Hesam Babahosseini

Hesam Babahosseini
National Institutes of Health | NIH · National Institutes of Health

Ph.D., Mechanical Engineering

About

32
Publications
9,371
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
376
Citations
Additional affiliations
December 2015 - February 2016
Virginia Tech (Virginia Polytechnic Institute and State University)
Position
  • PostDoc Position

Publications

Publications (32)
Article
Full-text available
Hearing depends on intricate morphologies and mechanical properties of diverse inner ear cell types. The individual contributions of various inner ear cell types into mechanical properties of the organ of Corti and the mechanisms of their integration are yet largely unknown. Using sub-100-nm spatial resolution atomic force microscopy (AFM), we mapp...
Article
Full-text available
Selective spatial isolation and manipulation of single chromosomes and the controlled formation of defined chromosome ensembles in a droplet-based microfluidic system is presented. The multifunctional microfluidic technology employs elastomer valves and membrane displacement traps to support deterministic manipulation of individual droplets. Picoli...
Preprint
Full-text available
Hearing depends on complex mechanical properties of the inner ear sensory epithelium. Yet, the individual contributions of different cell types to the stiffness spectrum of the sensory epithelium have not been thoroughly investigated. Using sub-100 nanometer spatial resolution PeakForce Tapping Atomic Force Microscopy (PFT-AFM), we mapped the Young...
Article
Full-text available
A programmable microfluidic platform enabling on-demand sampling, compartmentalization, and manipulation of multiple aqueous volumes is presented. The system provides random-access actuation of a microtrap array supporting selective discretization of picoliter volumes from multiple sample inputs. The platform comprises two interconnected chips, wit...
Conference Paper
Full-text available
Formation, selective retrieval and capturing of individual droplets are key operational capabilities needed for a broad range of droplet microfluidic applications. The membrane displacement trap (MDT) element gives a robust method for uniform discretization and controllable manipulation of aqueous droplets using an enclosed micro-well covered by an...
Article
Full-text available
A multifunctional microfluidic platform combining on-demand aqueous-phase droplet generation, multi-droplet storage, and controlled merging of droplets selected from a storage library in a single integrated microfluidic device is described. A unique aspect of the technology is a microfluidic trap design comprising a droplet trap chamber and lateral...
Conference Paper
Full-text available
A microfluidic valve-based trap enabling controlled capture, release, and temporary immobilization of droplets together with on-demand merging of selected droplets is presented in this paper. The microfluidic trap technology can merge droplets passively or in active manner via a pneumatically actuated membrane. A microchip is developed with two fun...
Article
Full-text available
Studies of the mechanical characteristics of single cancer cells have shown that non-metastatic and metastatic cells have significant differences in stiffness. We used a microfluidic multi-constriction channel device to differentiate cancer cells and normal cells based upon differences in their mechanical properties. We fabricated the multi-constri...
Article
Full-text available
This study describes the development of a microfluidic biosensor called the iterative mechanical characteristics (iMECH) analyzer which enables label-free biomechanical profiling of individual cells for distinction between metastatic and non-metastatic human mammary cell lines. Previous results have demonstrated that pulsed mechanical nanoindentati...
Article
Full-text available
A microfluidic device comprised of variable numbers of multi-constriction channels was reported in this paper to differentiate a human breast cancer cell line, MDA-MB-231 and a non-tumorigenic human breast cell line, MCF-10A. Differences between their mechanical properties were assessed by comparing the effect of single or multiple relaxations on t...
Thesis
Full-text available
Cancer progression is accompanied with alterations in the cell biomechanical phenotype, including changes in cell structure, morphology, and responses to microenvironmental stress. These alterations result in an increased deformability of transformed cells and reduced resistance to mechanical stimuli, enabling motility and invasion. Therefore, sing...
Article
Full-text available
Cancer progression and physiological changes within the cells are accompanied by alterations in the biophysical properties. Therefore, the cell biophysical properties can serve as promising markers for cancer detection and physiological activities. To aid in the investigation of the biophysical markers of cells, a microfluidic chip has been develop...
Thesis
Full-text available
