-Sutton's drawings of Brachystola magna chromosomes during nuclear division, showing the three smallest chromosome pairs (i, j, k) and the accessory chromosome (x) (Sutton, 1902, figs. 1, 2, 3).  

-Sutton's drawings of Brachystola magna chromosomes during nuclear division, showing the three smallest chromosome pairs (i, j, k) and the accessory chromosome (x) (Sutton, 1902, figs. 1, 2, 3).  

Source publication
Article
Full-text available
The "Sutton-Boveri chromosome hypothesis" attempted to establish a parallel between cytological chromosome behavior and the principles followed by Mendelian factors. Today, this hypothesis is well accepted; however, it was not completely accepted at its proposal (1902-3). The aim of the present study is to elucidate the meaning of the chromosome hy...

Context in source publication

Context 1
... divided the other chromosomes into two groups: one consisted of the 16 largest chromosomes and the other with the six smallest ones. In the second group, he perceived that chromosomes could be sorted into three pairs of clearly different sizes and volumes ( Figure 3). As to the larger chromosomes, the differences were not so evident, but Sutton stated that they could also be divided into eight pairs (Sutton, 1902, pp. ...

Similar publications

Article
Full-text available
A review is presented of the author's solution to the problem of glass ageing. The main experimental facts of ageing at room temperature and the principles of adequate physical modelling of the process are set out. The experimental data and the calculated refractive index changes of commercial silicate glasses are given for ageing periods of up to...

