' end of the genome. This discontinuous RNA synthesis step is based on the complementarity between the transcription regulating sequences (TRS) at the leade...
Article
Full-text available
Coronavirus subgenomic mRNA (sgmRNA) transcription requires a discontinuous RNA synthesis mechanism driven by the transcription-regulating sequences (TRSs), located at the 3' end of the genomic leader (TRS-L) and also preceding each gene (TRS-B). In transmissible gastroenteritis virus (TGEV), the free energy of TRS-L and cTRS-B (complement of TRS-B...
Article
Full-text available
Coronavirus (CoV) RNA synthesis includes the replication of the viral genome, and the transcription of sgRNAs by a discontinuous mechanism. Both processes are regulated by RNA sequences such as the 5' and 3' untranslated regions (UTRs), and the transcription regulating sequences (TRSs) of the leader (TRS-L) and those preceding each gene (TRS-Bs). T...
Article
Full-text available
Transmissible gastroenteritis coronavirus (TGEV) genomic RNA transcription generates 5′- and 3′-coterminal subgenomic mRNAs. This process involves a discontinuous step during the synthesis of minus-sense RNA that is modulated by transcription-regulating sequences located at the 3′ end of the leader (TRS-L) and also preceding each viral gene (TRS-Bs...
Article
Full-text available
The coronavirus (CoV) discontinuous transcription mechanism is driven by long-distance RNA-RNA interactions between transcription-regulating sequences (TRSs) located at the 5' terminal leader (TRS-L) and also preceding each mRNA-coding sequence (TRS-B). The contribution of host cell proteins to CoV transcription needs additional information. Polypy...
Article
Full-text available
Purified nucleocapsid protein (N protein) from transmissible gastroenteritis virus (TGEV) enhanced hammerhead ribozyme self-cleavage and favored nucleic acid annealing, properties that define RNA chaperones, as previously reported. Several TGEV N-protein deletion mutants were expressed in Escherichia coli and purified, and their RNA binding ability...

Network

Cited By