Cancer progression and physiological changes within the cells are accompanied by alterations in the biophysical properties. Therefore, the cell biophysical properties can serve as promising markers for cancer detection and physiological activities. To aid in the investigation of the biophysical markers of cells, a microfluidic chip has been develop...
Article
Full-text available
The existing approach to characterize cell biomechanical properties typically utilizes switch-like models of mechanotransduction in which cell responses are analyzed in response to a single nanomechanical indentation or a transient pulsed stress. Although this approach provides effective descriptors at population-level, at a single-cell-level, ther...
Article
Full-text available
"...the use of dynamic loading paradigms to evaluate cell biomechanical responses may provide powerful biomarkers for single cancer cell detection and personalized medicine applications."
Article
Full-text available
The mechanical response of a living cell is notoriously complicated. The complex, heterogeneous characteristics of cellular structure introduce difficulties that simple linear models of viscoelasticity cannot overcome, particularly at deep indentation depths. Herein, a nano-scale stress-relaxation analysis performed with an atomic force microscope...
Article
Full-text available
Differences in both the mechanical and electrical properties of cancer and normal breast cells have been reported extensively in literature. Here, we report a microfluidic biosensor capable of measuring the mechanoelectrical (M/E) properties by monitoring impedance variations simultaneously at four frequencies as cells are forced through a narrow d...
Article
Full-text available
This research presents two-dimensional controlled pushing-based nanoma-nipulation using an Atomic Force Microscope (AFM). A reliable control of the AFM tip position is crucial to AFM-based manipulation since the tip can jump over the target nanoparticle causing the process to fail. However, detailed modeling and an understanding of the interaction...
Article
Full-text available
Cancer progression is associated with an increased deformability of cancer cells and reduced resistance to mechanical forces, enabling motility and invasion. This is important for metastases survival and outgrowth and as such could be a target for chemopreventive strategies. In this study, we determined the differential effects of exogenous sphingo...
Article
Full-text available
An Atomic Force Microscope (AFM) is a capable tool to manipulate nanoparticles by exerting pushing force on the nanoparticles located on the substrate. In reality, the substrate cannot be considered as a smooth surface particularly at the nanoscale. Hence, the particle may encounter a step on the substrate during a manipulation. In this study, dyna...
Article
Full-text available
Application of AFM as a manipulator for pushing-based positioning of nanoparticles has been of considerable interest during recent years. Nevertheless, little comprehensive research has been done on modeling and dynamics analysis of nanoparticle behavior during manipulation by AFM probe. The development of dynamic modeling of a nanoparticle is cruc...
Data
An Atomic Force Microscope (AFM) is a capable tool to manipulate nanoparticles by exerting pushing force on the nanoparticles located on the substrate. In reality, the substrate cannot be considered as a smooth surface particularly at the nanoscale. Hence, the particle may encounter a step on the substrate during a manipulation. In this study, dyna...
Conference Paper
Full-text available
Mechanical properties of single cells are associated with their disease status. Thus, cell biomechanics can serve as a reliable biomarker to distinguish cancerous cells from normal ones. Previously, it has been shown that the average deformability of cancerous cells is significantly larger than that of normal cells. In this paper, to compare the de...
Article
Full-text available
Bioactive Sphingolipid metabolites have emerged as important lipid second messengers in the regulation of cell growth, death, motility and many other events. These processes are important in cancer development and progression; thus, sphingolipid metabolites have been implicated in both cancer development and cancer prevention. Despite recent consid...
Data
Full-text available
Application of atomic force microscope (AFM) as a manipulator for pushing-based positioning of nanoparticles has been of considerable interest during recent years. Nevertheless comprehensive researches has been done on modeling and the dynamics analysis of nanoparticle behavior during the positioning process. The development of dynamics modeling of...
Data
This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding o...
Conference Paper
Full-text available
This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding o...
Conference Paper
Full-text available
Application of atomic force microscope (AFM) as a manipulator for pushing-based positioning of nanoparticles has been of considerable interest during recent years. Nevertheless comprehensive researches has been done on modeling and the dynamics analysis of nanoparticle behavior during the positioning process. The development of dynamics modeling of...

Network

Cited By