Citations

... bariera Weissmana) [2,4]. Choć wkład Boveriego i Suttona w chromosomową teorię dziedziczenia uważany jest za przeceniany (głównie ze względu na to, że wielu uczonych w tamtych czasach prowadziło podobne badania i dochodziło do analogicznych wniosków) [57], utrwaliła się ona pod nazwą teorii Boveriego i Suttona. Zakładała, że czynniki dziedziczenia -nazwane genami (jako skrót od darwinowskich pangenów i w nawiązaniu do gr. ...
Chapter
Full-text available
Gdyby można było powiedzieć, że jakaś cząsteczka chemiczna jest królową współczesnej biologii molekularnej, pewnie większość pomyślałaby o DNA. Koduje ono informację genetyczną, która jest niezbędna dla ciągłości życia, zatem DNA to życie. Jest też ono często, dość obrazowo zresztą, nazywane biologicznym programem komputerowym o niezwykłej złożoności. Nauka zaczęła poznawać świat DNA (i RNA) dopiero w połowie XIX wieku, ale od tamtej pory zalew wiedzy naukowej na temat kwasów nukleinowych jest olbrzymi, a rozwój tej dziedziny niejednokrotnie obfitował w niezwykłe „naukowe zwroty akcji”. Poznawanie budowy chemicznej oraz struktury kwasów nukleinowych (w szczególności DNA) oraz pierwsze odkrycia dotyczące dziedziczności przez niemal wiek toczyły się odrębnymi torami, ponieważ bardzo długo nie wiązano kwasów nukleinowych z genetyką. Uważano, że DNA, w porównaniu z o wiele bardziej szlachetnymi białkami, ma zbyt prostą budowę i nazywane było nawet „głupią cząsteczką”. Dopiero w połowie XX wieku odpowiednie elementy molekularnej układanki powskakiwały na swoje miejsca, kiedy w jednym z eksperymentów wykazano, że to DNA jest czynnikiem transformującym odpowiedzialnym za przekształcenie łagodnego szczepu bakterii w zjadliwy, w innym zaś udowodniono, że elementem wirusa, który odpowiada za przejęcie kontroli nad zainfekowaną komórką, jest jego DNA, a nie białko. Opowieść o kwasach nukleinowych wiąże się też z innymi wielkimi naukowymi ideami, np. z rozwojem ewolucjonizmu, a zawiłe historyczno-naukowe sploty zdarzeń stawiają niekiedy ciekawe pytania, np. o to, co by było, gdyby Charles Darwin wiedział, jaka moc kryje się w odkryciach skromnego czeskiego zakonnika, Gregora Mendla? DNA i geny mają też swoje mroczne karty w historii. Eugenika i wywodzące się z niej straszliwe idee pokazały, jak nauka w rękach nieodpowiednich ludzi może się stać śmiercionośnym „narzędziem”. /// If we were to name a molecule as the queen of modern molecular biology, most of us would probably think of the DNA. It encodes the genetic information that is essential for life to continue, therefore the DNA represents life. It is also frequently and figuratively described as a biological computer programme of incredible complexity. Scientists only began to explore the world of DNA (and RNA) in the middle of 19th century, but since then the influx of scientific knowledge about nucleic acids has been enormous, while the development of this scientific field has led to some incredible „scientific twists”. For almost a century, research into the chemical composition and structure of nucleic acids (especially the DNA) and the first discoveries in the field of heredity followed separate routes, because nucleic acids were not associated with genetics for a long time. The structure of DNA was considered to be too simple when compared to that of the much more sophisticated proteins, and it was even referred to as the ‘stupid molecule’. It was not until the middle of the 20th century that the individual pieces of the molecular puzzle began to fall into place, when one of the experiments demonstrated that DNA itself was the transforming factor responsible for the transformation of a non-virulent bacterial strain into a virulent one, while another showed that the DNA, and not a protein, is the viral element responsible for the control of an infected cell. The story of nucleic acids is also connected with other great scientific ideas, such as the development of evolutionism, while the complex historical/scientific links sometimes raise interesting questions, such as what if Charles Darwin had known the true power behind the discoveries of a modest Czech monk, Gregor Mendel? The history of the DNA and genes, however, also contains some dark sides. The field of eugenics and some horrific ideas associated with it, have shown how science can become a deadly „tool” in the hands of the wrong people.
... After the independent rediscovery of Mendel's rules in 1900, chromosomes began to be considered as possible physical carriers of Mendelian factors (see Martins, 1999, on the history of the chromosome theory of heredity). About 120 years ago, a 25-year-old student at Columbia University, Walter Sutton (1877Sutton ( -1916, recognized that the segregation of Mendelian factors during the production of germ cells was consistent with the segregation of chromosomes in meiosis, and concluded, "I may finally call attention to the probability that the association of paternal and maternal chromosomes in pairs and their subsequent separation during the reducing division . . . ...
Article
Full-text available
