Signing of the constitution on 24 November 1992. From left to right: J. Baars, N. van den Berg, J.F.W. Donker, M. Rutgers, G. Nigro, Y. Poortman, R. Ruedel. 

Signing of the constitution on 24 November 1992. From left to right: J. Baars, N. van den Berg, J.F.W. Donker, M. Rutgers, G. Nigro, Y. Poortman, R. Ruedel. 

Citations

... However, DMD, as we know it today, was named by the French neurologist Guillaume-Benjamin-Amend Duchene between 1806 and 1875. [2] Among the myriad of more than 20 different genetic muscular disorders, the most common and ultimately fatal is DMD. It occurs all around the world, causing significant hardships for affected individuals and their families. ...
Article
Full-text available
Duchenne muscular dystrophy is a neuromuscular disease. This is an X-linked recessive disease caused by mutations in the dystrophin protein gene located on the short arm of the X chromosome, in the Xp21 region. It causes progressive muscle weakness due to wasting of muscle fibers. It causes loss of ability to stand, walk, and move before age 10; most patients die in their 20s. Since there is no specific treatment in any medical system and the prognosis of the disease is uncertain, if we start treatment at an early stage, children with DMD can walk, it can slow or stop progressive muscle degeneration. DMD cannot be directly related to a single disease in Ayurveda. Most major neuromuscular disorders are determined by Vata dosha. In Ayurveda, this pathogenesis can be clearly understood by the concept of Adibala Pravrutta Vyadhi (genetic disease). Here the pathogenesis is due to Beeja Bhagavayava Dusti (partial chromosomal defect) leading to Mamsa Vata Dushti.
... The disease was first described by the Neapolitan physician Giovanni Semmola in 1834 and Gaetano Conte in 1836. [3], [4], [5] However, DMD is named after the French neurologist Guillaume-Benjamin-Amand Duchenne (1806-1875), who in the 1861 edition of his book Paraplegie hypertrophique de l'enfance de cause cerebrale, described and detailed the case of a boy who had this condition. A year later, he presented photos of his patient in his Album de photographies pathologiques. ...
... However DMD was named by French neurologist Guillaume-Benjamin-Amend Duchenne in 1806-1875. 1 Duchenne muscular dystrophy (DMD) is known as x-linked recessive disorder. It affects muscles and lead weakness of muscular strength and function of muscles. ...
Article
Full-text available
Duchenne muscular dystrophy is heterogeneous group of inherited disorders characterized by progressive muscle weakness and wasting. In Duchenne muscular dystrophy involves mutations in the dystrophin gene. Dystrophin is one of the large structural proteins in the cell membrane and absence of dystrophin leads integrity of muscle cells. Ayurvedic diagnose can be made as Adibala Pravrit Mamsa-Vata-Kshaya due to Srothorodha. No any specified treatment schedule in any medical field related to Duchenne muscular dystrophy. Therapeutic approach of muscular dystrophy is represents on corticosteroids, physical therapy, and respiration assistance and gene therapy or muscle transduction. The Ayurvedic treatments relevant to Rasayana group of herbo-mineral medicines and specified Panchkarma therapies have definite protective influence and long survival on Dhatu Kshaya according to Ayurvedic classics. Keep upon this view especially Rajayapana Basti is selected for present conceptual study because of its beneficial Sadhyo Balajanana and Rasayana effects. So this is an attempt has been made to review the relevant effect of Rajayapana Basti in Ayurveda with reference to Duchenne muscular dystrophy.
... The term "Duchenne-type" appeared at the end of the 1950s, after the re-discovery of papers dated 1868 of the great French neurologist Duchenne de Boulogne (1806-1875). This was not the first report, however, since Edward Meryon [3,4] and Gaetano Conte [5] had already published their work, in 1851 and 1836, respectively. ...
... Unlike the majority of other genes, large intragenic deletions account for~65% of cases, and duplications for 10 %. These mutations are mainly located in two hotspots, the principal being at the 3' of the gene (exons [44][45][46][47][48][49][50][51][52][53] and the other at the 5' (exons [3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19]. The largest database of dystrophin mutations can be found at www.dmd.nl ...
Article
Muscular dystrophies are heterogeneous genetic disorders that share progressive muscle wasting. This may generate partial impairment of motility as well as a dramatic and fatal course. Less than 30years ago, the identification of the genetic basis of Duchenne muscular dystrophy opened a new era. An explosion of new information on the mechanisms of disease was witnessed, with many thousands of publications and the characterization of dozens of other genetic forms. Genes mutated in muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, several of which are part of the dystrophin-associated complex. Other gene products localize at the sarcomere and Z band, or are nuclear membrane components. In the present review, we focus on muscular dystrophies caused by defects that affect the sarcolemmal and sub-sarcolemmal proteins. We summarize the nature of each disease, the genetic cause, and the pathogenic pathways that may suggest future treatment options. We examine X-linked Duchenne and Becker muscular dystrophies and the autosomal recessive limb-girdle muscular dystrophies caused by mutations in genes encoding sarcolemmal proteins. The mechanism of muscle damage is reviewed starting from disarray of the shock-absorbing dystrophin-associated complex at the sarcolemma and activation of inflammatory response up to the final stages of fibrosis. We trace only a part of the biochemical, physiopathological and clinical aspects of muscular dystrophy to avoid a lengthy list of different and conflicting observations. We attempt to provide a critical synthesis of what we consider important aspects to better understand the disease. In our opinion, it is becoming ever more important to go back to the bedside to validate and then translate each proposed mechanism.
Article
