Article

Oxaliplatin Transport Mediated by Organic Cation/Carnitine Transporters OCTN1 and OCTN2 in Overexpressing Human Embryonic Kidney 293 Cells and Rat Dorsal Root Ganglion Neurons

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The organic cation/carnitine transporters OCTN1 and OCTN2 are related to other organic cation transporters (OCT1, OCT2, and OCT3) known for transporting oxaliplatin, an anticancer drug with dose-limiting neurotoxicity. In this study, we sought to determine whether OCTN1 and OCTN2 also transported oxaliplatin and to characterize their functional expression and contributions to its neuronal accumulation and neurotoxicity in dorsal root ganglion (DRG) neurons relative to those of OCTs. [(14)C]Oxaliplatin uptake, platinum accumulation, and cytotoxicity were determined in OCTN-overexpressing human embryonic kidney (HEK) 293 cells and primary cultures of rat DRG neurons. Levels of mRNA and functional activities of rat (r)Octns and rOcts in rat DRG tissue and primary cultures were characterized using reverse transcription-polymerase chain reaction and uptake of model OCT/OCTN substrates, including [(3)H]1-methyl-4-phenylpyridinium (MPP(+)) (OCT1-3), [(14)C]tetraethylammonium bromide (TEA(+)) (OCT1-3 and OCTN1/2), [(3)H]ergothioneine (OCTN1), and [(3)H]l-carnitine (OCTN2). HEK293 cells overexpressing rOctn1, rOctn2, human OCTN1, and human OCTN2 showed increased uptake and cytotoxicity of oxaliplatin compared with mock-transfected HEK293 controls; in addition, both uptake and cytotoxicity were inhibited by ergothioneine and L-carnitine. The uptake of ergothioneine mediated by OCTN1 and of L-carnitine mediated by OCTN2 was decreased during oxaliplatin exposure. rOctn1 and rOctn2 mRNA was readily detected in rat DRG tissue, and they were functionally active in cultured rat DRG neurons, more so than rOct1, rOct2, or rOct3. DRG neuronal accumulation of [(14)C]oxaliplatin and platinum during oxaliplatin exposure depended on time, concentration, temperature, and sodium and was inhibited by ergothioneine and to a lesser extent by L-carnitine but not by MPP(+). Loss of DRG neuronal viability during oxaliplatin exposure was inhibited by ergothioneine but not by L-carnitine or MPP(+). OCTN1 and OCTN2 both transport oxaliplatin and are functionally expressed by DRG neurons. OCTN1-mediated transport of oxaliplatin appears to contribute to its neuronal accumulation and treatment-limiting neurotoxicity more so than OCTN2 or OCTs.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Strategies to prevent or reduce chronic CIPN are needed, since CIPN strongly affects quality of life (5,7). Ergothioneine (ET) has been suggested as a potential dietary factor that may impact CIPN based on experimental studies (8)(9)(10). ET is a sulfur-containing amino acid (11), and a potent antioxidant produced only by fungi and some cyanobacteria (12). ...
... ET has been suggested to have neuroprotective effects against toxicity of platinum-derived chemotherapeutics in several experimental models (8)(9)(10), but this has not been explored in humans. Based on rodent studies, it has been suggested that ET may inhibit accumulation of oxaliplatin in dorsal root ganglion neurons (10). ...
... Based on rodent studies, it has been suggested that ET may inhibit accumulation of oxaliplatin in dorsal root ganglion neurons (10). The uptake of ET is thought to be regulated through the Organic Cation/Carnitine Transporter (OCTN1)) (15); interestingly, through rodent studies it has been suggested that the uptake of oxaliplatin by dorsal root ganglion neurons may occur via this same transporter OCTN1 (8,16). As accumulation of platinum in dorsal root ganglia has been reported as a major determinant of neurotoxicity, inhibition of oxaliplatin accumulation by ET may partially prevent CIPN-related symptoms (10,17). ...
Article
Full-text available
Objective: Chronic Chemotherapy-Induced Peripheral Neuropathy (CIPN) is highly prevalent among colorectal cancer (CRC) patients. Ergothioneine (ET) – a dietary antioxidant -protected against CIPN in experimental models, but human studies are lacking. We explored whether whole blood ET levels were associated with chronic peripheral neuropathy among CRC patients who had completed chemotherapy. Methods: At diagnosis, median ET-concentration in whole blood of 159 CRC patients was 10.2 μg/ml (7.2–15.8). Patients completed questionnaires on peripheral neuropathy 6 months after completion of chemotherapy. We calculated prevalence ratios (PR) to assess associations of ET-concentrations and prevalence of peripheral neuropathy and used linear regression to assess associations with severity of peripheral neuropathy. Results: Prevalence of total and sensory peripheral neuropathy were both 81%. Higher ET-concentrations tended to be associated with lower prevalence of total and sensory peripheral neuropathy, but not statistically significant (highest versus lowest tertile of ET: PR = 0.93(0.78, 1.11) for total neuropathy, and PR = 0.84(0.70, 1.02) for sensory neuropathy). ET-concentrations were not associated with severity of neuropathy. Conclusion: Statistically significant associations were not observed, possibly because of limited sample size. Although data may putatively suggest higher levels of ET to be associated with a lower prevalence of neuropathy, analyses should be repeated in larger populations with larger variability in ET-concentrations.
... ERGO prevented the cisplatin-induced reduction of cell viability in PC12 cells and the cisplatin-induced inhibition of neurite outgrowth in rat cerebral cortex-derived primary cultured neurons [40]. ERGO inhibited an oxaliplatin-induced decrease in cell viability in rat dorsal root ganglion neurons [47]. These results suggest that ERGO has a neuroprotective effect through its antioxidant activity and may be effective against the cognitive impairment not only in AD but also due to aging and the adverse effects of anti-malignant tumor drugs. ...
... Decrease in cell viability [47] High glucose and methylglyoxal PC12 cells Decrease in cell viability [61] Content courtesy of Springer Nature, terms of use apply. Rights reserved. ...
Article
Full-text available
Ergothioneine (ERGO) is a thiol contained in the food that exhibits an excellent antioxidant effect similar to that of glutathione. Although mammals lack a biosynthetic pathway for ERGO, the carnitine/organic cation transporter OCTN1/SLC22A4, which transports ERGO in vivo, is expressed throughout the body, and ERGO is distributed to various organs after oral intake. ERGO is a stable compound that remains in the body for a long time after ingestion. OCTN1 is also expressed in brain parenchymal cells, including neurons, and ERGO in the blood permeates the blood–brain barrier and is distributed to the brain, exhibiting a neuroprotective effect. Recently, the association between central nervous system (CNS) diseases and ERGO has become a research focus. ERGO concentrations in the blood components are lower in patients with cognitive impairment, Parkinson’s disease, and frailty than in healthy subjects. ERGO exerts a protective effect against various neurotoxins and improves the symptoms of cognitive impairment, depression, and epilepsy in animal models. The promotion of neurogenesis and induction of neurotrophic factors, in addition to the antioxidant and anti-inflammatory effects, may be involved in the neuroprotective effect of ERGO. This review shows the association between ERGO and CNS diseases, discusses the possible biomarkers of peripheral ERGO in CNS diseases, and the possible preventive and improvement effects of ERGO on CNS diseases.
... Transporter plays an important role in oxaliplatin uptake and intracellular accumulation [32]. Thus, we wanted to clarify whether JPH203 is involved in the regulation of oxaliplatin transporters. ...
... Therefore, the accumulation of oxaliplatin in RCC cells after JPH203 treatment is unlikely to be the result of OCT2 activation. In addition, other uptake transporters (OCTN1, OCTN2, CTR1, and OCT3) and efflux transporters (MATE-2K), which take charge for the transportation of oxaliplatin to some extent, were also evaluated via mRNA expression [32]. The result show that there is no significant difference between with and without JPH203 treatment ( Figure S5B). ...
Article
Full-text available
Simple Summary The transformation and mechanism of methionine metabolism of renal cell carcinoma (RCC) under a hypoxic microenvironment is not well understood as yet. This study illustrated that the reprogramming of methionine metabolism and the subsequent glutathione (GSH) synthesis were mediated by amino acid transporter 1 (LAT1). Correspondingly, we proposed a combination strategy of LAT1 inhibitor JPH203 and oxaliplatin, which presented an enhanced therapeutic efficacy for RCC both in vivo and in vitro. Abstract Hypoxic microenvironment and metabolic dysregulation of tumor impairs the therapeutic efficacy of chemotherapeutic drugs, resulting in drug resistance and tumor metastasis, which has always been a challenge for the treatment of solid tumors, including renal cell carcinoma (RCC). Herein, starting from the evaluation of methionine metabolism in RCC cells, we demonstrated that the increased methionine accumulation in RCC cells was mediated by L-type amino acid transporter 1 (LAT1) under hypoxia. Glutathione (GSH), as a methionine metabolite, would attenuate the therapeutic efficacy of oxaliplatin through chemical chelation. Reducing methionine uptake by LAT1 inhibitor JPH203 significantly enhanced the sensitivity of RCC cells to oxaliplatin by reducing GSH production in vitro and in vivo. Therefore, we proposed an effective and stable therapeutic strategy based on the combination of oxaliplatin and LAT1 inhibitor, which is expected to solve the resistance of RCC to platinum-based drugs under hypoxia to a certain extent, providing a meaningful insight into the development of new therapeutic strategies and RCC treatment
... Mice, intact cells, and single protein assays (proteoliposomes) have been used as models. Moreover, different methodologies for transport monitoring have been employed, such as radiolabeled tracer assays, fluorescence measurements, liquid chromatography tandem mass spectrometry (LC-MS/MS), liquid chromatography triple quadrupole mass spectrometry (LC-TQMS), labelling reagent 3-aminopyridyl-Nhydroxysuccinimidyl carbamate (APDS) to derivatize OCTN1 substrates, etc. [10][11][12][13][14]16,18,28,52]. Some methodological limitations emerged, for example, in the case of LC-MS/MS in measuring the intracellular levels of cytarabine tested as an OCTN1 substrate [53]. ...
... Two main features of transport specificity that have been confirmed by different works in which different methodologies have been used are the ability of OCTN1 to transport TEA and the scarce efficiency in transporting carnitine. Substitutions of specific amino acids of OCTN1 by a limited number of point mutations has been performed and several mutants allowed a 35% improvement in carnitine transport [52]. Interestingly, the zwitterionic substrate ergothioneine and the cationic substrate acetylcholine, which share some structural features with carnitine ( Figure 1a), are also transported. ...
Article
Full-text available
The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.
... The characteristics of its transport system were similar to those described in previous studies [25][26][27]. LC uptake results in NSC-34 cell lines were similar with the previously publish data which showed the sodium-, time-and temperature-dependency uptake by the substrates of OCTN1 and 2 (carnitine, ergothioneine, TEA and oxaliplatin) in the primary cultures of rat dorsal root ganglion neurons [28] (Figure 1). Time-and concentration-dependent uptake was depleted in the MT cell lines, indicating that it may be linked to a mutated or deleted transporter system as compared to WT cell lines (Figures 1 and 2); [16,17]. ...
... Next, the kinetic inhibition study demonstrated that LC uptake was competitively inhibited in the presence of organic cationic compounds (Figure 4). These results suggest that LC functions as a substrate that binds to both OCTN1 and 2, and that both OCTN1 and 2 competitively bind to LC, thereby determining the sensitivity of the LC transporter in NSC-34 cell lines [28]. ...
Article
Full-text available
L-Carnitine (LC) is essential for transporting fatty acids to the mitochondria for β-oxidation. This study was performed to examine the alteration of the LC transport system in wild type (WT, NSC-34/hSOD1WT) and mutant type (MT, NSC-34/hSOD1G93A) amyotrophic lateral sclerosis (ALS) models. The uptake of [3H]L-carnitine was dependent on time, temperature, concentration, sodium, pH, and energy in both cell lines. The Michaelis–Menten constant (Km) value as well as maximum transport velocity (Vmax) indicated that the MT cell lines showed the higher affinity and lower capacity transport system, compared to that of the WT cell lines. Additionally, LC uptake was inhibited by organic cationic compounds but unaffected by organic anions. OCTN1/slc22a4 and OCTN2/slc22a5 siRNA transfection study revealed both transporters are involved in LC transport in NSC-34 cell lines. Additionally, slc22a4 and slc22a5 was significantly decreased in mouse MT models compared with that in ALS WT littermate models in the immune-reactivity study. [3H]L-Carnitine uptake and mRNA expression pattern showed the pretreatment of LC and acetyl L-carnitine (ALC) attenuated glutamate induced neurotoxicity in NSC-34 cell lines. These findings indicate that LC and ALC supplementation can prevent the neurotoxicity and neuro-inflammation induced by glutamate in motor neurons.
... [15][16][17][18] Recent studies have indicated that platinum concentration dose-dependently increased in the rat DRG and correlated with the degree of neurotoxicity after repeated oxaliplatin administration. [19][20][21][22][23] Therefore, platinum accumulation in the PNS, especially in DRG, is one of the important mechanisms of OIPN ( Figure 1). ...
... 23 HEK293 cells overexpressed rats OCTN1, OCTN2, hOCTN1, and hOCTN2 showed higher oxaliplatin uptake than mock-transfected control cells, and the uptake and toxicity of oxaliplatin in primary cultured rat DRG neurons were mediated by OCTN1 more than OCTN2. 21 Recently, two studies have reported that both OCTN1 and OCTN2 affect platinum accumulation, cytotoxicity, and neurotoxicity in HEK293, PC12, and FLP-in-293 cells, whereas only OCTN1 knockdown or co-administration of ergothioneine (an OCTN1 inhibitor) can reduce platinum accumulation and OIPN in rat DRG neurons. 22,23 Despite these results, there is no existing evidence on whether OCTN1 inhibition will affect the antitumor efficacy of oxaliplatin because OCTN1 is also expressed by normal colon cells and tumor cell lines including colorectal SW480 cells. ...
Article
Full-text available
Oxaliplatin‐induced peripheral neuropathy (OIPN) is a common and dose‐limiting toxic effect that markedly limits the use of oxaliplatin and affects the quality of life. Although it is common, the underlying mechanisms of OIPN remain ambiguous. Recent studies have shown that the platinum accumulation in peripheral nervous system, especially in dorsal root ganglion, is a significant mechanism of OIPN. Several specific transporters, including organic cation transporters(OCTs), high‐affinity copper uptake protein1(CTR1), ATPase copper transporting alpha(ATP7A) and multidrug and toxin extrusion protein 1 (MATE1), could be associated with this mechanism. This review summarizes the current research progress about the relationship between platinum accumulation and OIPN, as well as suggests trend for the future research.
... Apart from carnitine, SLC22A5 can also transport some drugs, including several anticancer drugs like etoposide (Hu et al., 2012) and oxaliplatin (Jong, Nakanishi, Liu, Tamai, & McKeage, 2011). ...
... It also explains the mechanism through which drugs transported by SLC22A5 cause glioma cell death. In conclusion, bearing in mind the role of SLC22A5 in FAO and cell survival as well as the ability to transport several chemotherapeutics (Hu et al., 2012;Johnston et al., 2014;Jong et al., 2011;Todesco et al., 2008), this carnitine transporter could be employed to treat types of cancer with high SLC22A5 expression. ...
Article
Gliomas are the most common primary malignant brain tumor in adults, but current treatment for glioblastoma multiforme (GBM) is insufficient. Even though glucose is the primary energetic substrate of glioma cells, they are capable of using fatty acids to generate energy. Fatty acid oxidation (FAO) in mitochondria requires L‐carnitine for the formation of acylcarnitines by carnitine palmitoylotransferase 1 (CPT1) and further transport of acyl carnitine esters to mitochondrial matrix. Carnitine can be delivered to the cell by an organic cation/carnitine transporter—SLC22A5/OCTN2. In this study, we show that SLC22A5 is up‐regulated in glioma cells and that they vary in the amount of SLC22A5 in the plasma membrane. Research on glioma cells (lines U87MG, LN229, T98G) with various expression levels of SLC22A5 demonstrated a correlation between the FAO rate, the level of the transporter, and the carnitine transport. Inhibition of carnitine transport by chemotherapeutics, such as vinorelbine and vincristine, led to inhibition of FAO, which was further intensified by etomoxir—a CPT1 inhibitor. This led to reduced viability and increased apoptosis in glioma cells. Modulation of SLC22A5 level by either silencing or up‐regulation of SLC22A5 also affected glioma cell survival in a FAO‐dependent way. These observations suggest that the survival of glioma cells is heavily reliant on both FAO and SLC22A5 activity, as well as that CPT1 and SLC22A5 might be possible drug targets. image
... Of note, until now there is no clear-cut uptake mechanism for oxaliplatin established. Passive diffusion and transporter-mediated uptake mechanisms are discussed 63, 64 . The comparative drug accumulation data of Figure 4, points towards predominant passive diffusion uptake for the first 4 hours. ...
... Differential active efflux transport mechanisms might be observed after 8 h of exposure between the parental and the resistant cell line. In fact, several studies linked overexpression of transporters to therapy outcome or resistance, however knowledge is still fragmentary 63, 64 . The influx transporters involve copper transporter (CTR) proteins and organic cation transporters (OCTs). ...