The evolution of eukaryotic genomes is accompanied by fluctuations in chromosome number, reflecting cycles of chromosome number increase (polyploidy, centric fissions) and decrease (chromosome fusions). Although all chromosome fusions result from DNA recombination between two or more non-homologous chromosomes, several mechanisms of descending dysploidy are exploited by eukaryotes to reduce their chromosome number. Genome sequencing and comparative genomics have accelerated the identification of inter-genome chromosome collinearity and gross chromosomal rearrangements and have shown that end-to-end chromosome fusions (EEFs) and nested chromosome fusions (NCFs) may have played a more important role in the evolution of eukaryotic karyotypes than previously thought. The present review aims to summarize the limited knowledge on the origin, frequency, and evolutionary implications of EEF and NCF events in eukaryotes and especially in land plants. The interactions between non-homologous chromosomes in interphase nuclei and chromosome (mis)pairing during meiosis are examined for their potential importance in the origin of EEFs and NCFs. The remaining open questions that need to be addressed are discussed.
... Mezitím byla v roce 1902 navržena tzv. chromozomální teorie dědičnosti (Sutton, 1903), označovaná v pozdější literatuře po svých dvou nezávislých objevitelích také jako Sutton-Boveriho hypotéza (Crow & Crow, 2002;Martins, 1999). Mendelem popsané alely determinující fenotyp organismu jsou dle této hypotézy neseny právě již známými chromozomy (Sutton, 1903). ...
Article
Full-text available
Genetika je ve srovnání s ostatními biologickými obory mladou vědou – její historie se datuje k přelomu 19. a 20. století. Díky tomu je možné poměrně dobře mapovat nejen její rapidní vývoj, ale i její postupné pronikání do přírodovědného vzdělávání. Svědkem tohoto vývoje jsou především tradiční výukové materiály, učebnice přírodopisu a biologie. Vývoj kurikula tohoto oboru byl však odlišný v západních zemích a zemích bývalého „východního bloku�, kde byly tehdejší poznatky genetiky odmítnuty díky vlivu politické ideologie na vzdělávání a vědu. Ačkoli jsou specifika výuky genetiky v českých zemích často akcentována, nebyla zatím provedena hlubší analýza toho, jak moc a jakým způsobem konkrétně byla výuka modifikována, ani jak rychle se podařilo dostat genetiku zpátky v plném rozsahu do kurikula. Z výsledků práce je zřejmé, že ačkoli se již v 80. letech 20. století podařilo úspěšně doplnit moderní poznatky genetiky do učebnic i osnov, stále se i dnes potýkáme s nedostatečností formy, jakou je genetika v učebnicích prezentována. Největší bariérou je hlavně slabá návaznost učiva v rámci ročníků a nedostatečná propojenost jednotlivých poznatků do uceleného a logického celku (především nejasný způsob vzniku znaků organismu procesem genové exprese), který by vhodně navazoval na učivo jiných témat (jako rozmnožování nebo evoluce) a integroval ho do sebe.
... Luego en el año 1888 Waldeyer, introduce el término cromosoma, el cual se deriva de la palabra griega "cuerpo coloreado", ya que estos son observados al microscopio a partir de extensiones en láminas teñidas con colorantes específicos. Muchos científicos de la época tuvieron la idea de que la herencia podría estar contenida en estos cuerpos coloreados o cromosomas, lo que posteriormente dio lugar a la teoría cromosómica de la herencia formulada por Sutton y Boveri (1902)(1903) (Martins, 1999). ...
... Luego en el año 1888 Waldeyer, introduce el término cromosoma, el cual se deriva de la palabra griega "cuerpo coloreado", ya que estos son observados al microscopio a partir de extensiones en láminas teñidas con colorantes específicos. Muchos científicos de la época tuvieron la idea de que la herencia podría estar contenida en estos cuerpos coloreados o cromosomas, lo que posteriormente dio lugar a la teoría cromosómica de la herencia formulada por Sutton y Boveri (1902)(1903) (Martins, 1999). ...
... A relação entre os estudos citológicos e os princípios de Mendel e a vinculação dos caracteres hereditários aos cromossomos foi feita somente algumas décadas depois, no início da década de 1900, com a chamada "hipótese cromossômica de Sutton e Boveri" (MARTINS, 1999). Porém, na época, como havia muitos problemas e poucas evidências que a corroborassem, foi rejeitada por muitos cientistas como, por exemplo, Thomas H. Morgan (1866Morgan ( -1945, Bateson e Johannsen. ...
Article
Full-text available
Embora o nome de Johan Gregor Mendel (1822-1884) seja associado geralmente à Genética e às “Leis de Mendel”, poucas pessoas tiveram a oportunidade de conhecer o conteúdo de seu artigo original sobre os padrões de herança nas ervilhas do gênero Pisum, publicado em 1866. O objetivo do presente artigo é discutir sobre essa contribuição, seu contexto e desdobramentos. Esta pesquisa levou à conclusão de que embora a contribuição de Mendel tenha se destacado pela sua metodologia, que envolvia matemática, estatística e noções sobre a divisão celular, resultantes de uma formação diferente da maioria de seus colegas naturalistas, suas investigações se inserem dentro de uma linha de pesquisa bastante ativa na época. Além disso, que os desenvolvimentos da genética durante o século XX, além de sua contribuição, são produto de um trabalho coletivo de vários cientistas provenientes de diversos países.
... É importante salientar que, no período 1902-1903, não havia uma hipótese consensual sobre a associação de fatores mendelianos e os cromossomos, mas várias hipóteses diferentes e muitas vezes conflitantes (MARTINS, 1999). A hipótese de Suton-Boveri, no entanto, ganhou aceitação geral gradualmente, sendo inicialmente fortemente contestada, mesmo por Thomas Hunt Morgan, um dos pesquisadores que mais influenciaram para a posterior aceitação dessa hipótese por toda a comunidade científica, culminando no estabelecimento da Teoria Cromossômica da Herança (THC) (ARAÚJO; MARTINS, 2008;BENSON, 2001), que corresponde a um dos pressupostos básicos para a compreensão da hereditariedade. ...