The main purpose of the present review is to compile the recent information with special focus on different aspects of muscular dystrophy. Muscular dystrophies are the group of genetic disorders that causes progressive muscle weakness and degeneration of skeletal muscles, restricts their movement and functions, and is irreversible. There is no clear picture and statistics on muscular dystrophy effected individuals especially in India. This article specifies and acknowledges the muscular dystrophy facts and particulars all over the world especially focusing the story in India. The study is based on statistics taken from several reports gathered by different organizations in India, as well as, from other data sources published. In this regard, this present review highlighted the areas of epidemiology, present scenario of prevalence, types of muscular dystrophy specially focused on genetic involment, identification of clinical symptoms, clinical diagnosis specially focused in India, care, management and treatment of this disorder.
Thesis
La dystrophie musculaire de Duchenne (DMD) est un syndrome neuromusculaire dû à des mutations dans le gène dmd qui conduisent à la perte d’expression des dystrophines, protéines normalement exprimée dans différents tissus y compris le cerveau. Le profil cognitif des patients est hétérogène et la présence d’une déficience intellectuelle dépend de la position des mutations dans le gène. Cette variabilité s’explique par la complexité du gène dmd qui comprend plusieurs promoteurs internes permettant l’expression cérébrale de plusieurs dystrophines de tailles différentes. Dans ce travail de thèse, nous nous sommes intéressés à deux dystrophines : la dystrophine complète (Dp427), normalement exprimée dans le muscle et le cerveau et absente chez tous les patients DMD, et la forme la plus courte de dystrophine, la Dp71, produit cérébral majeur du gène dmd absente dans un sous-groupe de patients. Ces deux dystrophines ont des fonctions cellulaires différentes : La Dp427, normalement exprimée dans les synapses inhibitrices en interaction avec les récepteurs du GABA, joue un rôle dans la plasticité synaptique, l’apprentissage et la mémoire. Sa perte conduit à des déficits cognitifs modérés. La Dp71, majoritairement exprimée dans les astrocytes périvasculaires, contribue à l’ancrage de canaux ioniques impliqués dans l’homéostasie cérébrale et joue aussi un rôle dans la synapse glutamatergique. La perte de Dp71 aggrave fortement les déficits associés à la perte de Dp427 chez les patients et conduit à une déficience intellectuelle sévère. Les relations génotypes-phénotypes restent à préciser et on suppose qu’au-delà de la sévérité des déficits, la nature même des altérations cognitives, ainsi que que la présence de troubles sensoriels, cognitifs, exécutifs et neuropsychiatriques, dépendent des formes de dystrophines touchées. Pour étudier le rôle de ces deux dystrophines, nous avons utilisé deux modèles murins : la souris mdx uniquement déficiente en Dp427, et la souris Dp71-null uniquement déficiente en Dp71. Une étude comportementale à large spectre nous a permis de mieux caractériser le phénotype associé à la perte de Dp427 et de Dp71, en précisant l’intégrité de la perception et du traitement des stimuli sensoriels auditifs, des réponses émotionnelles et de la réactivité au stress, des performances d’apprentissage, ainsi que de certaines composantes des fonctions exécutives, comme la mémoire de travail spatiale et la flexibilité comportementale. Ce travail a été complété par des études collaboratives visant à caractériser le rôle de la Dp71 dans la plasticité corticale et à développer une approche de thérapie génique pour restaurer la fonction de la Dp427 chez la souris mdx. Nous montrons que la perte de Dp427 perturbe les fonctions GABAergiques, les réponses émotionnelles induites par un stress ainsi que la mémoire émotionnelle et la mémoire à long terme, sans altération majeure des fonctions sensorielles et exécutives. Nous montrons aussi qu’une thérapie génique basée sur des injections systémiques d’oligonucléotides antisens, porteurs de chimies spécifiques et passant la barrière hémato-encéphalique, est capable de restaurer une Dp427 fonctionnelle par la technique du saut d’exon et de compenser les altérations émotionnelles des souris mdx. La perte de Dp71 a un impact différent : Elle altère la balance excitation/inhibition et la plasticité synaptique corticale et perturbe l’apprentissage, la flexibilité comportementale et la mémoire de travail dans des tâches d’apprentissage spatial. Notre étude de ces modèles murins a donc permis de clarifier les relations génotype-phénotype et les bases neurobiologiques de cette maladie, et d’identifier des phénotypes utiles pour valider l’efficacité de traitements ciblant le cerveau dans des études précliniques.
Chapter
There is no consensus as to who was first to describe MD. One account of MD appeared in 1830, when Sir Charles Bell (1774–1842) wrote about an illness that caused progressive weakness in boys. Other sources point to Giovanni Semmola’s publication in 1834 and a Semmola publication in conjunction with Gaetano Conte in 1836. Another account was given by Conte and Gioja in 1836, describing two brothers with progressive muscle weakness. In 1852, Dr. Edward Meryon (1809–1880) described a family with four boys, all affected by significant muscle changes. The French neurologist, Guillaume Benjamin Amand Duchenne, MD (1806–1875), wrote about his first case of MD in 1861. In 1868, he gave a comprehensive account of 13 patients with MD. One of the most severe and well-known forms of MD, Duchenne MD, now bears his name. There are at least nine major types of MD: Duchenne, Becker, congenital, distal, Emery–Dreifuss, facioscapulohumeral (FSHD), limb-girdle, myotonic dystrophy, and oculopharyngeal. MD can be inherited in three ways: (1) autosomal inheritance (from a normal gene from one parent and an abnormal gene from another parent), (2) autosomal recessive inheritance (both parents carry and pass on the faulty gene), and (3) X-linked recessive inheritance (when a mother carries the affected gene and passes it on to her child). While widely reported as the third most common genetic disease of skeletal muscle, a 2008 analysis of rare diseases listed FSHD as the most prevalent form of MD at 7/100,000.