Article
Full-text available
Resistance development is a major obstacle for platinum-based chemotherapy, with the anticancer drug oxaliplatin being no exception. Acquired resistance is often associated with altered drug accumulation. In this work we introduce a novel –omics workflow enabling the parallel study of platinum drug uptake, its distribution between nucleus/protein and small molecules fraction along with metabolic changes after different treatment time points. This integrated metallomics/metabolomics approach is facilitated by a tailored sample preparation workflow suitable for preclinical studies on adherent cancer cell models. Inductively coupled plasma mass spectrometry monitors the platinum drug, while the metabolomics tool-set is provided by hydrophilic interaction liquid chromatography combined with high-resolution Orbitrap mass spectrometry. The implemented method covers biochemical key pathways of the cancer cell metabolism as shown by a panel of >130 metabolite standards. Furthermore, the addition of yeast-based 13C-enriched internal standards upon extraction enabled a novel targeted/untargeted analysis strategy. In this study we used our method to compare an oxaliplatin sensitive human colon cancer cell line (HCT116) and its corresponding resistant model. In the acquired oxaliplatin resistant cells distinct differences in oxaliplatin accumulation correlated with differences in metabolomic rearrangements. Using this multi-omics approach for platinum-treated samples facilitates the generation of novel hypothesis regarding the susceptibility and resistance towards oxaliplatin.
... In mice, OIPN has been found to be associated also with OCTN1-mediated uptake of OHP into the DRG, whereas MATE1-mediated efflux of OHP from the DRG appears to have a protective function (Fujita et al. 2019), analogous to that observed in the kidneys (Yokoo et al. 2007). Even in the rat, OCTN1/2 are functionally present in DRG neurons, where OCTN1 mediates OHP accumulation (Jong et al. 2011). Copper transporters such as Ctr1 and ATP7a have also been implicated in OHP transport in DRG and OIPN (Liu et al. 2009;Ip et al. 2010). ...
Article
Full-text available
Oxaliplatin (OHP) is effective in colorectal cancer treatment but induces peripheral neurotoxicity (OHP-induced peripheral neurotoxicity, OIPN), diminishing survivor quality of life. Organic cation transporter 2 (OCT2) is a key OHP uptake pathway in dorsal root ganglia. Competing for OCT2-mediated OHP uptake, such as with the tyrosine kinase inhibitor dasatinib, may mitigate OHP side effects. We investigated OHP and dasatinib interaction with OCT2 in human embryonic kidney 293 (HEK293) cells expressing OCT2 within a 10–3 to 10–7 M concentration range. Uptake competition experiments using fluorescent organic cation 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP⁺, 1 µM) and mass spectrometry (MS) to determine cellular platinum content indicated that OHP (100 µM) is an OCT2 substrate, mediating OHP cellular toxicity. ASP⁺ and MS analysis revealed dasatinib as a non-transported inhibitor of hOCT2 (IC50 = 5.9 µM) and as a regulator of OCT2 activity. Dasatinib reduced transporter Vmax, potentially via Y544 phosphorylation suppression. MS analysis showed cellular dasatinib accumulation independent of hOCT2. Although 3 µM dasatinib reduced 100 µM OHP accumulation in hOCT2-HEK293 cells, co-incubation with dasatinib and OHP did not prevent OHP toxicity, possibly due to dasatinib-induced cell viability reduction. In summary, this study demonstrates OHP as an OCT2 substrate and dasatinib as a non-transported inhibitor and regulator of OCT2, offering potential for OIPN mitigation.
... Cisplatin is associated with excessive urinary loss of L-carnitine, which is dependent on the renal tubular uptake of cisplatin by Oct2 in mice and is related to the downregulation of the luminal carnitine transporter Octn2 (Lancaster et al. 2010). Oxaliplatin, another platinum-based chemotherapeutic agent used to treat carcinoma of the rectum or stage III colon cancer, is a well-known substrate for both OCT2 and OCTN2 (Jong et al. 2011;Motohashi and Inui 2013). This evidence in animal models is useful for linking the relative activities of the OCT2 and OCTN2 transporters, which may also be applicable to humans. ...
Article
Full-text available
Purpose This study investigated effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on biodistribution and pharmacokinetics of L-carnitine and creatinine as organic cation/carnitine transporter 2 (OCTN2) and organic cation transporter 2 (OCT2) biomarkers, respectively, together with mRNA expressional changes. Methods After four consecutive days of pretreatment with 1,25(OH)2D3 (2.56 nmol/kg/day), plasma, urine, and tissues were collected for analysis of endogenous L-carnitine and creatinine basal levels, or rats were intravenously administered exogenous L-carnitine (50 mg/kg). The selected tissues were subjected to analysis of rOCTN2 and rOCT2 gene expression using real-time quantitative polymerase chain reaction. The quantification of L-carnitine and creatinine was performed with liquid chromatography-tandem mass spectrometry. Results 1,25(OH)2D3-treated rats exhibited decreased rOCTN2 mRNA expression in the liver, kidney, spleen, and brain, and decreased rOCT2 mRNA expression in the kidney. L-carnitine levels indicated that basal plasma abundance in the 1,25(OH)2D3-treated group elevated, whereas the tissue-plasma partition coefficient dropped in all tissues and the urine level also reduced. Exogenous L-carnitine pharmacokinetics were consistent with the endogenous level, with a significant rise in area under the curve and significant decreases in renal clearance and volume of distribution at steady state in the group treated with 1,25(OH)2D3. Additionally, the significant increase in plasma levels and decrease in renal clearance of creatinine were likely due to decreased OCT2 function. Conclusion Our observations suggest the risk of co-administering 1,25(OH)2D3 with OCT2 and/or OCTN2 substrates. Moreover, this study confirmed that L-carnitine and creatinine are sensitive endogenous biomarkers of OCTN2- and OCT2- mediated drug-drug interactions, respectively.
... Similarly, Huang et al. also demonstrated that targeting OCT2 with genetic and pharmacological means improved acute and chronic neurotoxicity in the satellite glial cells (Huang et al., 2020). Furthermore, Jong et al. reported that uptake and cytotoxicity of oxaliplatin increased in HEK293 cells overexpressing rat OCTN1, rat OCTN2, human OCTN1, and human OCTN2, and that OCTN1-mediated transport of oxaliplatin seemed to make a greater contribution to its neuronal accumulation and neurotoxicity compared to OCTN2 or OCTs (Jong et al., 2011). ...
Article
Full-text available
Oxaliplatin-based chemotherapy is a standard treatment approach for colorectal cancer (CRC). However, oxaliplatin-induced peripheral neurotoxicity (OIPN) is a severe dose-limiting clinical problem that might lead to treatment interruption. This neuropathy may be reversible after treatment discontinuation. Its complicated mechanisms are related to DNA damage, dysfunction of voltage-gated ion channels, neuroinflammation, transporters, oxidative stress, and mitochondrial dysfunction, etc. Several strategies have been proposed to diminish OIPN without compromising the efficacy of adjuvant therapy, namely, combination with chemoprotectants (such as glutathione, Ca/Mg, ibudilast, duloxetine, etc. ), chronomodulated infusion, dose reduction, reintroduction of oxaliplatin and topical administration [hepatic arterial infusion chemotherapy (HAIC), pressurized intraperitoneal aerosol chemotherapy (PIPAC), and hyperthermic intraperitoneal chemotherapy (HIPEC)]. This article provides recent updates related to the potential mechanisms, therapeutic strategies in treatment of OIPN, and pharmacokinetics of several methods of oxaliplatin administration in clinical trials.
... By analyzing OCT2 expression in DRG cultures, here we have demonstrated that the transporter is present in neuron neurites. Other transporters may also be involved in determining CDDP neurotoxicity, as proposed, for example, for Ctr1 and OCTN, because of their neuronal membrane localization [34,35]. ...
Article
Full-text available
Cisplatin (CDDP) is an efficient chemotherapeutic agent broadly used to treat solid cancers. Chemotherapy with CDDP can cause significant unwanted side effects such as renal toxicity and peripheral neurotoxicity. CDDP is a substrate of organic cation transporters (OCT), transporters that are highly expressed in renal tissue. Therefore, CDDP uptake by OCT may play a role in causing unwanted toxicities of CDDP anticancer treatment. In this study, the contribution of the mouse OCT2 (mOCT2) to CDDP nephro- and peripheral neurotoxicity was investigated by comparing the effects of cyclic treatment with low doses of CDDP on renal and neurological functions in wild-type (WT) mice and mice with genetic deletion of OCT2 (OCT2−/− mice). This CDDP treatment protocol caused significant impairment of kidneys and peripherical neurological functions in WT mice. These effects were significantly reduced in OCT2−/− mice, however, less profoundly than what was previously measured in mice with genetic deletion of both OCT1 and 2 (OCT1-2−/− mice). Comparing the apparent affinities (IC50) of mOCT1 and mOCT2 for CDDP, the mOCT1 displayed a higher affinity for CDDP than the mOCT2 (IC50: 9 and 558 µM, respectively). Also, cellular toxicity induced by incubation with 100 µM CDDP was more pronounced in cells stably expressing mOCT1 than in cells expressing mOCT2. Therefore, in mice, CDDP uptake by both OCT1 and 2 contributes to the development of CDDP undesired side effects. OCT seem to be suitable targets for establishing treatment protocols aimed at decreasing unwanted CDDP toxicity and improving anticancer treatment with CDDP.
... OCTN1-mediated transport is involved in the disposition of several clinically essential drugs in the body. For example, it results in neurotoxicity caused by oxaliplatin (Jong et al. 2011). Moreover, co-administration of ergothioneine ameliorated oxaliplatin-induced peripheral neuropathy in rats by reducing its accumulation via OCTN1 (Nishida et al. 2018). ...
Article
Full-text available
Purpose: This study aimed to investigate the effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the expression levels of organic cation/carnitine transporter 1 (OCTN1) as well as the pharmacokinetics and biodistribution of ergothioneine, an OCTN1 substrate, in rats. Methods: Rats pretreated with 1,25(OH)2D3 (2.56 nmol/kg/day) for four days were administered ergothioneine (2 mg/kg) intravenously. The expression levels of rat OCTN1 (rOCTN1) in organs were determined using real-time quantitative polymerase chain reaction. Ergothioneine levels in plasma, urine, and organs (with and without intravenous injection of exogenous ergothioneine) were determined using liquid chromatography-tandem mass spectrometry. Results: 1,25(OH)2D3 pretreatment resulted in a significant decrease in rOCTN1 mRNA expression levels in the kidney and brain, a significant increase in basal plasma levels of ergothioneine (from 48 h), and a significant decrease in the tissue-plasma partition coefficient (Kp) in all tissues (except the heart and lungs) and the basal urine levels of ergothioneine. After intravenous administration, the pharmacokinetic profiles of ergothioneine were consistent with the basal levels of endogenous ergothioneine, with an increase in AUC∞ by 85%, a significant decrease in total clearance by 49%, and a decrease in Vss by 32% in 1,25(OH)2D3-treated rats. The Kp value and urinary recovery of ergothioneine also decreased in the 1,25(OH)2D3-treated group. Conclusion: This study showed the effects of 1,25(OH)2D3 on the expression and function of rOCTN1 by investigating the interaction between 1,25(OH)2D3 and ergothioneine. Dose adjustment and possible changes in bioavailability should be considered before the co-administration of vitamin D or its active forms and OCTN1 substrates. Supplementary information: The online version contains supplementary material available at 10.1007/s40005-022-00563-1.
... Expression of OATP2B1 was confirmed in HEK293 cells using p-[ 14 C]aminohippuric acid, and expression of OCTN and OCT was confirmed using [ 3 H]methyl-4-phenylpyridinium [3,12]. One day before the uptake experiments, HEK293 cells expressing the respective SLC transporter were seeded at 4 × 10 5 cells/well in 12-well plastic plates. ...
Article
Full-text available
Gastrointestinal tract absorption of cationic anticancer drugs and medicines was estimated using whole-body imaging following oral [123I]MIBG administration. [123I]MIBG was added to cultures of human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)2B1, carnitine/organic cation transporter (OCTN)1 and OCTN2, and organic cation transporter (OCT)1, OCT2, and OCT3 with and without cimetidine (an OCTN and OCT inhibitor) and L-carnitine (an OCTN inhibitor). Biodistribution analyses and single-photon emission computed tomography (SPECT) imaging in normal and dextran sodium sulfate (DSS)-induced experimental colitis mice were conducted using [123I]MIBG with and without cimetidine. [123I]MIBG uptake was significantly higher in HEK293/OCTN1, 2, and OCT1-3 cells than in mock cells. Uptake via OCTN was inhibited by L-carnitine, whereas OCT-mediated uptake was inhibited by cimetidine. Biodistribution analyses and SPECT imaging studies showed significantly lower accumulation of [123I]MIBG in the blood, heart, liver, and bladder in DSS-induced experimental colitis mice and mice with cimetidine loading compared with normal mice, whereas significantly higher accumulation in the stomach and kidney was observed after [123I]MIBG injection. [123I]MIBG imaging after oral administration can be used to estimate gastrointestinal absorption in the small intestine via OCTN and/or OCT by measuring radioactivity in the heart, liver, and bladder.
... According to our results, TRPM8 activity is increased after one hour of oxaliplatin treatment. Although it is known that oxaliplatin does not directly activate TRPM8 [14], it has been shown before that oxaliplatin can rapidly enter sensory neurons and gilal cells after treatment, probably via organic cation transporters (OCT), and can remain in these cells for a long time [43,44]. The accumulation of oxaliplatin in neurons may lead to increased TRPM8 activity, which is in accordance with the acute cold pain that is observed rapidly after treatment in patients [6]. ...
Article
Full-text available
Oxaliplatin is a third-generation platinum-based anticancer drug that is widely used as first-line treatment for colorectal carcinoma. Patients treated with oxaliplatin develop an acute peripheral pain several hours after treatment, mostly characterized by cold allodynia as well as a long-term chronic neuropathy. These two phenomena seem to be causally connected. However, the underlying mechanisms that trigger the acute peripheral pain are still poorly understood. Here we show that the activity of the transient receptor potential melastatin 8 (TRPM8) channel but not the activity of any other member of the TRP channel family is transiently increased 1 h after oxaliplatin treatment and decreased 24 h after oxaliplatin treatment. Mechanistically, this is connected with activation of the phospholipase C (PLC) pathway and depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) after oxaliplatin treatment. Inhibition of the PLC pathway can reverse the decreased TRPM8 activity as well as the decreased PIP2-concentrations after oxaliplatin treatment. In summary, these results point out transient changes in TRPM8 activity early after oxaliplatin treatment and a later occurring TRPM8 channel desensitization in primary sensory neurons. These mechanisms may explain the transient cold allodynia after oxaliplatin treatment and highlight an important role of TRPM8 in oxaliplatin-induced acute and neuropathic pain.
... Low levels of GSH have been associated with a high risk of arthritis, diabetes, cardiovascular, and cancer disease (Nuttall et al., 1998;Townsend et al., 2003). Several experimental studies suggested the ergothioneine as a potential dietary factor that may impact chemotherapy-induced peripheral neuropathy (Jong et al., 2011;Nishida et al., 2018;Song et al., 2010). The neuroprotective impacts of platinum derived chemotherapeutics on toxicity in the mouse models were shown in these studies but this was not studied among humans. ...
... increasing the intracellular accumulation of OXA by stimulating two membrane transporters CTR1 (copper transporter 1) and OCTN2 (organic anion/cation transporter 2)(Jong et al. 2011;Luo et al. 2016;Zhang et al. 2018) & diminishing activity of EGFR and IGF-1R (insulin-like growth factor 1 receptor)(Patel et al. 2008;Yu et al. 2009) & apoptosis by OXA through DNA damage in p53(Howells et al. 2007) & downregulation of stem cell-associated markers 12 and miR-21 that promotes stem cell differentiation(Yu et al. 2012;Yu et al. 2013) & inhibition of CXCL1 (chemokine ligand 1) and CXCL8 (chemokine ligand 8) autocrine signalling All these mechanisms have proved the synergistic efficacy of this combination(Ruiz De Porras et al. 2016) in vitro as well as in clinical trial which was started in February 2012 and shown positive outcomes in phase I and phase II trials(James et al. 2015). ...
Article
Full-text available
Curcumin is a polyphenolic compound that exhibited good anticancer potential against different types of cancers through its multi-targeted effect like the termination of cell proliferation, inflammation, angiogenesis, and metastasis, thereby acting as antiproliferative and cytotoxic in nature. The present review surveys the various drug combination tried with curcumin or its synthetic analogues and also the mechanism by which curcumin potentiates the effect of almost every drug. In addition, this article also focuses on aromatherapy which is gaining much popularity in cancer patients. After thoroughly studying several articles on combination therapy of curcumin through authenticated book chapters, websites, research, and review articles available at PubMed, ScienceDirect, etc., it has been observed that multi-targeted curcumin possess enormous anticancer potential and, with whatever drug it is given in combination, has always resulted in enhanced effect with reduced dose as well as side effects. It is also capable enough in overcoming the problem of chemoresistance. Besides this, aromatherapy also proved its potency in reducing cancer-related side effects. Combining all the factors together, we can conclude that combination therapy of drugs with curcumin should be explored extensively. In addition, aromatherapy can be used as an adjuvant or supplementary therapy to reduce the cancer complications in patients. Graphical abstract
... However, the cell type responsible for causing oxaliplatin-mediated neuronal damage should be verified by the cell type-specific regulation of OCT2 expression with genetic modification tools. In addition, a recent study showed that organic cation/carnitine transporter 1 and multidrug and toxic compound extrusion 1 also play roles in the influx/ efflux of oxaliplatin in the DRG, respectively (Jong et al., 2011;Nishida et al., 2018;Fujita et al., 2019). ...
Article
Full-text available
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect observed in most patients treated with neurotoxic anti-cancer drugs. Currently, there are no therapeutic options available for the prevention of CIPN. Furthermore, few drugs are recommended for the treatment of existing neuropathies because the mechanisms of CIPN remain unclear. Each chemotherapeutic drug induces neuropathy by distinct mechanisms, and thus we need to understand the characteristics of CIPN specific to individual drugs. Here, we review the known pathogenic mechanisms of oxaliplatin- and paclitaxel-induced CIPN, highlighting recent findings. Cancer chemotherapy is performed in a planned manner; therefore, preventive strategies can be planned for CIPN. Drug repositioning studies, which identify the unexpected actions of already approved drugs, have increased in recent years. We have also focused on drug repositioning studies, especially for prevention, because they should be rapidly translated to patients suffering from CIPN.
