Lionel M Igaz

Lionel M Igaz
Universidad de Buenos Aires | UBA · Faculty of Medicine

Dr.

About

33
Publications
3,045
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,336
Citations
Introduction
Lionel M Igaz currently works at the IFIBIO Houssay Institute at the School of Medicine of the University of Buenos Aires. Lionel does research in Cell Biology, Molecular Biology and Behavioral Neuroscience. Their most recent publication is 'Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice'. His lab is focused in the pathophysological roles of the protein TDP-43, with special emphasis in its role in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
Additional affiliations
March 2006 - January 2010
University of Pennsylvania
Position
  • PostDoc Position
September 2000 - February 2006
Universidad de Buenos Aires
Position
  • PhD Student
April 1996 - March 2000
Universidad de Buenos Aires
Position
  • Student

Publications

Publications (33)
Article
Full-text available
Transactive response DNA-binding protein 43 (TDP-43) mislocalization and aggregation are hallmark features of amyotrophic lateral sclerosis and frontotemporal dementia (FTD). We have previously shown in mice that inducible overexpression of a cytoplasmically localized form of TDP-43 (TDP-43-ΔNLS) in forebrain neurons evokes neuropathological change...
Article
Full-text available
The disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS) was identified recently as the TDP-43 (TAR DNA-binding protein 43), thereby providing a molecular link between these two disorders. In FTLD-U and ALS, TDP-43 is redistributed from its normal nuclear localizati...
Article
TAR DNA-binding protein (TDP-43) has been recently described as a major pathological protein in both frontotemporal dementia with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis. However, little is known about the relative abundance and distribution of different pathological TDP-43 species, which include hyperphosphorylated...
Article
Full-text available
TAR DNA-binding protein 43 (TDP-43) is the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Although normal TDP-43 is a nuclear protein, pathological TDP-43 is redistributed and sequestered as insoluble aggregates in neuronal nuclei, perikarya, and neurites. He...
Article
Persistence is the most characteristic attribute of long-term memory (LTM). To understand LTM, we must understand how memory traces persist over time despite the short-lived nature and rapid turnover of their molecular substrates. It is widely accepted that LTM formation is dependent upon hippocampal de novo protein synthesis and Brain-Derived Neur...
Article
Full-text available
Protein synthesis is essential for cells to perform life metabolic processes. Pathological alterations of protein content can lead to particular diseases. Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding, accumulation, aggregation or mislocalization occur. Some of them (like the unfolded protein re...
Article
Full-text available
Multiple sclerosis (MS), especially in its progressive phase, involves early axonal and neuronal damage resulting from a combination of inflammatory mediators, demyelination, and loss of trophic support. During progressive disease stages, a microenvironment is created within the central nervous system (CNS) favoring the arrival and retention of inf...
Article
Full-text available
TDP-43 is a major component of cytoplasmic inclusions observed in neurodegenerative diseases like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). To further understand the role of TDP-43 in mRNA/protein metabolism and proteostasis, we used a combined approach with cellular and animal models overexpressing a cytoplasmic form o...
Article
Full-text available
Background TDP‐43 is a major component of cytoplasmic inclusions observed in neurodegenerative diseases like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). To further understand the role of this predominantly nuclear RNA‐binding protein in disease‐related mRNA/protein metabolism and proteostasis, we used a combined approach...
Article
Objectives: The impact of chronic exposure to environmental adversities on brain regions involved in cognition and mental health depends on whether it occurs during the perinatal period, childhood, adolescence or adulthood. The effects of these adversities on the brain and behavior arise as a function of the timing of the exposure and their co-occu...
Article
Astrocytosis and microgliosis are early features of conditional mouse models of TDP-43-related frontotemporal dementia. Gabriela V. Nieva, Pablo R. Silva, Lionel Muller Igaz IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina Background: Microglia-driven neuroinflam...
Article
Full-text available
Dysregulation of TAR DNA-binding protein 43 (TDP-43) is a hallmark feature of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases. TDP-43 is a ubiquitously expressed RNA-binding protein with many physiological functions, playing a role in multiple aspects of RNA metabolism. We developed transg...