... Evidentemente, para tanto, é necessária uma reflexão sobre a formação inicial e permanente do docente na organização e seleção dos conteúdos inseridos no currículo, para que a História da Ciência não seja usada de maneira ingênua ou como uma sequência linear de fatos, impedindo a formação de uma concepção crítica sobre a temática (MARTINS, 1998 A TCH é um dos exemplos bem documentados de discussões conceituais na comunidade científica, entre pontos de vista discordantes de que os fatores hereditários estariam exclusivamente associados ao citoplasma ou ao núcleo celular (BENSON, 2001;MARTINS, 1999). A proposição das ideias de Sutton (1902Sutton ( , 1903) promoveu a discussão de diversos pontos conflitantes sobre os pressupostos da base física dos fatores mendelianos. ...
Article
Full-text available
A Teoria Cromossômica da Herança (TCH), elaborada no início do século XX, consiste na proposição de que os fatores mendelianos estariam ligados aos cromossomos. Neste trabalho, foi realizada uma análise qualitativa sobre ensino-aprendizagem da TCH, envolvendo análise documental dos materiais didáticos e entrevistas semiestruturadas com discentes do Ensino Médio. Os resultados sugerem que os discentes não foram capazes de relacionar padrões de herança mendelianos com o processo de meiose. Com relação à análise documental, foi observada a dissociação dos conteúdos de Genética mendeliana dos de divisão celular meiótica. Uma proposta para superação dessa dificuldade seria trabalhar as bases epistemológicas da TCH usando a história da ciência. Essa proposta está fundamentada na ideia de que o contexto histórico-filosófico humaniza as ciências, podendo colaborar para a formação crítica do discente bem como para a aprendizagem significativa sobre a elaboração dos conceitos relacionados à temática estudada.
... In an act of political astuteness, E. B. Wilson, Sutton's graduate advisor and a close friend of Boveri, referred to the concept that chromosomes are the units of inheritance as the 'Sutton-Boveri Theory'. Whether the assignment of cocredit to Boveri was warranted is still a subject of debate (Martins, 1999). Regardless, research by geneticist extraordinaire, Thomas Hunt Morgan, soon convinced all but the most stubborn of sceptics that the Sutton-Boveri Theory was indeed a reality. ...
Chapter
Here, I present a brief history and technical overview of key genome analysis methods developed prior to massively parallel DNA sequencing. Disciplines discussed include cytology/cytogenetics, genome size analyses, DNA reassociation kinetics, genetic mapping, and physical mapping. These tools have been crucial in advancing our knowledge of plant genomes and have been useful in guiding and validating whole genome sequencing efforts. While some of these methods will likely fade into obscurity, others may become even more useful as focus shifts from DNA sequence to higher-order genome (chromatin) structure.
... At the beginning of the 20th century, with the rediscovery of Mendel's works, the blending theory was abandoned, as inheritance patterns were attributed to hereditary particles. As reviewed by Martins in 1999 [1], the evidence published by Walter Sutton and Theodor Boveri between 1902 and 1903 contributed to the belief that the behavior of Mendel's particles parallels the movements of chromosomes in meiosis, suggesting that genes are physically located on the chromosomes. These studies originated the chromosome theory of inheritance, which was supported in 1905 by Brush and Stevens [2] and Wilson [3], with their studies involving the behavior of sex chromosomes. ...
Article
In 1928, Frederick Griffith demonstrated a transmission process of genetic information by transforming Pneumococcus. In 1944, Avery et al. demonstrated that Griffith's transforming principle was DNA. We revisited these classic experiments in a practical class for undergraduate students. Both experiments were reproduced in simple, adapted forms. Griffith's experiment was reproduced by mixing heat-killed, ampicillin-resistant E. coli with live ampicillin-susceptible E. coli, followed by plating samples in the presence or absence of the antibiotic. Cells were also plated separately as controls. Avery's work was reproduced by treating a purified plasmid harboring the ampicillin resistance gene with DNase I. Treated and untreated plasmids were then used to transform E. coli cells, which were plated in culture media containing ampicillin. The students received a class guide for understanding and performing the experiments. The original articles by Griffith and Avery et al. were also provided, along with a list of questions to encourage a discussion on the experimental approach and results. The expected results were obtained and the students successfully revisited the classic experiments, which revealed that DNA is genetic material. The class was very well accepted, as indicated by students' evaluations. Thus, we presented a quick, inexpensive class involving important concepts, which can be easily reproduced in any laboratory with minor resources.