... Low levels of GSH have been associated with a high risk of arthritis, diabetes, cardiovascular, and cancer disease (Nuttall et al., 1998;Townsend et al., 2003). Several experimental studies suggested the ergothioneine as a potential dietary factor that may impact chemotherapy-induced peripheral neuropathy (Jong et al., 2011;Nishida et al., 2018;Song et al., 2010). The neuroprotective impacts of platinum derived chemotherapeutics on toxicity in the mouse models were shown in these studies but this was not studied among humans. ...
Article
Full-text available
Macrofungi, mushrooms or higher fungi have been employed for medicinal and food purposes for decades, nevertheless, also represent, a novel and fruitful source of biologically relevant compounds, that could serve as health enhancers in diverse human illness conditions; specially, mushrooms, are considered a relevant source of the distictive molecule – ergothioneine, an excellent supply of important antioxidant, which boosts human health and shows potential as a preservative in food, promoting their utilization as functional foods, in this context, the present review overviews and complies current knowledge and trends of nutrients as well as bioactive mushroom components including the potential of Huitlacoche and ergothioneine, and the possible health benefits of these biological products and their activities have been explored which enhances the utilization of mushrooms.
... Although there are conflicting reports for transport of oxaliplatin by the organic anion transporters novel 1 and 2 (OCTN1/2), a careful analysis in a tightly regulated expression system suggests that OCTN1 does not transport this platinum agent to any significant extent. 39,40 This lack of transport of oxaliplatin by OCTN1 limits the interpretation of findings from oxaliplatin-induced peripheral neuropathy studies under conditions of OCTN1 inhibition in rats and highlights the sensitivity of both in vitro transport assays and in vivo neuropathy studies to experimental systems and species differences. 41,42 Additionally, oxaliplatin and cisplatin are substrates for OCT2, 43 which was shown to regulate the neurotoxicity of oxaliplatin in mice. ...
Article
Full-text available
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting toxicity to widely used chemothera- peutics. Although the exact molecular mechanism of chemotherapy-induced peripheral neuropathy remains elusive, there is consensus that it is caused by damage to the peripheral nervous system leading to sensory symptoms. Recently developed methodologies have provided evidence of expression of drug transporters in the peripheral nervous system. In this literature review, we explore the role for drug transporters in CIPN. First, we assessed the transport of chemotherapeutics that cause CIPN (taxanes, platins, vincristine, bortezomib, epothilones, and thalidomide). Second, we cross-referenced the transporters implicated in genetic or functional studies with CIPN with their expression in the peripheral nervous system. Several drug transporters are involved in the transport of chemotherapeutics that cause peripheral neuropathy and particularly efflux transporters, such as ABCB1 and ABCC1, are expressed in the peripheral nervous system. Previous literature has linked genetic variants in efflux transporters to higher risk of peripheral neuropathy with the taxanes paclitaxel and docetaxel and the vinca alkaloid vincristine. We propose that this might be due to accumulation of the chemotherapeutics in the peripheral nervous system due to reduced neuronal efflux capacity. Thus, concomitant administration of efflux transporter inhibitors may lead to higher risk of adverse events of drugs that cause CIPN. This might prove valuable in drug development where screening new drugs for neurotoxicity might also require drug transporter consideration. There are ongoing efforts targeting drug transporters in the peripheral nervous system to reduce intraneuronal concentrations of chemotherapeutics that cause CIPN, which might ultimately protect against this dose-limiting adverse event.
... In this case, the mechanism of down-regulation is linked to promoter methylation Qu et al., 2013). As other members of the SLC22 family, OCTN2 can mediate cellular uptake of oxaliplatin and other chemotherapeutic agents (Jong et al., 2011;Pochini et al., 2019;Koepsell, 2020;Kou et al., 2020). Therefore, the epigenetic modulation of OCTN2 in cancer may by exploited to increase the efficacy of anti-cancer drugs. ...
Article
Full-text available
Metabolic flexibility is a peculiar hallmark of cancer cells. A growing number of observations reveal that tumors can utilize a wide range of substrates to sustain cell survival and proliferation. The diversity of carbon sources is indicative of metabolic heterogeneity not only across different types of cancer but also within those sharing a common origin. Apart from the well-assessed alteration in glucose and amino acid metabolisms, there are pieces of evidence that cancer cells display alterations of lipid metabolism as well; indeed, some tumors use fatty acid oxidation (FAO) as the main source of energy and express high levels of FAO enzymes. In this metabolic pathway, the cofactor carnitine is crucial since it serves as a “shuttle-molecule” to allow fatty acid acyl moieties entering the mitochondrial matrix where these molecules are oxidized via the β-oxidation pathway. This role, together with others played by carnitine in cell metabolism, underlies the fine regulation of carnitine traffic among different tissues and, within a cell, among different subcellular compartments. Specific membrane transporters mediate carnitine and carnitine derivatives flux across the cell membranes. Among the SLCs, the plasma membrane transporters OCTN2 (Organic cation transport novel 2 or SLC22A5), CT2 (Carnitine transporter 2 or SLC22A16), MCT9 (Monocarboxylate transporter 9 or SLC16A9) and ATB0, + [Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) or SLC6A14] together with the mitochondrial membrane transporter CAC (Mitochondrial carnitine/acylcarnitine carrier or SLC25A20) are the most acknowledged to mediate the flux of carnitine. The concerted action of these proteins creates a carnitine network that becomes relevant in the context of cancer metabolic rewiring. Therefore, molecular mechanisms underlying modulation of function and expression of carnitine transporters are dealt with furnishing some perspective for cancer treatment.
... OCTN1 (SLC22A4) participates in the uptake of doxorubicin, mitoxantrone, and oxaliplatin [13,40]. However, its expression is sharply reduced in intestinal tumors [14,32]. ...
Article
Full-text available
Simple Summary Colorectal cancer (CRC) causes a high number (more than 800,000) of deaths worldwide each year. Better methods for early diagnosis and the development of strategies to enhance the efficacy of the therapeutic approaches used to complement or substitute surgical removal of the tumor are urgently needed. Currently available pharmacological armamentarium provides very moderate benefits to patients due to the high resistance of tumor cells to respond to anticancer drugs. The present review summarizes and classifies into seven groups the cellular and molecular mechanisms of chemoresistance (MOC) accounting for the failure of CRC response to the pharmacological treatment. Abstract The unsatisfactory response of colorectal cancer (CRC) to pharmacological treatment contributes to the substantial global health burden caused by this disease. Over the last few decades, CRC has become the cause of more than 800,000 deaths per year. The reason is a combination of two factors: (i) the late cancer detection, which is being partially solved by the implementation of mass screening of adults over age 50, permitting earlier diagnosis and treatment; (ii) the inadequate response of advanced unresectable tumors (i.e., stages III and IV) to pharmacological therapy. The latter is due to the existence of complex mechanisms of chemoresistance (MOCs) that interact and synergize with each other, rendering CRC cells strongly refractory to the available pharmacological regimens based on conventional chemotherapy, such as pyrimidine analogs (5-fluorouracil, capecitabine, trifluridine, and tipiracil), oxaliplatin, and irinotecan, as well as drugs targeted toward tyrosine kinase receptors (regorafenib, aflibercept, bevacizumab, cetuximab, panitumumab, and ramucirumab), and, more recently, immune checkpoint inhibitors (nivolumab, ipilimumab, and pembrolizumab). In the present review, we have inventoried the genes involved in the lack of CRC response to pharmacological treatment, classifying them into seven groups (from MOC-1 to MOC-7) according to functional criteria to identify cancer cell weaknesses. This classification will be useful to pave the way for developing sensitizing tools consisting of (i) new agents to be co-administered with the active drug; (ii) pharmacological approaches, such as drug encapsulation (e.g., into labeled liposomes or exosomes); (iii) gene therapy interventions aimed at restoring the impaired function of some proteins (e.g., uptake transporters and tumor suppressors) or abolishing that of others (such as export pumps and oncogenes).
... However, in 2018, Tschirka and colleagues [174] proposed to rename OCTN1 as "ergothioneine transporter" (ETT) since ergothioneine was the only high affinity substrate of the transporter, suggesting that the name "novel organic cation transporter" is misleading. Nevertheless, there are reports showing transport of other compounds including oxaliplatin, saracatinib, and nucleoside analogs such as cytarabine and gemcitabine [53,175]. These nucleoside analogs are used in the treatment of acute myeloid leukemia (AML), and analysis of primary blast samples revealed that low expression of OCTN1 predicts poor survival [53]. ...
Article
Full-text available
Solute carrier transporters comprise a large family of uptake transporters involved in the transmembrane transport of a wide array of endogenous substrates such as hormones, nutrients, and metabolites as well as of clinically important drugs. Several cancer therapeutics, ranging from chemotherapeutics such as topoisomerase inhibitors, DNA-intercalating drugs, and microtubule binders to targeted therapeutics such as tyrosine kinase inhibitors are substrates of solute carrier (SLC) transporters. Given that SLC transporters are expressed both in organs pivotal to drug absorption, distribution, metabolism, and elimination and in tumors, these transporters constitute determinants of cellular drug accumulation influencing intracellular drug concentration required for efficacy of the cancer treatment in tumor cells. In this review, we explore the current understanding of members of three SLC families, namely SLC21 (organic anion transporting polypeptides, OATPs), SLC22A (organic cation transporters, OCTs; organic cation/carnitine transporters, OCTNs; and organic anion transporters OATs), and SLC15A (peptide transporters, PEPTs) in the etiology of cancer, in transport of chemotherapeutic drugs, and their influence on efficacy or toxicity of pharmacotherapy. We further explore the idea to exploit the function of SLC transporters to enhance cancer cell accumulation of chemotherapeutics, which would be expected to reduce toxic side effects in healthy tissue and to improve efficacy.
... In contrast to efflux transporters, human organic cation transporter 2 and 3 (hOCT2 and hOCT3), human novel organic cation transporter 1 and 2 (hOCTN1 and hOCTN2), and human apical multidrug and toxin extru-sion1 and 2-K (hMATE1 and hMATE2-K) have been suggested to incorporate L-OHP into cells [39][40][41] . Although the mRNA expression of OCTN1 (encoded by Slc22a4), but not of OCT2 (Slc22a2), OCT3 (Slc22a3), OCTN2 (Slc22a5), or MATE1 (Slc47a1), was detected in BMCs of mice, the protein levels of OCTN1 failed to exhibit significant diurnal oscillation ( Supplementary Fig. 2). ...
Article
Full-text available
The expression and function of some xenobiotic transporters varies according to the time of day, causing the dosing time-dependent changes in drug disposition and toxicity. Multidrug resistance-associated protein-4 (MRP4), an ATP­binding cassette (ABC) efflux transporter encoded by the Abcc4 gene, is highly expressed in bone marrow cells (BMCs) and protects them against xenobiotics, including chemotherapeutic drugs. In this study, we demonstrated that MRP4 was responsible for the extrusion of oxaliplatin (L-OHP), a platinum (Pt)-based chemotherapeutic drug, from BMCs of mice, and that the efflux transporter expression exhibited significant diurnal variation. Therefore, we investigated the relevance of the diurnal expression of MRP4 in BMCs for L-OHP-induced myelotoxicity in mice maintained under standardized light/dark cycle conditions. After intravenous injection of L-OHP, the Pt content in BMCs varied according to the injection time. Lower Pt accumulation in BMCs was detected in mice after injection of L-OHP at the mid-dark phase, during which the expression levels of MRP4 increased. Consistent with these observations, the myelotoxic effects of L-OHP were attenuated when mice were injected with L-OHP during the dark phase. This dosing schedule also alleviated the L-OHP-induced reduction of the peripheral white blood cell count. The present results suggest that the myelotoxicity of L-OHP is attenuated by optimizing the dosing schedule. Diurnal expression of MRP4 in BMCs is associated with the dosing time-dependent changes in L-OHP-induced myelotoxicity.
... In addition to OCT2, several other uptake transporters in rodents have been postulated to be of potential relevance to the pharmacokinetics and toxicity of oxaliplatin, including Oct1 ), Oct3 (Yokoo et al. 2008), Octn1 (Nishida et al. 2018), Mate1 (Jong et al. 2011), Ctr1 (Ip et al. 2013), and Oatp1b2 (Lancaster et al. 2013). Although these transporters are all expressed in isolated DRGs from wild-type mice, uptake studies in engineered HEK293 cells overexpressing individual transporters have suggested that oxaliplatin may not be a transported substrate of these OCTs and OATPs, and that transport by OCT2 was more efficient than that observed for MATE1 and OCT3 (Sprowl et al. 2013a;Zhang et al. 2006). ...
Chapter
Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics. These proteins are highly expressed in the gastrointestinal tract and eliminating organs such as the liver and kidney, and are considered to be of particular importance in governing drug absorption and elimination. Many of the same transporters are also expressed in a wide variety of organs targeted by clinically important anticancer drugs, directly affect cellular sensitivity to these agents, and indirectly influence treatment-related side effects. Furthermore, targeted intervention strategies involving the use of transport inhibitors have been recently developed, and have provided promising lead candidates for combinatorial therapies associated with decreased toxicity. Gaining a better understanding of the complex interplay between transporter-mediated on-target and off-target drug disposition will help guide the further development of these novel treatment strategies to prevent drug accumulation in toxicity-associated organs, and improve the safety of currently available treatment modalities. In this report, we provide an update on this rapidly emerging field with particular emphasis on anticancer drugs belonging to the classes of taxanes, platinum derivatives, nucleoside analogs, and anthracyclines.
... This is complementary to the Warburg effect which shows that cancer tumours favour a metabolic switch to energy production via glycolysis rather than β-oxidation regardless of the oxygen environment [84]. OCTN2 has also been identified as a transporter of both oxaliplatin and imatinib [85,86]. ...
Article
Full-text available
The solute carrier (SLC) superfamily encompasses a large variety of membrane-bound transporters required to transport a diverse array of substrates over biological membranes. Physiologically, they are essential for nutrient uptake, ion transport and waste removal. However, accumulating evidence suggest that up- and/or downregulation of SLCs may play a pivotal role in the pathogenesis of human malignancy. Endogenous substrates of SLCs include oestrogen and its conjugates, the handling of which may be of importance in hormone-dependent cancers. The SLCs play a significant role in the handling of therapeutic agents including anticancer drugs. Differential SLC expression in cancers may, therefore, impact on the efficacy of treatments. However, there is also a small body of evidence to suggest the dysregulated expression of some of these transporters may be linked to cancer metastasis. This review draws on the current knowledge of the roles of SLC transporters in human cancers in order to highlight the potential significance of these solute carriers in breast cancer pathogenesis and treatment. Graphical abstract
... These proteins are responsible for transporting oxaliplatin and are regarded as key transporters maintaining the intracellular concentration of platinum derivatives via active uptake and efflux processes. OCTN1 and OCTN2 are also functionally expressed within dorsal root ganglia neurons, and OCTN1 is thought to be the main contributor to the neuronal accumulation of oxaliplatin and a mediator of its neurotoxicity [4,[6][7][8]. In addition, CTR1 (copper transporter 1), CTR2 (copper transporter 2), ATP7A (copper-transporting p-type adenosine triphosphatase 1) and ATP7B (coppertransporting p-type adenosine triphosphatase 2) are copper transporters that not only maintain homeostasis and copper metabolism but also are involved in cisplatin, carboplatin and oxaliplatin transport. ...
Article
Full-text available
Background Chemotherapy-induced peripheral neuropathy (CIPN) is regarded as one of the most common dose-limiting adverse effects of several chemotherapeutic agents, such as platinum derivatives (oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib. CIPN affects more than 60% of patients receiving anticancer therapy and although it is a nonfatal condition, it significantly worsens patients’ quality of life. The number of analgesic drugs used to relieve pain symptoms in CIPN is very limited and their efficacy in CIPN is significantly lower than that observed in other neuropathic pain types. Importantly, there are currently no recommended options for effective prevention of CIPN, and strong evidence for the utility and clinical efficacy of some previously tested preventive therapies is still limited.Methods The present article is the second one in the two-part series of review articles focused on CIPN. It summarizes the most recent advances in the field of studies on CIPN caused by oxaliplatin, the third-generation platinum-based antitumor drug used to treat colorectal cancer. Pharmacological properties of oxaliplatin, genetic, molecular and clinical features of oxaliplatin-induced neuropathy are discussed.ResultsAvailable therapies, as well as results from clinical trials assessing drug candidates for the prevention of oxaliplatin-induced neuropathy are summarized.Conclusion Emerging novel chemical structures—potential future preventative pharmacotherapies for CIPN caused by oxaliplatin are reported.Graphical abstract
... This protection can also be recapitulated in wild-type animals using pretreatment with dasatinib, a pharmacological SRC-family kinase inhibitor, which inhibits both mouse and human OCT2 through a noncompetitive mechanism that regulates the post-translational modification of OCT2 through tyrosine phosphorylation by the kinase YES1 [89]. Interestingly, other reports have suggested oxaliplatin is also a transported substrate of rat Octn1 and the use of genetic targeting constructs or pharmacologic inhibition with ergothioneine, an Octn1specific substrate, protected rats from chronic forms of oxaliplatin neurotoxicity [90][91][92]. However, due to the reported expression of Octn1 on the mitochondrial membrane and intrinsic antioxidant activity of ergothioneine, the observed neuroprotection may be independent of a direct contribution to the transmembrane transport of oxaliplatin into target cells. ...
