Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Starting from a variational formulation of the Kardar-Parisi-Zhang (KPZ) equation, we point out some strong constraints and consistency tests, to be fulfilled by real-space discretization schemes. In the light of these findings, the mainstream opinion on the relevance of Galilean invariance and the fluctuation--dissipation theorem (peculiar of 1D) is challenged.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In order to perform numerical simulations of the Kardar-Parisi-Zhang (KPZ) equation, in any dimensionality, a spatial discretization scheme must be prescribed. The known fact that the KPZ equation can be obtained as a result of a Hopf-Cole transformation applied to a diffusion equation (with multiplicative noise) is shown here to strongly restrict the arbitrariness in the choice of spatial discretization schemes. On one hand, the discretization prescriptions for the Laplacian and the nonlinear (KPZ) term cannot be independently chosen. On the other hand, since the discretization is an operation performed on space and the Hopf-Cole transformation is local both in space and time, the former should be the same regardless of the field to which it is applied. It is shown that whereas some discretization schemes pass both consistency tests, known examples in the literature do not. The requirement of consistency for the discretization of Lyapunov functionals is argued to be a natural and safe starting point in choosing spatial discretization schemes. We also analyze the relation between real-space and pseudospectral discrete representations. In addition we discuss the relevance of the Galilean-invariance violation in these consistent discretization schemes and the alleged conflict of standard discretization with the fluctuation-dissipation theorem, peculiar of one dimension.
Article
Full-text available
We present a variational formulation for the Kardar–Parisi–Zhang (KPZ) equation that leads to a thermodynamic-like potential for the KPZ as well as for other related kinetic equations. For the KPZ case, with the knowledge of such a potential we prove some global shift invariance properties previously conjectured by other authors. We also show a few results about the form of the stationary probability distribution function for arbitrary dimensions. The procedure used for KPZ was extended in order to derive more general forms of such a functional leading to other nonlinear kinetic equations, as well as cases with density dependent surface tension.
Article
Full-text available
Strong constraints are drawn for the choice of real-space discretization schemes, using the known fact that the KPZ equation results from a diffusion equation (with multiplicative noise) through a Hopf-Cole transformation. Whereas the nearest-neighbor discretization passes the consistency tests, known examples in the literature do not. We emphasize the importance of the Lyapunov functional as natural starting point for real-space discretization and, in the light of these findings, challenge the mainstream opinion on the relevance of Galilean invariance. Bibtex entry for this abstract Preferred format for this abstract (see Preferences) Find Similar Abstracts: Use: Authors Title Abstract Text Return: Query Results Return items starting with number Query Form Database: Astronomy Physics arXiv e-prints
Article
Full-text available
Nonlocal effects occur in many nonequilibrium interfaces, due to diverse physical mechanisms like diffusive, ballistic, or anomalous transport, with examples from flame fronts to thin films. While dimensional analysis describes stable nonlocal interfaces, we show the morphologically unstable condition to be nontrivial. This is the case for a family of stochastic equations of experimental relevance, paradigmatically including the Michelson-Sivashinsky system. For a whole parameter range, the asymptotic dynamics is scale invariant with dimension-independent exponents reflecting a hidden Galilean symmetry. The usual Kardar-Parisi-Zhang nonlinearity, albeit irrelevant in that parameter range, plays a key role in this behavior.
Article
Full-text available
The path integral for randomly forced incompressible fluids is shown to have an underlying Becchi-Rouet-Stora (BRS) symmetry as a consequence of Galilean invariance. This symmetry must be respected to have a consistent generating functional, free from both an overall infinite factor and spurious relations amongst correlation functions. We present a procedure for respecting this BRS symmetry, akin to gauge fixing in quantum field theory. Relations are derived between correlation functions of this gauge-fixed, BRS symmetric theory, analogous to the Slavnov-Taylor identities of quantum field theory.
Article
The Galilean invariance of the Navier-Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi-Rouet-Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier-Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.
Article
A model is proposed for the evolution of the profile of a growing interface. The deterministic growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is studied by dynamic renormalization-group techniques and by mappings to Burgers's equation and to a random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional interface is in excellent agreement with previous numerical simulations. Predictions are made for more dimensions.
Article
We present a systematic discretization scheme for the Kardar-Parisi-Zhang (KPZ) equation, which correctly captures the strong-coupling properties of the continuum model. In particular we show that the scheme contains no finite-time singularities in contrast to conventional schemes. The implications of these results to i) previous numerical integration of the KPZ equation, and ii) the non-trivial diversity of universality classes for discrete models of `KPZ-type' are examined. The new scheme makes the strong-coupling physics of the KPZ equation more transparent than the original continuum version and allows the possibility of building new continuum models which may be easier to analyse in the strong-coupling regime. Comment: 21 pages, revtex, 2 figures, submitted to J. Phys. A