Article
Full-text available
Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human...
Article
The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC...
Article
Full-text available
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are characterized by cytoplasmic protein aggregates in the brain and spinal cord that include TAR-DNA binding protein 43 (TDP-43). TDP-43 is normally localized in the nucleus with roles in the regulation of gene expression, and pathological cytoplasmic aggregates are a...
Article
Pathological TDP-43 is the major disease protein in frontotemporal lobar degeneration characterized by ubiquitin inclusions (FTLD-U) with/without motor neuron disease (MND) and in amyotrophic lateral sclerosis (ALS). As Guamanian parkinsonism–dementia complex (PDC) or Guamanian ALS (G-PDC or G-ALS) of the Chamorro population may present clinically...
Article
Full-text available
TDP-43 was recently identified as the major disease protein in neuronal inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). TDP-43 becomes redistributed from the nucleus to the cytoplasm, ubiquitinated, hyperphosphorylated and cleaved to generate C-terminal fragments, thereby linking mismetabolism of TDP-43...
Article
It is widely accepted that the formation of long-term memory (LTM) requires mRNA translation, but little is known about the cellular mechanisms in the brain that regulate this process. Mammalian target of rapamycin (mTOR) is a key regulator of translational efficacy and capacity. Here, we show that LTM formation of one-trial inhibitory avoidance (I...
Article
Full-text available
1. S100B is a calcium-binding protein expressed and secreted by astrocytes, which has been implicated in glial-neuronal communication. Extracellular S100B appears to protect hippocampal neurons against toxic concentrations of glutamate. Here we investigated a possible autocrine role of S100B in glutamate uptake activity. 2. Astrocyte cultures were...
Article
Most studies regarding altered gene expression after learning are performed using multi-trial tasks, which do not allow a clear discrimination of memory acquisition, consolidation and retrieval. We screened for candidate memory-modulated genes in the hippocampus at 3 and 24 h after one-trial inhibitory avoidance (IA) training, using a cDNA array co...
Article
For several decades, neuroscientists have provided many clues that point out the involvement of de novo gene expression during the formation of long-lasting forms of memory. However, information regarding the transcriptional response networks involved in memory formation has been scarce and fragmented. With the advent of genome-based technologies,...
Article
Rats with cannulae in the dorsal CA1 region of the hippocampus were trained in one-trial step-down inhibitory avoidance, and submitted to four consecutive daily test sessions without the footshock. This produced extinction of the conditioned response in control animals. The bilateral infusion into the CA1 region of the dorsal hippocampus of two dif...
Article
Full-text available
Information storage in the brain is a temporally graded process involving different memory types or phases. It has been assumed for over a century that one or more short-term memory (STM) processes are involved in processing new information while long-term memory (LTM) is being formed. It has been repeatedly reported that LTM requires de novo RNA s...
Article
Many, if not all psychiatric diseases are accompanied by memory disturbances, in particular, the dementias, schizophrenia, and, to an extent, mood disorders. Anxiety and stress, on the other hand, cause important alterations of memory, particularly its retrieval. Here we discuss several new findings on the basic mechanisms of consolidation, retriev...
Article
Apoptosis of thymic cells induced by glucocorticoids (GC) and T-cell receptor (TCR) engagement are mutually antagonistic. We demonstrate that cAMP enhances GC and antagonizes TCR (anti-CD3) apoptosis on the same cell (DO-11.10 and 2B4.11 T-cell hybridomas). We analyzed the activity of several transcription factors in this cAMP dual, stimulus-depend...
Article
The cellular resistance to tumor necrosis factor (TNF) of most cell types has been attributed to both a protective pathway induced by this cytokine and the preexistence of protective factors in the target cell. NF-kappaB has been postulated as one of the principal factors involved in antiapoptotic gene expression control on TNF-resistant cells. We...
Article
The main communicators between the neuroendocrine and immune systems are cytokines and hormones. We studied the molecular interaction between immune activators (cytokines and T-cell receptors [TCRs]) and the glucocorticoid receptor (GR) in cells in which glucocorticoids play a key regulatory function: (1) cellular targets of TNF-induced cytotoxicit...

Network

Cited By