Article
Introduction. Membrane transporters are integral components to the maintenance of cellular integrity of all tissue and cell types. While transporters play an established role in the systemic pharmacokinetics of therapeutic drugs, tissue specific expression of uptake transporters can serve as an initiating mechanism that governs the accumulation and impact of cytotoxic drugs. Areas covered. This review provides an overview of organic cation transporters as determinants to chemotherapy-induced toxicities. We also provide insights into the recently updated FDA guidelines for in vitro drug interaction studies, with a particular focus on the class of tyrosine kinase inhibitors as perpetrators of transporter-mediated drug interactions. Expert opinion. Studies performed over the last few decades have highlighted the important role of basolateral uptake and apical efflux transporters in the pathophysiology of drug-induced organ damage. Increased understanding of the mechanisms that govern the accumulation of cytotoxic drugs has provided insights into the development of novel strategies to prevent debilitating toxicities. Furthermore, we argue that current regulatory guidelines provide inadequate recommendations for in vitro studies to identify substrates or inhibitors of drug transporters. Therefore, the translational and predictive power of FDA-approved drugs as modulators of transport function remains ambiguous and warrants further revision of the current guidelines.
... Said compounds include e.g., verapamil, an anti-arhytmia agent [60], which is not surprising given the role of SLC22A5 and fatty acid oxidation in heart function. Interestingly, however, there are also clinically used anti-psychotic drugs (amisulpride [61]) and anti-cancer drugs such as etoposide [62], oxaliplatin [63] and imatinib [64] that are taken up by cells via SLC22A5 (Table 2). Even more drugs were proven to inhibit carnitine uptake by cells, acting as an SLC22A5 inhibitors (Table 3), including several anticancer drugs as well. ...
Article
Full-text available
Oxidation of fatty acids uses l-carnitine to transport acyl moieties to mitochondria in a so-called carnitine shuttle. The process of β-oxidation also takes place in cancer cells. The majority of carnitine comes from the diet and is transported to the cell by ubiquitously expressed organic cation transporter novel family member 2 (OCTN2)/solute carrier family 22 member 5 (SLC22A5). The expression of SLC22A5 is regulated by transcription factors peroxisome proliferator-activated receptors (PPARs) and estrogen receptor. Transporter delivery to the cell surface, as well as transport activity are controlled by OCTN2 interaction with other proteins, such as PDZ-domain containing proteins, protein phosphatase PP2A, caveolin-1, protein kinase C. SLC22A5 expression is altered in many types of cancer, giving an advantage to some of them by supplying carnitine for β-oxidation, thus providing an alternative to glucose source of energy for growth and proliferation. On the other hand, SLC22A5 can also transport several chemotherapeutics used in clinics, leading to cancer cell death.
... Accumulating evidence suggests that both ATP-binding cassette transporters (ABC transporters) and solute carrier transporters (SLC transporters) transport oxaliplatin into and out of cells [8][9][10]. Some of these membrane transporters may play important roles in oxaliplatin disposition and accumulation and thus platinum-based cytotoxcity [8,[11][12][13][14]. ...
Article
Full-text available
Our recent publications showed that multidrug resistance protein 2 (MRP2, encoded by the ABCC2 gene) conferred oxaliplatin resistance in human liver cancer HepG2 cells. However, the contribution of MRP2 to oxaliplatin resistance remains unclear in colorectal and pancreatic cancer lines. We investigated the effects of silencing MRP2 by siRNA on oxaliplatin accumulation and sensitivity in human colorectal cancer Caco-2 cells and pancreatic cancer PANC-1 cells. We characterized the effects of oxaliplatin on MRP2 ATPase activities using membrane vesicles. Over-expression of MRP2 (endogenously in Caco-2 and PANC-1 cells) was associated with decreased oxaliplatin accumulation and cytotoxicity, but those deficits were reversed by inhibition of MRP2 with myricetin or siRNA knockdown. Silencing MRP2 by siRNA increased oxaliplatin-induced apoptotic rate in Caco-2 and PANC-1 cells. Oxaliplatin stimulated MRP2 ATPase activity with a concentration needed to reach 50% of the maximal stimulation (EC50) value of 8.3 ± 0.7 µM and Hill slope 2.7. In conclusion, oxaliplatin is a substrate of MRP2 with possibly two binding sites, and silencing MRP2 increased oxaliplatin accumulation and cytotoxicity in two widely available gastrointestinal tumour lines (PANC-1 and Caco-2).
... OCTN1 is abundantly expressed in tissues of the digestive tract and biliary system, as well as in bone marrow, prostate, lung and kidney (Figure 3(a)). Since OCTN1 participates in the uptake of anthracyclines, such as mitoxantrone and doxorubi-380 cin [63], oxaliplatin [64] and nucleoside derivatives, such as cytarabine and the cytidine analogues 2ʹ-deoxycytidine and gemcitabine [65] (Figure 3(a)), and is expressed in most tumors at medium level, with the highest values in tumors of the adrenal gland, acute myeloid leukemia, glioma and 385 renal carcinomas (Figure 3(a)), the loss of expression or function of OCTN1 may be clinically relevant regarding MOC-1a. ...
Article
Introduction: Anticancer chemotherapy often faces the problem of intrinsic or acquired drug refractoriness due in part to efficient mechanisms of defense present or developed, respectively, in cancer cells. Owing to their polarity and/or high molecular weight, many cytostatic agents cannot freely cross the plasma membrane by simple diffusion and hence depend on SLC proteins to enter cancer cells. The downregulation of these transporters and the appearance of either inactivating mutations or aberrant splicing, hamper the possibility of anticancer drugs to interact with their intracellular targets. Areas covered: In addition to specific literature, we have revised Gene database of the NCBI PubMed resources and information publicly available at NIH 'The Cancer Genome Atlas' (TCGA) (update November 2018) to evaluate the relationship between the profile of expression of SLC transporters playing a major role in the transportome and accounting for drug uptake, in healthy and tumor tissue, and their ability to recognize as substrate several antitumor drugs frequently used in the treatment of different types of cancer, which could affect the overall response to chemotherapy based on regimens including these drugs. Expert commentary: Changes in the transportome may affect the overall response to chemotherapy based on drugs taken up by SLC transporters.
Thesis
Full-text available
Background: Peripheral neurotoxicity induced by oxaliplatin occurs in most cancer patients and may continue even after finishing the treatment. Many drugs have been tried to control this neurotoxicity and most of these medications possess antioxidant and anti-inflammatory activities. Objective: The present study was designed to investigate the possible synergistic effects of zinc with melatonin in the prevention and treatment of oxaliplatin-induced neurotoxicity in rats. Methodology: Forty-eight male Wister albino rats were used and randomly allocated into six groups: The negative control group received 1 ml of glucose water; the positive control group received 4mg/kg of oxaliplatin; the zinc group, which received 15mg/kg of zinc alone for two weeks then with 4mg/kg of oxaliplatin for additional one week; melatonin treatment group, which receive 10mg/kg of melatonin alone for two weeks then with 4mg/kg of oxaliplatin for additional one week; protection combination group, which receive 15mg/kg of zinc + 10mg/kg of melatonin alone for two weeks then with 4mg/kg oxaliplatin for additional one week; protection during induction combination group, which received 15 mg/kg of zinc + 10mg/kg of melatonin + 4mg/kg of oxaliplatin protection during the induction approach group. The thermal nociceptive/hyperalgesia tests were performed. Brain tissue homogenate was used for measuring glial fibrillary acidic protein (GFAP), neural cell adhesion molecules (NCAM), tumor necrosis factor-alpha (TNF α), mitogen-activated protein kinase-14 (MAPK 14), nuclear factor- kappa B (NF-kB), glutathione peroxidase (GPX), and superoxide dismutase (SOD). Brain tissue was sent for histopathological and immunohistochemistry analysis. Results: The combination therapies showed improvement in the behavioral tests. A significant increase in GPX and SOD with a significant decrease in GFAP levels resulted in the protection combination group. TNF-α decreased significantly in the protection during the induction combination group. No significant changes were seen in NCAM, NF-kB, and MAPK-14. The histopathological findings support the biochemical results and maximum neuroprotection was seen in the protection combination group. Additionally, immunohistochemistry revealed a significant attenuation of p53 and a non-significant decrease in Bcl2 levels in the protection combination groups. Conclusion: The combination of zinc with melatonin for the protection combination approach was effective in attenuating neurotoxicity induced by oxaliplatin. The proposed mechanisms are boosting the antioxidant system and attenuating the expression of p53, GFAP, and TNF-α.
Thesis
Full-text available
La vascularisation intra-nerveuse (VIN) est impliquée dans le développement, l'homéostasie, la réparation du nerf mais reste peu décrite. Nous avons constaté que la formation de la VIN du nerf sciatique de souris débute vers le jour embryonnaire E16 et que la molécule de guidage Netrin-1 pourrait avoir un rôle pro-angiogénique. Au cours du développement post-natal, la densité de la VIN diminue et se stabilise pour occuper environ 2% du nerf. Les cellules de Schwann et la myéline enveloppant les axones semblent avoir un rôle crucial dans le contrôle de la formation de la VIN. Nous avons également cherché à caractériser le rôle physiopathologique de la barrière sang-nerf (BNB) dans le développement de la neuropathie périphérique induite par l'oxaliplatine (OIPN), un agent chimiothérapeutique. Des symptômes tels que des douleurs neuropathiques peuvent conduire à l'arrêt du traitement. L'oxaliplatine étant administré par voie sanguine, nous avons étudié l'implication de la BNB dans le développement de l'OIPN. L’analyse par RNAseq des vaisseaux sanguins purifiés à partir de nerfs sciatiques, a permis de déterminer la composition moléculaire spécifique de la BNB et d’identifié des transporteurs qui pourraient être impliqués dans le passage de l'oxaliplatine à travers la BNB. Nous avons développé un modèle murin d'OIPN subaigu, développant une hypersensibilité mécanique et au froid. L'oxaliplatine induit des modifications du niveau d'expression génique, en particulier des gènes impliqués dans le contrôle de la contraction vasculaire de la VIN. Nous avons donc pour la première fois apporté la preuve d'un nouvel acteur potentiel dans le développement de l'OIPN : la VIN.
Article
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many common anti-cancer agents that can lead to dose reduction or treatment discontinuation, which decrease chemotherapy efficacy. Long-term CIPN can interfere with activities of daily living and diminish the quality of life. The mechanism of CIPN is not yet fully understood, and biomarkers are needed to identify patients at high risk and potential treatment targets. Metabolomics can capture the complex behavioral and pathophysiological processes involved in CIPN. This chapter is to review the CIPN metabolomics studies to find metabolic pathways potentially involved in CIPN. These potential CIPN metabolites are then investigated to determine whether there is evidence from studies of other neuropathy etiologies such as diabetic neuropathy and Leber hereditary optic neuropathy to support the importance of these pathways in peripheral neuropathy. Six potential biomarkers and their putative mechanisms in peripheral neuropathy were reviewed. Among these biomarkers, histidine and phenylalanine have clear roles in neurotransmission or neuroinflammation in peripheral neuropathy. Further research is needed to discover and validate CIPN metabolomics biomarkers in large clinical studies.
Article
Full-text available
L-Ergothioneine (EGT) is a natural antioxidant derived from microorganisms, especially in edible mushrooms. EGT is found to be highly accumulated in tissues that are susceptible to oxidative damage, and it has attracted extensive attention due to its powerful antioxidant activity and the tight relationships of this natural product with various oxidative stress-related diseases. Herein, we 1) introduce the biological source and in vivo distribution of EGT; 2) review the currently available evidence concerning the relationships of EGT with diabetes, ischemia-reperfusion injury-related diseases like cardiovascular diseases and liver diseases, neurodegenerative diseases, and other diseases pathogenically associated with oxidative stress; 3) summarize the potential action mechanisms of EGT against these diseases; 4) discuss the advantages of EGT over other antioxidants; and 5) also propose several future research perspectives for EGT. These may help to promote the future application of this attractive natural antioxidant.
Article
Full-text available
As observed with other chemotherapeutic agents, the clinical application of platinum agents is a double-edged sword. Platinum-induced peripheral neuropathy (PIPN) is a common adverse event that negatively affects clinical outcomes and patients’ quality of life. Considering the unavailability of effective established agents for preventing or treating PIPN and the increasing population of cancer survivors, the identification and development of novel, effective interventions are the need of the hour. Plant-derived medicines, recognized as ideal agents, can not only help improve PIPN without affecting chemotherapy efficacy, but may also produce synergy. In this review, we present a brief summary of the mechanisms of platinum agents and PIPN and then focus on exploring the preventive or curative effects and underlying mechanisms of plant-derived medicines, which have been evaluated under platinum-induced neurotoxicity conditions. We identified 11 plant extracts as well as 17 plant secondary metabolites, and four polyherbal preparations. Their effects against PIPN are focused on oxidative stress and mitochondrial dysfunction, glial activation and inflammation response, and ion channel dysfunction. Also, ten clinical trials have assessed the effect of herbal products in patients with PIPN. The understanding of the molecular mechanism is still limited, the quality of clinical trials need to be further improved, and in terms of their efficacy, safety, and cost effectiveness studies have not provided sufficient evidence to establish a standard practice. But plant-derived medicines have been found to be invaluable sources for the development of natural agents with beneficial effects in the prevention and treatment of PIPN.
Article
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Article
Full-text available
Platinum (Pt) drugs (e.g., oxaliplatin, cisplatin) are applied in the clinic worldwide for the treatment of various cancers. However, platinum-induced peripheral neuropathy (PIPN) caused by the accumulation of Pt in the peripheral nervous system limits the clinical application, whose prevention and treatment are still a huge challenge. To date, Pt-induced reactive oxygen species (ROS) generation has been studied as one of the primary mechanisms of PIPN, whose downregulation would be feasible to relieve PIPN. This review will discuss ROS-related PIPN mechanisms including Pt accumulation in the dorsal root ganglia (DRG), ROS generation, and cellular regulation. Based on them, some antioxidant therapeutic drugs will be summarized in detail to alleviate the Pt-induced ROS overproduction. More importantly, we focus on the cutting-edge nanotechnology in view of ROS-related PIPN mechanisms and will discuss the rational fabrication of tailor-made nanosystems for efficiently preventing and treating PIPN. Last, the future prospects and potential breakthroughs of these anti-ROS agents and nanosystems will be briefly discussed.
Article
Full-text available
Esophageal cancer is the ninth most common malignancy worldwide, ranking sixth in mortality. Platinum-based chemotherapy is commonly used for treating locally advanced esophageal cancer, yet it is ineffective in a large portion of patients. There is a need for reliable molecular markers with direct clinical application for a prospective selection of patients who can benefit from chemotherapy and patients in whom toxicity is likely to outweigh the benefit. The cytotoxic activity of platinum derivatives largely depends on the uptake and accumulation into cells, primarily by organic cation transporters (OCTs). The aim of the study was to investigate the impact of OCT expression on the clinical outcome of patients with esophageal cancer treated with oxaliplatin. Twenty patients with esophageal squamous cell carcinoma (SCC) were prospectively enrolled and surgical specimens used for screening OCT expression level by western blotting and/or immunostaining, and for culture of cancer cells. Sixty-seven patients with SCC who received oxaliplatin and for whom follow-up was available were retrospectively assessed for organic cation/carnitine transporter 2 (OCTN2) expression by real time RT-PCR and immunostaining. OCTN2 staining was also performed in 22 esophageal adenocarcinomas. OCTN2 function in patient-derived cancer cells was evaluated by assessing L-carnitine uptake and sensitivity to oxaliplatin. The impact of OCTN2 on oxaliplatin activity was also assessed in HEK293 cells overexpressing OCTN2. OCTN2 expression was higher in tumor than in normal tissues. In patient-derived cancer cells and HEK293 cells, the expression of OCTN2 sensitized to oxaliplatin. Patients treated with oxaliplatin who had high OCTN2 level in the tumor tissue had a reduced risk of recurrence and a longer survival time than those with low expression of OCTN2 in tumor tissue. In conclusion, OCTN2 is expressed in esophageal cancer and it is likely to contribute to the accumulation and cytotoxic activity of oxaliplatin in patients with esophageal carcinoma treated with oxaliplatin.
Article
Oxaliplatin (OXA) is a third-generation platinum drug; however, its application is greatly limited due to the severe peripheral neurotoxicity. This study aims to elucidate the transport mechanism of OXA and to explore whether L-tetrahydropalmatine (L-THP) would alleviate OXA-induced peripheral neurotoxicity by selectively inhibiting these uptake transporters in vitro and in vivo. Our results revealed that organic cation transporter 2 (OCT2), organic cation/carnitine transporter 1 (OCTN1) and organic cation/carnitine transporter 2 (OCTN2) were involved in the uptake of OXA in dorsal root ganglion (DRG) neurons and mitochondria, respectively. L-THP (1-100 μM) reduced OXA (40 μM) induced cytotoxicity in MDCK-hOCT2 (Madin–Darby canine kidney, MDCK), MDCK-hOCTN1, MDCK-hOCTN2, and rat primary DRG cells, and decreased the accumulation of OXA in above cells and rat DRG mitochondria, but did not affect its efflux from MDCK-hMRP2 cells. Furthermore, Co-administration of L-THP (5-20 mg/kg for mice, 10-40 mg/kg for rats; twice a week, iv or ig) attenuated OXA (8 mg/kg for mice, 4 mg/kg for rats; twice a week, iv) induced peripheral neurotoxicity and reduced the platinum concentration in the DRG. Whereas, L-THP (1-100 μM for cells; 10-20 mg/kg for mice) did not impair the antitumour efficacy of OXA (40 μM for cells; 8 mg/kg for mice) in HT29 tumour-bearing nude mice nor in tumour cells (HT29 and SW620 cells). In conclusion, OCT2, OCTN1 and OCTN2 contribute to OXA uptake in the DRG and mitochondria. L-THP attenuates OXA-induced peripheral neurotoxicity via inhibiting OXA uptake but without impairing the antitumour efficacy of OXA. L-THP is a potential candidate drug to attenuate OXA-induced peripheral neurotoxicity.
Article
Here, we investigated whether or not the characteristics of the oxaliplatin-induced sweet taste sensitivity were altered by PEGylated liposomalization of oxaliplatin (liposomal oxaliplatin), which enhances its anticancer efficacy. Liposomal oxaliplatin and oxaliplatin were intravenously and intraperitoneally, respectively, administered to male Sprague-Dawley rats at the total dose of 8 mg/kg. A brief-access test for evaluation of sweet taste sensitivity on day 7 revealed that both liposomal oxaliplatin and oxaliplatin decreased the sensitivity of rats, the degree with the former being greater than in the case of the latter. Liposomalization of oxaliplatin increased the accumulation of platinum amount in lingual non-epithelial tissues, through which taste nerves passed. The increased lingual platinum accumulation induced by not only liposomal oxaliplatin but also oxaliplatin was decreased on cooling of the tongue during the administration. In the current study, we revealed that liposomalization of oxaliplatin exacerbated the oxaliplatin-induced decrease of sweet taste sensitivity by increasing the accumulation of platinum/oxaliplatin in lingual non-epithelial tissues. These findings may suggest that reduction of liposomal oxaliplatin distribution to the tongue on cooling during the administration prevents exacerbation of the decrease of sweet taste sensitivity, maintaining the quality of life and chemotherapeutic outcome in patients.
Article
Full-text available
The platinum (Pt)-containing antitumor drugs including cisplatin (cis-diamminedichloroplatinum II, cDDP), carboplatin, and oxaliplatin, have been the mainstay of cancer chemotherapy. These drugs are effective in treating many human malignancies. The major cell-killing target of Pt drugs is DNA. Recent findings underscored the important roles of Pt drug transport system in cancer therapy. While many mechanisms have been proposed for Pt-drug transport, the high-affinity copper transporter (hCtr1), Cu chaperone (Atox1), and Cu exporters (ATP7A and ATP7B) are also involved in cDDP transport, highlighting Cu homeostasis regulation in Pt-based cancer therapy. It was demonstrated that by reducing cellular Cu bioavailable levels by Cu chelators, hCtr1 is transcriptionally upregulated by transcription factor Sp1, which binds the promoters of Sp1 and hCtr1. In contrast, elevated Cu poisons Sp1, resulting in suppression of hCtr1 and Sp1, constituting the Cu-Sp1-hCtr1 mutually regulatory loop. Clinical investigations using copper chelator (trientine) in carboplatin treatment have been conducted for overcoming Pt drug resistance due in part to defective transport. While results are encouraging, future development may include targeting multiple steps in Cu transport system for improving the efficacies of Pt-based cancer chemotherapy. The focus of this review is to delineate the mechanistic interrelationships between Cu homeostasis regulation and antitumor efficacy of Pt drugs.
Article
Clinically, chemotherapy is the mainstay in the treatment of multiple cancers. However, highly adaptable and activated survival signaling pathways of cancer cells readily emerge after long exposure to chemotherapeutics drugs, resulting in multi-drug resistance (MDR) and treatment failure. Recently, growing evidences indicate that the molecular action mechanisms of cancer MDR are closely associated with abnormalities in saccharides. In this review, saccharides affecting cancer MDR development are elaborated and analyzed in terms of aberrant aerobic glycolysis and its related enzymes, abnormal glycan structures and their associated enzymes, and glycoproteins. The reversal strategies including depletion of ATP, circumventing the original MDR pathway, activation by or inhibition of sugar-related enzymes, combination therapy with traditional cytotoxic agents, and direct modification on the sugar moiety, are ultimately proposed. It follows that abnormal saccharides have a significant effect on cancer MDR development, providing a new perspective for overcoming MDR and improving the outcome of chemotherapy.
Article
Platinum (Pt) compounds entered the clinic as anticancer agents when cisplatin was approved in 1978. More than 40 years later, even in the era of precision medicine and immunotherapy, Pt drugs remain among the most widely used anticancer drugs. As Pt drugs mainly target DNA, it is not surprising that recent insights into alterations of DNA repair mechanisms provide a useful explanation for their success. Many cancers have defective DNA repair, a feature that also sheds new light on the mechanisms of secondary drug resistance, such as the restoration of DNA repair pathways. In addition, genome-wide functional screening approaches have revealed interesting insights into Pt drug uptake. About half of cisplatin and carboplatin but not oxaliplatin may enter cells through the widely expressed volume-regulated anion channel (VRAC). The analysis of this heteromeric channel in tumour biopsies may therefore be a useful biomarker to stratify patients for initial Pt treatments. Moreover, Pt-based approaches may be improved in the future by the optimization of combinations with immunotherapy, management of side effects and use of nanodelivery devices. Hence, Pt drugs may still be part of the standard of care for several cancers in the coming years.
Article
Peripheral neurotoxicity is a debilitating toxicity that afflicts up to 90% of patients with colorectal cancer receiving oxaliplatin-containing therapy. Although emerging evidence has highlighted the importance of various solute carriers to the toxicity of anticancer drugs, the contribution of these proteins to oxaliplatin-induced peripheral neurotoxicity remains controversial. Among candidate transporters investigated in genetically-engineered mouse models, we provide evidence for a critical role of the organic cation transporter 2 (OCT2) in satellite glial cells to oxaliplatin-induced neurotoxicity, and demonstrate that targeting OCT2 using genetic and pharmacological approaches ameliorates acute and chronic forms of neurotoxicity. The relevance of this transport system was verified in transporter-deficient rats as a secondary model organism, and translational significance of preventative strategies was demonstrated in preclinical models of colorectal cancer. These studies suggest that pharmacological targeting of OCT2 could be exploited to afford neuroprotection in cancer patients requiring treatment with oxaliplatin.
Article
Organic cation transporters (OCTs) are poly-specific carriers for endogenous and exogenous cationic compounds. These are widely distributed in the nervous system and mediate neuronal activities. As antineoplastic cationic drugs accumulate in the dorsal root ganglion (DRG), OCT function has been studied mainly in cultured DRG neurons. However, the histological distribution of OCTs in the DRG is unclear. This study investigated the localization of OCT2 (a member of OCTs) in mouse DRG neurons and determined their histochemical properties. OCT2 expression was found in about 20% of DRG neurons, which were small to medium size. OCT2-expressing neurons were labeled with markers for peptidergic nociceptive (substance P or calcitonin gene-related peptide) and tactile/proprioceptive (neurofilament 200 or tropomyosin receptor kinase B or C) neurons. OCT2 was also expressed in cholinergic DRG neurons identified by choline acetyltransferase promoter-derived Cre expression. In the spinal dorsal horn, OCT2 was distributed in superficial to deep laminae. OCT2 immunoreactivity was punctate in appearance and localized in the nerve terminals of sensory afferents with labeling of neurochemical markers. Our findings suggest that OCT2 as a low-affinity, high-capacity carrier may take up substrates including cationic neurotransmitters and drugs from the extracellular space around cell bodies in DRG neurons.
Article
One of the most relevant dose-limiting adverse effects of platinum drugs is the development of a sensory peripheral neuropathy that highly impairs the patients' quality of life. Nowadays there are no available efficacy strategies for the treatment of platinum-induced peripheral neurotoxicity (PIPN), and the only way to prevent its development and progression is by reducing the dose of the cytostatic drug or even withdrawing the chemotherapy regimen. This clinical issue has been the main focus of hundreds of preclinical research works during recent decades. As a consequence, dozens of in vitro and in vivo models of PIPN have been developed to elucidate the molecular mechanisms involved in its development and to find neuroprotective targets. The apoptosis of peripheral neurons has been identified as the main mechanism involved in PIPN pathogenesis. This mechanism of DRG sensory neurons cell death is triggered by the nuclear and mitochondrial DNA platination together with the increase of the oxidative cellular status induced by the depletion of cytoplasmic antioxidant mechanisms. However, since there has been no successful transfer of preclinical results to clinical practise in terms of therapeutic approaches, some mechanisms of PIPN pathogenesis still remain to be elucidated. This review is focused on the pathogenic mechanisms underlying PIPN described up to now, provided by the critical analysis of in vitro and in vivo models.
Article
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Article
Full-text available
Oxaliplatin is important for the clinical treatment of colorectal cancer and other gastrointestinal malignancies, but tumour resistance is limiting. Several oxaliplatin transporters were previously identified but their relative contributions to determining oxaliplatin tumour responses and gastrointestinal tumour cell sensitivity to oxaliplatin remains unclear. We studied clinical associations between tumour expression of oxaliplatin transporter candidate genes and patient response to oxaliplatin, then experimentally verified associations found with MRP2 in models of human gastrointestinal cancer. Among 18 oxaliplatin transporter candidate genes, MRP2 was the only one to be differentially expressed in the tumours of colorectal cancer patients who did or did not respond to FOLFOX chemotherapy. Over-expression of MRP2 (endogenously in HepG2 and PANC-1 cells, or induced by stable transfection of HEK293 cells) decreased oxaliplatin accumulation and cytotoxicity but those deficits were reversed by inhibition of MRP2 with myricetin or siRNA knockdown. Mice bearing subcutaneous HepG2 tumour xenografts were sensitised to oxaliplatin antitumour activity by concurrent myricetin treatment with little or no increase in toxicity. In conclusion, MRP2 limits oxaliplatin accumulation and response in human gastrointestinal cancer. Screening tumour MRP2 expression levels, to select patients for treatment with oxaliplatin-based chemotherapy alone or in combination with a MRP2 inhibitor, could improve treatment outcomes.
Article
Full-text available
Oxaliplatin is a medically-important platinum-based drug for treating advanced colorectal cancer, but its clinical pharmacokinetics and biotransformation are not well understood. We report the development of a reliable sample preparation procedure and a specific HPLC-ICP-MS assay for oxaliplatin and its putative active biotransformation product Pt(R,R-diaminocyclohexane)Cl2 [Pt(DACH)Cl2], and their application to the analysis of the plasma of patients undergoing a standard 2 h infusion of oxaliplatin. HPLC conditions were identified for separating intact oxaliplatin and Pt(DACH)Cl2 that were compatible with on-line detection by ICP-MS. Plasma samples were processed immediately after collection by methanol deproteinization, then stored under conditions in which the analytes of interest were stable. The linearity of calibration curves (R2 = 0.9974), intra- and inter-assay accuracy (101–107%) and precision (3.30–7.12%, n = 5), drug recovery (95–108%), and short- and long-term stability were adequate to quantify oxaliplatin. Clinical application of the assay showed that intact oxaliplatin was the major active platinum species in the plasma of colorectal cancer patients given oxaliplatin. Pt(DACH)Cl2 was undetectable in patient samples despite the HPLC-ICP-MS assay having a limit of detection of 5 nM (1.9 ppb) for this platinum species.
Article
Full-text available
The neuroprotective effects of ergothioneine (EGT) against cisplatin toxicity were investigated both in vitro and in vivo. For in vitro study, two types of neuronal cells, primary cortical neuron (PCN) cells and rat pheochromocytoma (PC12) cells, were incubated with EGT (0.1-10.0 μM) for 2 h followed by incubation with 0.5 μM cisplatin for 72 h. Results show that cisplatin markedly decreased the proliferation of PC12 cells and strongly inhibited the growth of axon and dendrite of PCN cells, but these effects were significantly prevented by EGT. For in vivo study, CBA mice were orally administered with 2 or 8 mg EGT/kg body weight for 58 consecutive days and were injected i.p. with 5mg cisplatin/kg body weight on days 7, 9 and 11. We found that EGT significantly restored the learning and memory deficits in mice treated with cisplatin evaluated by active and passive avoidance tests. EGT also significantly prevented brain lipid peroxidation, restored acetylcholinesterase (AChE) activity and maintained glutathione/glutathione disulfide ratio in brain tissues of mice treated with cisplatin. These results demonstrate that EGT protects against cisplatin-induced neuronal injury and enhances cognition, possibly through the inhibition of oxidative stress and restoration of AChE activity in neuronal cells.
Article
Full-text available
ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG) tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg) or drug vehicle twice weekly for 8 weeks. In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H). High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non-overlapping distribution of ATP7A and CTR1 within rat DRG tissue may be required to support the potentially differing cuproenzyme requirements of distinct subsets of sensory neurons, and could influence the transport and neurotoxicity of oxaliplatin.
Article
Full-text available
Solute carrier OCTN1 (SLC22A4) is an orphan transporter, the physiologically important substrate of which is still unidentified. The aim of the present study was to examine physiological roles of OCTN1. We first constructed octn1 gene knockout (octn1 ( -/- )) mice. Metabolome analysis was then performed to identify substrates in vivo. The possible association of the substrate identified with diseased conditions was further examined. The metabolome analysis of blood and several organs indicated complete deficiency of a naturally occurring potent antioxidant ergothioneine in octn1 ( -/- ) mice among 112 metabolites examined. Pharmacokinetic analyses after oral administration revealed the highest distribution to small intestines and extensive renal reabsorption of [(3)H]ergothioneine, both of which were much reduced in octn1 ( -/- ) mice. The octn1 ( -/- ) mice exhibited greater susceptibility to intestinal inflammation under the ischemia and reperfusion model. The blood ergothioneine concentration was also much reduced in Japanese patients with Crohn's disease, compared with healthy volunteers and patients with another inflammatory bowel disease, ulcerative colitis. These results indicate that OCTN1 plays a pivotal role for maintenance of systemic and intestinal exposure of ergothioneine, which could be important for protective effects against intestinal tissue injuries, providing a possible diagnostic tool to distinguish the inflammatory bowel diseases.
Article
Full-text available
After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs) and several axon guidance molecules, including all members of the secreted (class 3) Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi) is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV) mediated expression of short hairpin RNAs (shRNAs) to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1) and Neuropilin 2 (Npn-2). We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG) of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.
Article
Full-text available
Cisplatin is one of the most widely used anticancer agents for the treatment of solid tumors. The clinical use of cisplatin is associated with dose-limiting nephrotoxicity, which occurs in one-third of patients despite intensive prophylactic measures. Organic cation transporter 2 (OCT2) has been implicated in the cellular uptake of cisplatin, but its role in cisplatin-induced nephrotoxicity remains unknown. In mice, deletion of Oct1 and Oct2 resulted in significantly impaired urinary excretion of cisplatin without an apparent influence on plasma levels. Furthermore, the Oct1/Oct2-deficient mice were protected from severe cisplatin-induced renal tubular damage. Subsequently, we found that a nonsynonymous single-nucleotide polymorphism (SNP) in the OCT2 gene SLC22A2 (rs316019) was associated with reduced cisplatin-induced nephrotoxicity in patients. Collectively, these results indicate the critical importance of OCT2 in the renal handling and related renal toxicity of cisplatin and provide a rationale for the development of new targeted approaches to mitigate this debilitating side effect.
Article
Full-text available
We report the neuronal expression of copper transporter 1 (CTR1) in rat dorsal root ganglia (DRG) and its association with the neurotoxicity of platinum-based drugs. CTR1 expression was studied by immunohistochemistry and RT-PCR. The toxicity of platinum drugs to CTR1-positive and CTR1-negative neurons was compared in DRG from animals treated with maximum tolerated doses of oxaliplatin (1.85 mg/kg), cisplatin (1 mg/kg) or carboplatin (8 mg/kg) twice weekly for 8 weeks. Abundant CTR1 mRNA was detected in DRG tissue. CTR1 immunoreactivity was associated with plasma membranes and cytoplasmic vesicular structures of a subpopulation (13.6 +/- 3.1%) of mainly large-sized (mean cell body area, 1,787 +/- 127 microm(2)) DRG neurons. After treatment with platinum drugs, the cell bodies of these CTR1-positive neurons became atrophied, with oxaliplatin causing the greatest percentage reduction in the mean cell body area relative to controls (42%; P < 0.05), followed by cisplatin (18%; P < 0.05) and carboplatin causing the least reduction (3.2%; P = NS). CTR1-negative neurons, with no immunoreactivity or only diffuse cytoplasmic staining, showed less treatment-induced cell body atrophy than CTR1-positive neurons. CTR1 is preferentially expressed by a subset of DRG neurons that are particularly vulnerable to the toxicity of platinum drugs. These findings, together with its neuronal membrane localization, are suggestive of CTR1-related mechanisms of platinum drug neuronal uptake and neurotoxicity.
Article
Full-text available
The effect of oxaliplatin against colorectal cancer is superior to that of cisplatin, but the molecular mechanism(s) involved is not clear. We found previously that oxaliplatin, but not cisplatin, was transported by human (h) and rat organic cation transporter 3 (OCT3)/SLC22A3. In the present study, we examined whether hOCT3 was significantly involved in the oxaliplatin-induced cytotoxicity and accumulation of platinum in colorectal cancer. The level of hOCT3 mRNA in the colon was 9.7-fold higher in cancerous than in normal tissues in six Japanese patients (P = 0.0247). In human colorectal cancer-derived cell lines, the mRNA of hOCT3 was highly expressed compared with that of other organic cation transporters. The release of lactate dehydrogenase (LDH) and accumulation of platinum with oxaliplatin treatment were increased in SW480 cells transfected with hOCT3 cDNA compared with empty vector-transfected cells. T84 and SW837 cells, with high levels of hOCT3, released more LDH and accumulated more platinum after oxaliplatin treatment than low hOCT3-expressing cells such as SW480, HCT116, HT29, and Lovo. However, the amount of platinum accumulated after cisplatin treatment did not differ among these six cell lines. The levels of hOCT3 expression in colon and rectum were also higher in cancerous than in normal tissues in Caucasian patients as determined by dot blotting. In conclusion, the hOCT3-mediated uptake of oxaliplatin into the cancers was suggested to be important for its cytotoxicity, and hOCT3 expression may be a marker for cancer chemotherapy including oxaliplatin.
Article
Full-text available
It has been reported that organic cation/carnitine transporter 1 (OCTN1) is associated with rheumatoid arthritis and Crohn's disease. Additionally, we reported that OCTN1 is expressed in hematopoietic cells, and is associated with proliferation and differentiation of erythroid cells. However, physiological role of OCTN1 is still unclear. Ergothioneine, an anti-oxidant, was recently reported to be a good substrate of human OCTN1. However, the transport characteristics of ergothioneine in rat remains to be clarified. The present study, is to further investigate the role of rat Octn1 on transport of ergothioneine in rat Octn1 transfected cells and natively expressing cell line PC12 derived from rat adrenal pheochromocytoma. [(3)H]Ergothioneine uptake by rat Octn1 stably transfected HEK293 cells was saturable, sodium dependent with 1 : 1 stoichiometry of ergothioneine, and pH dependent. Since ergothioneine was reported to presumably play a protective role against oxidative stress-induced apoptosis in PC12 cells, its transport in this cell line was investigated. The expression of rat Octn1 and a saturable and Na(+)-dependent transport of ergothioneine were observed in PC12 cells, suggesting that ergothioneine transport in this cell line may be mediated by rat Octn1. These findings suggested that rat Octn1 may act as a survival factor by taking up ergothioneine to suppress oxidative stress in this cell line. In conclusion, functional characteristics of ergothioneine transport by rat Octn1 is similar to that of human OCTN1 and it is suggested that rat Octn1 is important by transporting anti-oxidant ergothioneine in PC12 cells, though its role in vivo is to be investigated.
Article
Full-text available
The diaminocyclohexane platinum (Pt(DACH)) derivatives ormaplatin and oxaliplatin have caused severe and dose-limiting peripheral sensory neurotoxicity in a clinical trial. We hypothesized that this toxicity could vary in relation to the biotransformation and stereochemistry of these Pt(DACH) derivatives. We prepared pure R,R and S,S enantiomers of ormaplatin (Pt(DACH)Cl4), oxaliplatin (Pt(DACH)oxalato) and their metabolites (Pt(DACH)Cl2 and Pt(DACH)methionine) and assessed their peripheral sensory neurotoxicity and tissue distribution in the rat and in vitro anti-tumour activity in human ovarian carcinoma cell lines. The R,R enantiomers of Pt(DACH)Cl4, Pt(DACH)oxalato and Pt(DACH)Cl2, induced peripheral sensory neurotoxicity at significantly lower cumulative doses (18 +/- 5.7 vs 32 +/- 2.3 micromol kg(-1); P < 0.01) and at earlier times (4 +/- 1 vs 6.7 +/- 0.6 weeks; P = 0.016) during repeat-dose treatment than the S,S enantiomers. Pt(DACH)methionine enantiomers showed no biological activity. There was no difference between Pt(DACH) enantiomers in the platinum concentration in sciatic nerve, dorsal root ganglia, spinal cord, brain or blood at the end of each experiment. Three human ovarian carcinoma cell lines (41 M, 41 McisR and SKOV-3) showed no (or inconsistent) chiral discrimination in their sensitivity to Pt(DACH) enantiomers, whereas two cell lines (CH-1 and CH-1cisR) showed modest enantiomeric selectivity favouring the R,R isomer (more active). In conclusion, Pt(DACH) derivatives exhibit enantiomeric-selective peripheral sensory neurotoxicity during repeated dosing in rats favouring S,S isomers (less neurotoxic). They exhibited less chiral discrimination in their accumulation within peripheral nerves and in vitro anti-tumour activity.
Article
Full-text available
Primary carnitine deficiency, because of a defect of the tissue plasma membrane carnitine transporters, causes critical symptoms. However, the transporter has not been molecularly identified. In this study, we screened a human kidney cDNA library and assembled a cDNA-encoding OCTN2 as a homologue of the organic cation transporter OCTN1, and then we examined the function of OCTN2 as a carnitine transporter. OCTN2-cDNA encodes a polypeptide of 557 amino acids with 75.8% similarity to OCTN1. Northern blot analysis showed that OCTN2 is strongly expressed in kidney, skeletal muscle, heart, and placenta in adult humans. When OCTN2 was expressed in HEK293 cells, uptake of L-[3H]carnitine was strongly enhanced in a sodium-dependent manner with Km value of 4.34 microM, whereas typical substrates for previously known organic cation transporters, tetraethylammonium and guanidine, were not good substitutes. OCTN2-mediated L-[3H]carnitine transport was inhibited by the D-isomer, acetyl-D,L-carnitine, and gamma-butyrobetaine with high affinity and by glycinebetaine with lower affinity, whereas choline, beta-hydroxybutyric acid, gamma-aminobutyric acid, lysine, and taurine were not inhibitory. Because the observed tissue distribution of OCTN2 is consistent with the reported distribution of carnitine transport activity and the functional characteristics of OCTN2 coincide with those reported for plasma membrane carnitine transport, we conclude that OCTN2 is a physiologically important, high affinity sodium-carnitine cotransporter in humans.
Article
Full-text available
The accumulation of cisplatin is decreased in many cisplatin-resistant cell lines, and an active efflux pump for cisplatin exists in some of them, but it has not yet been identified. In this study, we transfected the copper-transporting P-type ATPase cDNA (ATP7B) into human epidermoid carcinoma KB-3-1 cells. The transfectant, KB/WD cell line, which overexpressed the P-type ATPase, ATP7B, was resistant to both cisplatin (8.9-fold) and copper (2.0-fold). The accumulation of cisplatin in KB/WD cells was lower than in mock-transfected KB/CV cells, and the efflux of cisplatin from KB/WD cells was enhanced compared with KB/CV cells. KB/WD cells were sensitive to other heavy metals, such as antimony, arsenate, arsenite, cadmium, and cobalt. ATP7B was overexpressed in cisplatin-resistant prostate carcinoma PC-5 cells but not in the parental PC-3 cells and the revertant PC-5R cells. ATP7B may be involved in cisplatin resistance in some tumors.
Article
Full-text available
Previous work has shown platinum drugs to differ in their effects on the peripheral nervous system. To test whether their differential toxicity was due to differences in their partitioning into the peripheral nervous system, we correlated the hydrophobicity, reactivity, tissue accumulation and neurotoxicity of a series of eight platinum analogues. Neurotoxicity was detected by measuring sensory nerve conduction velocity (SNCV) in Wistar rats treated twice per week at the maximum tolerated dose. Tissue platinum concentrations were measured by inductively coupled plasma mass spectrometry. Hydrophobicity (log P) was measured using an octanol-aqueous shake-flask method. The half-life of platinum drug binding to plasma proteins in vitro was determined. The cumulative dose causing altered SNCV ranged from 15 to > 2050 micromol kg(-1). Ranking of the compounds by their neurotoxic potency in rats (oxaliplatin > R,R-(DACH)PtC4 > ormaplatin > S,S-(DACH)PtCl4 > S,S-(DACH)Pt oxalato > cisplatin > carboplatin > JM216) correlated with the frequency of neurotoxicity in patients (r> 0.99; P < 0.05). Ranking the compounds by their peripheral nerve accumulation was cisplatin > carboplatin > oxaliplatin > R,R-(DACH)PtCl4 = S,S-(DACH)PtCl4 and did not correlate with neurotoxicity. Log P ranged from - 2.53 to -0.16 but did not correlate with neurotoxicity. Log P correlated inversely with platinum accumulation in dorsal root ganglia (r2 = 0.99; P = 0.04), sural nerve (r2 = 0.85; P = 0.025), sciatic nerve (r2 = 0.98; P= 0.0012), spinal cord (r2 = 0.97, P= 0.018) and brain (r2 = 0.98, P= 0.001). Reactivity correlated with neurotoxicity potency in rats (r2 = 0.89, P = 0.0005) and with the frequency of neurotoxicity in patients (r2 = 0.99, P = 0.0002). The hydrophilicity of platinum drugs correlates with platinum sequestration in the peripheral nervous system but not with neurotoxicity. Differences in the reactivity of platinum complexes accounts for some of the variation in their neurotoxicity.
Article
Full-text available
The standard adjuvant treatment of colon cancer is fluorouracil plus leucovorin (FL). Oxaliplatin improves the efficacy of this combination in patients with metastatic colorectal cancer. We evaluated the efficacy of treatment with FL plus oxaliplatin in the postoperative adjuvant setting. We randomly assigned 2246 patients who had undergone curative resection for stage II or III colon cancer to receive FL alone or with oxaliplatin for six months. The primary end point was disease-free survival. A total of 1123 patients were randomly assigned to each group. After a median follow-up of 37.9 months, 237 patients in the group given FL plus oxaliplatin had had a cancer-related event, as compared with 293 patients in the FL group (21.1 percent vs. 26.1 percent; hazard ratio for recurrence, 0.77; P=0.002). The rate of disease-free survival at three years was 78.2 percent (95 percent confidence interval, 75.6 to 80.7) in the group given FL plus oxaliplatin and 72.9 percent (95 percent confidence interval, 70.2 to 75.7) in the FL group (P=0.002 by the stratified log-rank test). In the group given FL plus oxaliplatin, the incidence of febrile neutropenia was 1.8 percent, the incidence of gastrointestinal adverse effects was low, and the incidence of grade 3 sensory neuropathy was 12.4 percent during treatment, decreasing to 1.1 percent at one year of follow-up. Six patients in each group died during treatment (death rate, 0.5 percent). Adding oxaliplatin to a regimen of fluorouracil and leucovorin improves the adjuvant treatment of colon cancer.
Article
Full-text available
Oxaliplatin (OHP) is severely neurotoxic and induces the onset of a disabling sensory peripheral neuropathy. Acetyl-L-carnitine (ALC), a natural compound with neuroprotective action, was tested to determine whether it plays a protective role in OHP-induced neuropathy. Peripheral neuropathy was induced in Wistar rats, and the effect of OHP alone or in combination with ALC was assessed, using behavioral and neurophysiological methods. Moreover, ALC interference on OHP antitumor activity was investigated using several in vitro and in vivo models. ALC-co-treatment reduced the neurotoxicity of OHP when it was coadministered. Furthermore, the administration-of OHP, once OHP-induced neuropathy was established, significantly mitigated its severity. Finally, experiments in different tumor systems indicated that ALC does not interfere with the antitumor effects of OHP. ALC is effective in the prevention and treatment of chronic OHP-induced peripheral neurotoxicity in an experimental rat model.
Article
Full-text available
Cisplatin has been in use for 40 years, primarily for treatment of ovarian and testicular cancer. Oxaliplatin is the only effective treatment for metastatic colorectal cancer. Neurotoxicity occurs in up to 30% of patients and is dose-limiting for both drugs. The neuropathy is characterized by selective sensory loss in the extremities. Cisplatin treatment is associated with high levels of Pt-DNA binding and apoptosis of dorsal root ganglion (DRG) neurons. In this study, we directly compared the effects of oxaliplatin on DRG in vitro. Compared with cisplatin, oxaliplatin formed fewer Pt-DNA adducts following 6, 12, 24, and 48h (0.007ng Pt/mug DNA, 0.012ng/microg, 0.011ng/microg, 0.011ng/microg versus 0.014ng/microg, 0.022ng/microg, 0.041ng/microg, 0.030ng/microg), respectively. These findings closely correlated with data on cell survival where equimolar concentrations of oxaliplatin induced less cell death than cisplatin. Oxaliplatin-induced DRG death was associated with the morphological characteristics of apoptosis defined by 4'-6-diamidino-2-phenylindole and annexin/propidium iodide staining. Death was completely inhibited by the caspase inhibitor z-VAD-fmk. Our results demonstrate that both compounds cause apoptosis of DRG neurons but compared to cisplatin, oxaliplatin forms fewer Pt-DNA adducts and is less neurotoxic to DRG neurons in vitro.
Article
Full-text available
We have examined the role of the human organic cation transporters [hOCTs and human novel organic cation transporter (hOCTN); SLC22A1-5] and apical multidrug and toxin extrusion (hMATE) in the cellular accumulation and cytotoxicity of platinum agents using the human embryonic kidney (HEK) 293 cells transiently transfected with the transporter cDNAs. Both the cytotoxicity and accumulation of cisplatin were enhanced by the expression of hOCT2 and weakly by hOCT1, and those of oxaliplatin were also enhanced by the expression of hOCT2 and weakly by hOCT3. The hOCT-mediated uptake of tetraethylammonium (TEA) was markedly decreased in the presence of cisplatin in a concentration-dependent manner. However, oxaliplatin showed almost no influence on the TEA uptakes in the HEK293 cells expressing hOCT1, hOCT2, and hOCT3. The hMATE1 and hMATE2-K, but not hOCTN1 and OCTN2, mediated the cellular accumulation of cisplatin and oxaliplatin without a marked release of lactate dehydrogenase. Oxaliplatin, but not cisplatin, markedly decreased the hMATE2-K-mediated TEA uptake. However, the inhibitory effect of cisplatin and oxaliplatin against the hMATE1-mediated TEA uptake was similar. The release of lactate dehydrogenase and the cellular accumulation of carboplatin and nedaplatin were not found in the HEK293 cells transiently expressing these seven organic cation transporters. These results indicate that cisplatin is a relatively good substrate of hOCT1, hOCT2, and hMATE1, and oxaliplatin is of hOCT2, hOCT3, hMATE1, and hMATE2-K. These transporters could play predominant roles in the tissue distribution and anticancer effects and/or adverse effects of platinum agent-based chemotherapy.
Article
Full-text available
Although the platinum-based anticancer drugs cisplatin, carboplatin, and oxaliplatin have similar DNA-binding properties, only oxaliplatin is active against colorectal tumors. The mechanisms for this tumor specificity of platinum-based compounds are poorly understood but could be related to differences in uptake. This study shows that the human organic cation transporters (OCT) 1 and 2 (SLC22A1 and SLC22A2) markedly increase oxaliplatin, but not cisplatin or carboplatin, accumulation and cytotoxicity in transfected cells, indicating that oxaliplatin is an excellent substrate of these transporters. The cytotoxicity of oxaliplatin was greater than that of cisplatin in six colon cancer cell lines [mean +/- SE of IC(50) in the six cell lines, 3.9 +/- 1.4 micromol/L (oxaliplatin) versus 11 +/- 2.0 micromol/L (cisplatin)] but was reduced by an OCT inhibitor, cimetidine, to a level similar to, or even lower than that of, cisplatin (29 +/- 11 micromol/L for oxaliplatin versus 19 +/- 4.3 micromol/L for cisplatin). Structure-activity studies indicated that organic functionalities on nonleaving groups coordinated to platinum are critical for selective uptake by OCTs. These results indicate that OCT1 and OCT2 are major determinants of the anticancer activity of oxaliplatin and may contribute to its antitumor specificity. They also strongly suggest that expression of OCTs in tumors should be investigated as markers for selecting specific platinum-based therapies in individual patients. The development of new anticancer drugs, specifically targeted to OCTs, represents a novel strategy for targeted drug therapy. The results of the present structure-activity studies indicate specific tactics for realizing this goal.
Article
Full-text available
The body is equipped with broad-specificity transporters for the excretion and distribution of endogeneous organic cations and for the uptake, elimination and distribution of cationic drugs, toxins and environmental waste products. This group of transporters consists of the electrogenic cation transporters OCT1-3 (SLC22A1-3), the cation and carnitine transporters OCTN1 (SLC22A4), OCTN2 (SLC22A5) and OCT6 (SLC22A16), and the proton/cation antiporters MATE1, MATE2-K and MATE2-B. The transporters show broadly overlapping sites of expression in many tissues such as small intestine, liver, kidney, heart, skeletal muscle, placenta, lung, brain, cells of the immune system, and tumors. In epithelial cells they may be located in the basolateral or luminal membranes. Transcellular cation movement in small intestine, kidney and liver is mediated by the combined action of electrogenic OCT-type uptake systems and MATE-type efflux transporters that operate as cation/proton antiporters. Recent data showed that OCT-type transporters participate in the regulation of extracellular concentrations of neurotransmitters in brain, mediate the release of acetylcholine in non-neuronal cholinergic reactions, and are critically involved in the regulation of histamine release from basophils. The recent identification of polymorphisms in human OCTs and OCTNs allows the identification of patients with an increased risk for adverse drug reactions. Transport studies with expressed OCTs will help to optimize pharmacokinetics during development of new drugs.
Article
Full-text available
The platinum (Pt) drugs cisplatin and carboplatin are heavily employed in chemotherapy regimens; however, similar to other classes of drugs, a number of intrinsic and acquired resistance mechanisms hamper their effectiveness. The method by which Pt drugs enter cells has traditionally been attributed to simple passive diffusion. However, recent evidence suggests a number of active uptake and efflux mechanisms are at play, and altered regulation of these transporters is responsible for the reduced accumulation of drug in resistant cells. This review suggests a model that helps reconcile the disparate literature by describing multiple pathways for Pt-containing drugs into and out of the cell.
Article
PURPOSE: In a previous study of treatment for advanced colorectal cancer, the LV5FU2 regimen, comprising leucovorin (LV) plus bolus and infusional fluorouracil (5FU) every 2 weeks, was superior to the standard North Central Cancer Treatment Group/Mayo Clinic 5-day bolus 5FU/LV regimen. This phase III study investigated the effect of combining oxaliplatin with LV5FU2, with progression-free survival as the primary end point. PATIENTS AND METHODS: Four hundred twenty previously untreated patients with measurable disease were randomized to receive a 2-hour infusion of LV (200 mg/m²/d) followed by a 5FU bolus (400 mg/m²/d) and 22-hour infusion (600 mg/m²/d) for 2 consecutive days every 2 weeks, either alone or together with oxaliplatin 85 mg/m² as a 2-hour infusion on day 1. RESULTS: Patients allocated to oxaliplatin plus LV5FU2 had significantly longer progression-free survival (median, 9.0 v 6.2 months; P = .0003) and better response rate (50.7% v 22.3%; P = .0001) when compared with the control arm. The improvement in overall survival did not reach significance (median, 16.2 v 14.7 months; P = .12). LV5FU2 plus oxaliplatin gave higher frequencies of National Cancer Institute common toxicity criteria grade 3/4 neutropenia (41.7% v 5.3% of patients), grade 3/4 diarrhea (11.9% v 5.3%), and grade 3 neurosensory toxicity (18.2% v 0%), but this did not result in impairment of quality of life (QoL). Survival without disease progression or deterioration in global health status was longer in patients allocated to oxaliplatin treatment (P = .004). CONCLUSION: The LV5FU2-oxaliplatin combination seems beneficial as first-line therapy in advanced colorectal cancer, demonstrating a prolonged progression-free survival with acceptable tolerability and maintenance of QoL.
Article
Amino acids activate nutrient signaling via the mammalian target of rapamycin (mTOR), we therefore evaluated the relationship between amino acid transporter gene expression and proliferation in human ovarian cancer cell lines. Expression of three cancer-associated amino acid transporter genes, LAT1, ASCT2 and SN2, was measured by qRT-PCR and Western blot. The effects of silencing the LAT1 gene and its inhibitor BCH on cell growth were evaluated by means of cell proliferation and colony formation assays. The system L amino acid transporter LAT1 was up-regulated in human ovarian cancer SKOV3, IGROV1, A2780, and OVCAR3 cells, compared to normal ovarian epithelial IOSE397 cells, whereas ASCT2 and SN2 were not. BCH reduced phosphorylation of p70S6K, a down-stream effector of mTOR, in SKOV3 and IGROV1 cells, and decreased their proliferation by 30% and 28%, respectively. Although proliferation of SKOV3 (S1) or IGROV1 (I10) cells was unaffected by LAT1-knockdown, plating efficiency in colony formation assays was significantly reduced in SKOV3(S1) and IGROV1(I10) cells to 21% and 52% of the respective plasmid transfected control cells, SKOV3(SC) and IGROV(IC), suggesting that LAT1 affects anchorage-independent cell proliferation. Finally, BCH caused 10.5- and 4.3-fold decrease in the IC(50) value of bestatin, an anti-proliferative aminopeptidase inhibitor, in IGROV1 and A2780 cells, respectively, suggesting that the combined therapy is synergistic. Our findings indicate that LAT1 expression is increased in human ovarian cancer cell lines; LAT1 may be a target for combination therapy with anti-proliferative aminopeptidase inhibitors to combat ovarian cancer.
Article
The use of the effective antineoplastic agent cisplatin is limited by its serious side effects, such as oto- and nephrotoxicity. Ototoxicity is a problem of special importance in children, because deafness hampers their language and psychosocial development. Recently, organic cation transporters (OCTs) were identified in vitro as cellular uptake mechanisms for cisplatin. In the present study, we investigated in an in vivo model the role of OCTs in the development of cisplatin oto- and nephrotoxicity. The functional effects of cisplatin treatment on kidney (24 hours excretion of glucose, water, and protein) and hearing (auditory brainstem response) were studied in wild-type and OCT1/2 double-knockout (KO) mice. No sign of ototoxicity and only mild nephrotoxicity were observed after cisplatin treatment of knockout mice. Comedication of wild-type mice with cisplatin and the organic cation cimetidine protected from ototoxicity and partly from nephrotoxicity. For the first time we showed that OCT2 is expressed in hair cells of the cochlea. Furthermore, cisplatin-sensitive cell lines from pediatric tumors showed no expression of mRNA for OCTs, indicating the feasibility of therapeutic approaches aimed to reduce cisplatin toxicities by competing OCT2-mediated cisplatin uptake in renal proximal tubular and cochlear hair cells. These findings are very important to establish chemotherapeutical protocols aimed to maximize the antineoplastic effect of cisplatin while reducing the risk of toxicities.
Article
Solute carriers (SLCs), in particular organic cation transporters (OCTs), have been implicated in the cellular uptake of platinum-containing anticancer compounds. The activity of these carriers may determine the pharmacokinetics and the severity of side effects, including neuro- and nephrotoxicity of platinum-based chemotherapy. As decreased drug accumulation is a key mechanism of platinum resistance, SLCs may also contribute to the development of resistance. Here, we define the role of hSLC22A2 (OCT2) in the cellular uptake of platinum compounds. Human embryonic kidney (HEK) 293 cells stably expressing the hSLC22A2 gene (HEK293/hSLC22A2) were used in platinum accumulation studies. Following a 2 h exposure to various platinum compounds (100 microM), intracellular platinum levels were determined by flameless atomic absorption spectrometry. HEK293/hSLC22A2 cells, compared with HEK293/Neo control cells, displayed significant increases in oxaliplatin (28.6-fold), Pt[DACH]Cl(2) (20.6-fold), ormaplatin (8.1-fold), tetraplatin (4.5-fold), transplatin (3.7-fold) and cisplatin (1.3-fold), but not carboplatin. SLC22A2-mediated transport could be inhibited by 1-methyl-4-phenylpyridinium. Furthermore, hSLC22A2-mediated oxaliplatin and cisplatin accumulation was time- and concentration-dependent, but non-saturable. Expression of hSLC22A2 in HEK293 cells resulted in enhanced sensitivity to oxaliplatin (12-fold) and cisplatin (1.8-fold). Although, hSLC22A2 mRNA expression was frequently found in ovarian cancer cell lines, its expression in clinical ovarian cancer specimens (n= 80) was low and did not correlate with the treatment outcome of platinum-based regimens. The hSLC22A2 drug transporter is a critical determinant in the uptake and cytotoxicity of various platinum compounds, particularly oxaliplatin.
Article
Gamma-butyrobetaine (GBB) is a precursor in the biosynthesis of carnitine, which plays an important role in the beta-oxidation of fatty acids, and is converted to carnitine by gamma-butyrobetaine dioxygenase (BBD) predominantly in liver. We investigated the molecular mechanism of hepatic uptake of GBB in rat hepatocytes. Cellular localization of rat Octn2 (rOctn2:Slc22A5) was studied by Western blot analysis. Uptake of deuterated GBB (d(3)-GBB) was examined in HEK293 cells expressing rOctn2 (HEK293/rOctn2) and freshly isolated rat hepatocytes. d(3)-GBB was quantified by use of liquid chromatography-tandem mass spectrometry. Western blot analysis demonstrated an expression of OCTN2 protein in hepatic basolateral membrane but not in bile canalicular membrane fraction. Furthermore, we found that d(3)-GBB was taken up by rOctn2 in an Na(+)-dependent manner with K(m) value of 13 microM. The apparent K(m) value for d(3)-GBB transport in freshly isolated rat hepatocytes was 9 microM. d(3)-GBB uptake by the rat hepatocytes was inhibited by gamma-aminobutyric acid (GABA) to 30% of the control, whereas it was inhibited by carnitine to 62% of the control, even at 500 microM. Furthermore, d(3)-GBB uptake by rat hepatocytes was decreased by 45% with rat Gat2 (Slc6A13, a major liver GABA transporter) silenced by the microRNA method. Accordingly, the present study clearly demonstrates that GBB is taken up by hepatocytes for carnitine biosynthesis not only via Octn2 but also via the GABA transporter, possibly Gat2.
Article
A promising strategy to enhance axon regeneration is to employ short interfering (si)RNA targeting either RhoA or p75(NTR), which are components of a signalling cascade triggered by growth inhibitory ligands. However, it is important to profile the biological impact of siRNA on cell homeostasis in order to develop safe and effective therapies. We used microarray and quantitative reverse transcriptase-polymerase chain reaction techniques to analyse the transcriptional effects of siRNA against p75(NTR) and RhoA in neuronal cell line and primary cultures. Expression analysis showed that primary rat dorsal root ganglion cells were up to 279-fold more sensitive than nerve growth factor-differentiated PC12 cells in detecting innate immune responses to siRNA. The sequence and method of synthesis of siRNA critically influenced the magnitude of the innate immune response. Importantly, siRNA sequences were identified that efficiently silenced RhoA and p75(NTR) mRNA with attenuated induction of the interferon-responsive gene mx1. Moreover, microarray analysis identified genes related to RhoA function, such as tgf beta 2, plod2 and mmp3, with implications for interpretating the ability of RhoA siRNA to promote axon regeneration. These findings demonstrate the importance of screening the biological impact of different siRNA sequences not only for their silencing efficacy, but also for potential toxicity. The results of the present study suggest that the toxicity observed was sequence-dependent because only two out of five siRNA sequences targeting RhoA were identified that did not induce a significant innate immune response.
Article
To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
cDNA for a novel proton/organic cation transporter, OCTN1, was cloned from human fetal liver and its transport activity was investigated. OCTN1 encodes a 551-amino acid protein with 11 transmembrane domains and one nucleotide binding site motif. It is strongly expressed in kidney, trachea, bone marrow and fetal liver and in several human cancer cell lines, but not in adult liver. When expressed in HEK293 cells, OCTN1 exhibited saturable and pH-dependent [3H]tetraethyl ammonium uptake with higher activity at neutral and alkaline pH than at acidic pH. Furthermore, treatment with metabolic inhibitors reduced the uptake, which is consistent with the presence of the nucleotide binding site sequence motif. Although its subcellular localization and detailed functional characteristics are not clear at present, OCTN1 appears to be a novel proton antiporter that functions for active secretion of cationic compounds across the renal epithelial brush-border membrane. It may play a role in the renal excretion of xenobiotics and their metabolites.
Article
Carnitine is an essential component for mitochondrial beta-oxidation of fatty acid. Using the degenerate primers designed for organic anion transporters and an organic cation transporter, we isolated a novel cDNA encoding a carnitine transporter (CT1) from rat intestine. CT1 encodes a 557-amino-acid protein with 12 putative membrane-spanning domains. When expressed in Xenopus oocytes, CT1 mediated a high-affinity transport of L-carnitine (Km = 25 microM). The replacement of extracellular sodium with Li reduced CT1-mediated L-carnitine uptake to 19.8%. CT1 did not transport typical substrates for either organic anion or organic cation transporters, such as p-aminohippurate and tetraethylammonium. Octanoylcarnitine, acetylcarnitine, and gamma-butyrobetaine showed potent inhibitory effects on CT1-mediated L-carnitine uptake; betaine and d-carnitine showed moderate inhibition. CT1 mRNA was strongly expressed in the testis, colon, kidney, and liver and weakly in the skeletal muscle, placenta, small intestine, and brain. No CT1 expression was detected in the heart, spleen, or lung. The present study provides the molecular basis of carnitine transport in the body.
Article
A number of methods are commonly employed for the determination of protein in biological samples. Unfortunately, several compounds that are constituents of biological buffers interfere with these methods, limiting their application. Previous studies have demonstrated that tyrosine rapidly undergoes nitration in nitric acid to yield 3-nitrotyrosine, which has a lambdamax of 358 nm. Utilizing this reaction, we have developed a one-step method for the assessment of protein content in biological samples. Common interfering substances, including SDS, urea, glycerol, ammonium sulfate, and beta-mercaptoethanol, do not interfere with this method. Because of its simplicity, this reaction might be useful for estimating protein content in a variety of biological samples.
Article
Oxaliplatin (4 mg/kg), cisplatin (2 mg/kg with 20 mg/kg mannitol) and ormaplatin (2 mg/kg) were administered i.p. twice weekly for 4.5 weeks. Lactose injections (0.9%) were used as a control for oxaliplatin and 0.9% saline injections were used as a control for cisplatin and ormaplatin. Morphometric changes to dorsal root ganglia L4-L6 were quantitated as a measure of neurotoxicity. Drug treatment resulted in a decrease in cell and nuclear area and an increase in the percentage of cells with eccentric nucleoli for neuronal cell bodies in the DRG. Immediately following treatment the order of morphometric changes was ormaplatin > cisplatin > or = oxaliplatin. The accumulation of platinum in the DRG was measured by inductively coupled plasma mass spectrometry. The order of accumulation was cisplatin > oxaliplatin > ormaplatin. Following an 8-week recovery period the order of morphometric changes to the DRG was ormaplatin approximately equal to oxaliplatin > cisplatin. This correlated with a greater retention of platinum by the DRG for ormaplatin and oxaliplatin than for cisplatin. The results suggest that ormaplatin is uniquely neurotoxic immediately following treatment in the Wistar rat model. However, following an 8-week recovery period both ormaplatin and oxaliplatin are more neurotoxic than cisplatin and this neurotoxicity correlates with a greater retention of platinum by the DRG.
Article
Neurotoxicity is one of the major toxicities of platinum-based anticancer drugs, especially oxaliplatin and ormaplatin. It has been postulated that biotransformation products are likely to be responsible for the toxicity of platinum drugs. In our preceding pharmacokinetic study, both oxaliplatin and ormaplatin were observed to produce the same types of major plasma biotransformation products. However, while the plasma concentration of ormaplatin was much lower than that of oxaliplatin at an equimolar dose, one of their common biotransformation products, Pt(dach)Cl2, was present at 29-fold higher concentrations in the plasma following the i.v. injection of ormaplatin than of oxaliplatin. Because ormaplatin has severe neurotoxicity and Pt(dach)Cl2 is very cytotoxic, we have postulated that Pt(dach)Cl2 is likely to be responsible for the differences in neurotoxicity between ormaplatin and oxaliplatin. In order to test this hypothesis, we compared the neurotoxicity of oxaliplatin, ormaplatin, and their biotransformation products. Since the dorsal root ganglia (DRGs) have been suggested to be the likely targtet for platinum drugs and in vitro DRG explant cultures have been suggested to be a valid model for studying cisplatin-associated neurotoxicity, our comparative neurotoxicity study was conducted with DRG explant cultures in vitro. Based on the previous studies of cisplatin neurotoxicity, we established our in vitro DRG explant culture utilizing DRGs dissected from E-19 embryonic rats. Rat DRGs were incubated for 30 min with different platinum compounds to mimic in vivo exposure conditions; this was by followed by a 48-h incubation in culture medium at 37 degrees C. At the end of the incubation, the neurites were fixed and stained with toluidine blue, and neurite outgrowth was quantitated by phase-contrast microscopy. The inhibition of neurite outgrowth by platinum compounds was used as an indicator of in vitro neurotoxicity. Since an in vivo study has indicated that the order of neurotoxicity is ormaplatin > cisplatin > oxaliplatin > carboplatin as measured by morphometric changes to rat DRGs, we initially validated our DRG explant culture model by comparing the in vitro neurotoxicity of ormaplatin, cisplatin, oxaliplatin, and carboplatin. After observing the same neurotoxicity rank between this study and a previous in vivo study, we further compared the neurotoxicity of oxaliplatin, ormaplatin, and their biotransformation products including Pt(dach)Cl2, Pt(dach)(H2O)Cl, Pt(dach)(H2O)2, Pt(dach)(Met), and Pt(dach)(GSH) utilizing the DRG explant culture model. Our study indicated that Pt(dach)Cl2 and its hydrolysis products were more potent at inhibiting neurite outgrowth than the parent drugs oxaliplatin and ormaplatin. In contrast, no detectable inhibition of neurite outgrowth was observed for DRGs dosed with Pt(dach)(Met) and Pt(dach)(GSH). This study suggests that biotransformation products such as Pt(dach)Cl2 and its hydrolysis products are more neurotoxic than the parent drugs oxaliplatin and ormaplatin. The different neurotoxicity profiles of oxaliplatin and ormaplatin are more likely due to the different plasma concentrations of their common biotransformation product Pt(dach)Cl2 than to differences in their intrinsic neurotoxicity.
Article
In a previous study of treatment for advanced colorectal cancer, the LV5FU2 regimen, comprising leucovorin (LV) plus bolus and infusional fluorouracil (5FU) every 2 weeks, was superior to the standard North Central Cancer Treatment Group/Mayo Clinic 5-day bolus 5FU/LV regimen. This phase III study investigated the effect of combining oxaliplatin with LV5FU2, with progression-free survival as the primary end point. Four hundred twenty previously untreated patients with measurable disease were randomized to receive a 2-hour infusion of LV (200 mg/m(2)/d) followed by a 5FU bolus (400 mg/m(2)/d) and 22-hour infusion (600 mg/m(2)/d) for 2 consecutive days every 2 weeks, either alone or together with oxaliplatin 85 mg/m(2) as a 2-hour infusion on day 1. Patients allocated to oxaliplatin plus LV5FU2 had significantly longer progression-free survival (median, 9.0 v 6.2 months; P =.0003) and better response rate (50.7% v 22.3%; P =.0001) when compared with the control arm. The improvement in overall survival did not reach significance (median, 16.2 v 14.7 months; P =. 12). LV5FU2 plus oxaliplatin gave higher frequencies of National Cancer Institute common toxicity criteria grade 3/4 neutropenia (41. 7% v 5.3% of patients), grade 3/4 diarrhea (11.9% v 5.3%), and grade 3 neurosensory toxicity (18.2% v 0%), but this did not result in impairment of quality of life (QoL). Survival without disease progression or deterioration in global health status was longer in patients allocated to oxaliplatin treatment (P =.004). The LV5FU2-oxaliplatin combination seems beneficial as first-line therapy in advanced colorectal cancer, demonstrating a prolonged progression-free survival with acceptable tolerability and maintenance of QoL.
Article
The mechanism of Na(+)-dependent transport of L-carnitine via the carnitine/organic cation transporter OCTN2 and the subcellular localization of OCTN2 in kidney were studied. Using plasma membrane vesicles prepared from HEK293 cells that were stably transfected with human OCTN2, transport of L-carnitine via human OCTN2 was characterized. Uptake of L-[(3)H]carnitine by the OCTN2-expressing membrane vesicles was significantly increased in the presence of an inwardly directed Na(+) gradient, with an overshoot, while such transient uphill transport was not observed in membrane vesicles from cells that were mock transfected with expression vector pcDNA3 alone. The uptake of L-[(3)H]carnitine was specifically dependent on Na(+) and the osmolarity effect showed that Na(+) significantly influenced the transport rather than the binding. Changes of inorganic anions in the extravesicular medium and of membrane potential by valinomycin altered the initial uptake activity of L-carnitine by OCTN2. In addition, the fluxes of L-carnitine and Na(+) were coupled with 1:1 stoichiometry. Accordingly, it was clarified that Na(+) is coupled with flux of L-carnitine and the flux is an electrogenic process. Furthermore, OCTN2 was localized on the apical membrane of renal tubular epithelial cells. These results clarified that OCTN2 is important for the concentrative reabsorption of L-carnitine after glomerular filtration in the kidney.
Article
The aim of this study was to determine the influence of oxaliplatin scheduling on the onset of peripheral neurotoxicity and ototoxicity in a rat model. Animals were treated with four different schedules of oxaliplatin using two cumulative doses (36 and 48 mg/kg intraperitoneally (i.p.)). The neuropathological examination evidenced dorsal root ganglia (DRG) nucleolar, nuclear and somatic size reduction with nucleolar segregation in the treated rats. Sensory nerve conduction velocity (SNCV) was reduced after oxaliplatin treatment, while the auditory pathway was unaffected. After treatment, platinum was detected in the kidney, DRG and sciatic nerve. After a 5-week follow-up period, recovery of the pathological changes in the DRG and sciatic nerves occurred, although platinum was still detectable in these tissues. The following conclusions may be drawn: the main targets of oxaliplatin neurotoxicity were the DRG; the shorter the interval between the injections, the higher the severity of peripheral neuropathy and this was also related to the cumulative oxaliplatin dose; the peripheral neurotoxicity tended to be reversible; ototoxicity was absent even with high cumulative doses of oxaliplatin.
Article
The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data.
Article
Real time RT-PCR is the most sensitive method for quantitation of gene expression levels. The accuracy can be dependent on the mathematical model on which the quantitative methods are based. The generally accepted mathematical model assumes that amplification efficiencies are equal at the exponential phase of the reactions for the same amplicon. However, no methods are available to test the assumptions regarding amplification efficiency before one starts the real time PCR quantitation. Here we further develop and test the validity of a new mathematical model which dynamically fits real time PCR data with good correlation (R(2)=0.9995+/-0.002, n=50). The method is capable of measuring cycle-by-cycle PCR amplification efficiencies and demonstrates that these change dynamically. Validation of the method revealed the intrinsic relationship between the initial amount of gene transcript and kinetic parameters. A new quantitative method is proposed which represents a simple but accurate quantitative method.
Article
Cisplatin is a chemotherapeutic drug used to treat a variety of cancers. Both intrinsic and acquired resistance to cisplatin, as well as toxicity, limit its effectiveness. Molecular mechanisms that underlie cisplatin resistance are poorly understood. Here we demonstrate that deletion of the yeast CTR1 gene, which encodes a high-affinity copper transporter, results in increased cisplatin resistance and reduced intracellular accumulation of cisplatin. Copper, which causes degradation and internalization of Ctr1 protein (Ctr1p), enhances survival of wild-type yeast cells exposed to cisplatin and reduces cellular accumulation of the drug. Cisplatin also causes degradation and delocalization of Ctr1p and interferes with copper uptake in wild-type yeast cells. Mouse cell lines lacking one or both mouse Ctr1 (mCtr1) alleles exhibit increased cisplatin resistance and decreased cisplatin accumulation in parallel with mCtr1 gene dosage. We propose that cisplatin uptake is mediated by the copper transporter Ctr1p in yeast and mammals. The link between Ctr1p and cisplatin transport may explain some cases of cisplatin resistance in humans and suggests ways of modulating sensitivity and toxicity to this important anticancer drug.
Article
Oxaliplatin has become an integral part of various chemotherapy protocols, and in advanced colorectal cancer in particular. While oxaliplatin has only mild hematologic and gastrointestinal side effects, its dose-limiting toxicity is a cumulative sensory neurotoxicity that resembles that of cisplatin with the important difference of a more rapid and complete reversibility. The reversibility of neurotoxicity has been assured in long-term follow-up of patients who have received adjuvant oxaliplatin-based chemotherapy. In addition, oxaliplatin causes a very unique, but frequent, acute sensory neuropathy that is triggered or aggravated by exposure to cold but is rapidly reversible, without persistent impairment of sensory function. Various strategies have been proposed to prevent or treat oxaliplatin-induced neurotoxicity. The "Stop-and-Go" concept uses the reversibility of neurologic symptoms to aim at delivering higher cumulative oxaliplatin doses as long as the therapy is still effective. Several neuromodulatory agents such as calcium-magnesium infusions, antiepileptic drugs like carbamazepine or gabapentin, amifostine, alpha-lipoic acid, and glutathione have shown promising activity in prophylaxis and treatment of oxaliplatin-induced neurotoxicity. However, larger confirmatory trials are still lacking so that, to date, no evidence-based recommendation can be given for the prophylaxis of oxaliplatin-induced neurotoxicity. The predictability of neurotoxicity associated with oxaliplatin-based therapy should allow patients and doctors to develop strategies to manage this side effect in view of the individual patient's clinical situation.
Article
Antineoplastic drugs belonging to platinum or taxane families are severely neurotoxic, inducing the onset of disabling peripheral neuropathies with different clinical signs. Acetyl-L-carnitine (ALC) is a natural occurring compound with a neuroprotective activity in several experimental paradigms. In this study we have tested the hypothesis that ALC may have a protective role on cisplatin and paclitaxel-induced neuropathy. Sensory nerve conduction velocity (SNCV) was measured in rats before, at end, and after an additional follow-up period from treatments with cisplatin, paclitaxel, or with the respective combination with ALC. In addition, serum from treated animals was collected to measure the levels of circulating NGF, and left sciatic nerves were processed for light and electron microscope observations. ALC interference on cisplatin and paclitaxel antitumor activity and protective mechanisms were investigated using several in vitro and in vivo models. ALC cotreatment was able to significantly reduce the neurotoxicity of both cisplatin and paclitaxel in rat models, and this effect was correlated with a modulation of the plasma levels of NGF in the cisplatin-treated animals. Moreover, experiments in different tumor systems indicated the lack of interference of ALC in the antitumor effects of cisplatin and paclitaxel. The transcriptional profile of gene expression in PC12 cells indicated that ALC, in the presence of NGF, was able to positively modulate NGFI-A expression, a gene relevant in the rescue from tissue-specific toxicity. Finally, the transcriptionally ALC-mediated effects were correlated to increase histone acetylation. In conclusion, our results indicate that ALC is a specific protective agent for chemotherapy-induced neuropathy after cisplatin or paclitaxel treatment without showing any interference with the antitumor activity of the drugs.
Article
Capecitabine has demonstrated high efficacy as first-line treatment for metastatic colorectal cancer (MCRC). Oxaliplatin shows synergy with fluorouracil (FU), with little toxicity overlap. The XELOX regimen (capecitabine plus oxaliplatin), established in a previous dose-finding study, should improve on infused oxaliplatin with FU and leucovorin (FOLFOX) regimens. The present studies further characterize efficacy and safety of the XELOX regimen. The antitumor activity of XELOX was investigated in a colon cancer xenograft model. Patients with MCRC received first-line XELOX in 3-week treatment cycles: intravenous oxaliplatin 130 mg/m(2) (day 1) followed by oral capecitabine 1,000 mg/m(2) twice daily (day 1, evening, to day 15, morning). A preclinical study confirmed that capecitabine has supra-additive activity with oxaliplatin. In the clinical study, 53 of 96 patients (55%) achieved an objective response, and 30 (31%) experienced disease stabilization for >/= 3 months following treatment. After 24 months' minimum follow-up, median time to disease progression (TTP) and median overall survival were 7.7 and 19.5 months, respectively. XELOX safety was predictable and similar to the FOLFOX4 regimen, except that myelosuppression was uncommon with XELOX (grade 3 or 4 neutropenia, 7%). Most adverse events were mild to moderate, the most common being acute sensory neuropathy (85%). Sixty-day, all-cause mortality was 2%. XELOX is a highly effective first-line treatment for MCRC. Response rates, TTP, and overall survival are similar to those observed with FU/leucovorin/oxaliplatin combinations. XELOX provides a more convenient regimen, likely to be preferred by both patients and healthcare providers. Capecitabine has the potential to replace FU/LV in combination with oxaliplatin for MCRC.
Article
Oxaliplatin is active in colorectal cancer. Sensory neurotoxicity is its dose-limiting toxicity. It may come from an effect on neuronal voltage-gated Na channels, via the liberation one its metabolite, oxalate. We decided to use Ca and Mg as oxalate chelators. A retrospective cohort of 161 patients treated with oxaliplatin + 5-fluorouracil and leucovorin for advanced colorectal cancer, with three regimens of oxaliplatin (85 mg/m(2)/2w, 100/2w, 130/3w) was identified. Ninety-six patients received infusions of Ca gluconate and Mg sulfate (1 g) before and after oxaliplatin (Ca/Mg group) and 65 did not. Only 4% of patients withdrew for neurotoxicity in the Ca/Mg group versus 31% in the control group (P = 0.000003). The tumor response rate was similar in both groups. The percentage of patients with grade 3 distal paresthesia was lower in Ca/Mg group (7 versus 26%, P = 0.001). Acute symptoms such as distal and lingual paresthesia were much less frequent and severe (P = 10(-7)), and pseudolaryngospasm was never reported in Ca/Mg group. At the end of the treatment, 20% of patients in Ca/Mg group had neuropathy versus 45% (P = 0.003). Patients with grade 2 and 3 at the end of the treatment in the 85 mg/m(2) oxaliplatin group recovered significantly more rapidly from neuropathy than patients without Ca/Mg. Ca/Mg infusions seem to reduce incidence and intensity of acute oxaliplatin-induced symptoms and might delay cumulative neuropathy, especially in 85 mg/m(2) oxaliplatin dosage.
Article
The goal of this study was to determine the effect of small changes in ATP7A expression on the pharmacodynamics of cisplatin, carboplatin, and oxaliplatin in human ovarian carcinoma cells. Drug sensitivity and cellular pharmacology parameters were determined in human 2008 ovarian carcinoma cells and a subline transfected with an ATP7A-expression vector ATP7A (2008/MNK). Drug sensitivity was determined by clonogenic assay, platinum (Pt) levels were measured by inductively coupled plasma mass spectroscopy, copper (Cu) accumulation was quantified with (64)Cu, and the subcellular distribution of ATP7A was assessed by confocal digital microscopy. The 1.5-fold higher expression of ATP7A in the 2008/MNK cells was sufficient to alter Cu cellular pharmacokinetics but not confer Cu resistance. In contrast, it was sufficient to render the 2008/MNK cells resistant to cisplatin, carboplatin, and oxaliplatin. Resistance was associated with increased rather than decreased whole-cell Pt drug accumulation and increased sequestration of Pt into the vesicular fraction. Cu triggered relocalization of ATP7A away from the perinuclear region, whereas at equitoxic concentrations the Pt drugs did not. A small increase in ATP7A expression produced resistance to all three of the clinically available Pt drugs. Whereas increased expression of ATP7A reduced Cu accumulation, it did not reduce accumulation of the Pt drugs. Under conditions where Cu triggered ATP7A relocalization, the Pt drugs did not. Thus, although ATP7A is an important determinant of sensitivity to the Pt drugs, there are substantial differences between Cu and the Pt drugs with respect to how they interact with ATP7A and the mechanism by which ATP7A protects the cell.
Article
The organic cation transporter OCTN1 (SLC22A4) is expressed ubiquitously, with strong expression in kidney, trachea, bone marrow, and fetal liver, and it mediates transport of organic cations in a pH-dependent manner. Recent studies have identified single nucleotide polymorphisms (SNPs) of OCTN1 in the Japanese population. Two SNPs present in the exon regions, c1063t and g1531a, cause amino acid mutation, Thr306Ile (T306I) and Gly462Glu (G462E), respectively. We examined the influence of these SNPs on the intracellular localization, protein expression, and transport activity of OCTN1. Immunocytochemical analysis showed similar localizations of OCTN1 in cellular membranes of HEK293 cells transiently transfected with an expression plasmid DNA for OCTN1 or its SNP allelic variants. The Km and Vmax values for tetraethylammonium (TEA) uptake by T306I were similar to those of the wild-type even when the Vmax value was normalized for the expression level of OCTN1 protein. In contrast, G462E had almost negligible transport activity, although the protein expression level of G462E was equivalent to that of the wild-type. We conclude that the SNP that causes the single amino acid mutation T306I does not affect TEA transport activity, whereas the mutation G462E abrogates the TEA transport activity, presumably affecting the physiological function of OCTN1 and/or the pharmacological characteristics of its substrates.
Article
Cisplatin is an effective anticancer drug, but has its severe adverse effects, especially nephrotoxicity. The molecular mechanism of cisplatin-induced nephrotoxicity is still not clear. In the present study, we examined the role of rat (r)OCT2, an organic cation transporter predominantly expressed in the kidney, in the tubular toxicity of cisplatin. Using HEK293 cells stably expressing rOCT2 (HEK-rOCT2), we evaluated the cisplatin-induced release of lactate dehydrogenase and the uptake of cisplatin. The release of lactate dehydrogenase and the accumulation of platinum were greater in HEK-rOCT2 cells treated with cisplatin than in mock-transfected cells. Moreover, cimetidine and corticosterone, OCT2 inhibitors, inhibited the cytotoxicity and the transport of cisplatin in HEK-rOCT2 cells. Pharmacokinetics of cisplatin was investigated in male and female rats because the renal expression level of rOCT2 was higher in male than female rats. The renal uptake clearance of cisplatin was greater in male than female rats, while the hepatic uptake clearance was similar between the sexes. In addition, glomerular filtration rate and liver function were unchanged, but N-acetyl-beta-D-glucosaminidase activity in the bladder urine and the urine volume were markedly increased 2 days after the administration of 2 mg/kg of cisplatin in male rats. Moreover, cisplatin did not induce the elevation of urinary N-acetyl-beta-D-glucosaminidase activity in the castrated male rats whose renal rOCT2 level was lower than that of the sham-operated rats. In conclusion, the present results indicated that renal rOCT2 expression was the major determinant of cisplatin-induced tubular toxicity.
Article
Cis-platin is an effective anti-neoplastic agent, but it is also highly nephrotoxic. Here, we clearly identify the human organic cation transporter 2 (hOCT2) as the critical transporter for cis-platin nephrotoxicity in isolated human proximal tubules and offer a potential mechanism for reducing nephrotoxicity in clinical practice. Interaction of cis-platin with hOCT2 in kidney or hOCT1 in liver was investigated with the fluorescent cation 4-[4-(dimethyl-amino)styril]-methylpyridinium in stably transfected HEK293 cells and for the first time in tissues physiologically expressing these transporters, human proximal tubules, and human hepatocyte couplets. Cis-platin (100 micromol/L) inhibited transport via hOCT2-HEK293 but not hOCT1-HEK293. In human proximal tubules cis-platin competed with basolateral organic cation transport, whereas it had no effect in tubules from a diabetic kidney or in hepatocytes. In hOCT2-HEK293 cells treated for 15 hours, incubation with cis-platin induced apoptosis, which was completely suppressed by contemporaneous incubation with the hOCT2 substrate cimetidine (100 micromol/L). These findings demonstrate that uptake of cis-platin is mediated by hOCT2 in renal proximal tubules, explaining its organ-specific toxicity. A combination of cis-platin with other substrates that compete for hOCT2 offers an effective option to decrease nephrotoxicity in the clinical setting.
Article
Genetic polymorphisms in xenobiotic transporters have recently been clarified to be associated with change in drug distribution and disposition. To expand on recent identification of direct interaction and functional regulation of several transporters by a PDZ (PSD95, Dlg and ZO1) domain containing protein PDZK1, the effect of mutation in PDZK1 on transport activity and subcellular localization of organic cation/carnitine transporters OCTN1 and OCTN2, and oligopeptide transporter PEPT2 was examined in the present study. HEK293 cells stably expressing a mutant transcript PDZK1-E195K (HEK293/PDZK1-E195K) were constructed, followed by transient transfection of cDNA for each transporter. Uptake of tetraethylammonium by OCTN1 was much higher in HEK293/PDZK1 cells, compared with that in the parent HEK293 cells, the uptake in HEK293/PDZK1-E195K cells showing middle range between the two values. Such difference in transport activity was accounted for the difference in transport capacity, with minimal change in affinity of OCTN1 to the substrate or other compounds. The similar difference among HEK293/PDZK1, HEK293/PDZK1-E195K and HEK293 cells was also observed in transport property of OCTN2 and PEPT2, whereas the difference was not so remarkable in each transporter with the last four amino acids deleted, that has much lower interaction potential with PDZK1. Immunohistochemical analysis indicated that OCTN1 was colocalized with PDZK1 on cell-surface, whereas colocalization with PDZK1-E195K was partially observed in cytoplasmic region. These results suggest a novel hypothesis that mutation in PDZK1 potentially changes transport property of various types of xenobiotic transporters by affecting their subcellular localization, possibly leading to change in disposition of various types of substrate drugs.