Science topic
Meteorology - Science topic
Meteorology is the atmospheric properties, characteristics and other atmospheric phenomena especially pertaining to WEATHER or CLIMATE.
Questions related to Meteorology
I'm looking for meteorological stations (to measure precipitation and temperature) with a datallogger to study peatlands. As these areas are difficult to access, they would have to have either a solar panel or a battery (but it would have to last at least 2 months, which I don't know if it exists) and the datalogger would also have to have storage capacity for those periods. It's to be placed in difficult climatic zones, so the material would have to be robust. Can anyone with experience help? Thank you very much
Special Issue title: Satellite Remote Sensing for Meteorological Disaster Monitoring and Forecasting
Dear Colleagues,
Satellite remote sensing has changed meteorological science by allowing detailed and solid observation of Earth’s atmospheric and surface conditions. The climate change-driven increase in meteorological disasters like floods, droughts, heatwaves and wildfires makes remote sensing fundamental for monitoring, analyzing and forecasting such events. Satellite technology advancements provide crucial knowledge for disaster management, enhancing understanding and improving early warning systems. State-of-the-art monitoring and forecasting techniques are needed to mitigate possible impacts.
The aim of this Special Issue is to present recent developments in the use of satellite remote sensing for the monitoring and forecasting of meteorological disasters. It is expected to address core areas of geospatial science and environmental monitoring. Invited contributions may cover innovative techniques, data integration methods, and case studies that highlight the application of remote sensing for real-time disaster tracking, early warning, and post-disaster assessment.
In this Special Issue, original research articles and reviews are welcome. To provide a versatile survey of satellite remote sensing for meteorological disaster monitoring and forecasting, we invite submissions across a range of topics, including (but not limited to) the following:
- Techniques for integrating satellite data with ground-based observations and model outputs;
- Advanced data assimilation methods to improve meteorological disaster forecasting;
- Real-time systems for early detection of meteorological hazards;
- Recent satellite missions (e.g., GOES, Sentinel) designed for atmospheric monitoring;
- Algorithm for automating disaster detection and tracking;
- Studies linking satellite observation to climate-induced changes in disaster patterns;
- Remote sensing for evaluating the impacts of meteorological disasters;
- Techniques for assessing recovery and resilience in affected areas;
- Novel remote sensing technologies (e.g., radar) that enhance disaster monitoring capabilities;
- Applications of AI and machine learning in analyzing satellite data for forecasting.
Has any one worked on Meteosat 8 MSG data i need to process the data fro estimation of precipitation.
Dear Colleagues,
We invite you to submit your valuable articles to the Special Issue "Recent and Future Cyclonic Activity and Associated Weather Extremes"
The aim of this Special Issue is to provide recent advances in the field of study on cyclonic activity change encompassing issues of changes in the past, revealing current tendencies and scenarios of changes in the near future. A key task for SI is gathering high-quality papers concerning seasonal- interannual-to-decadal variability of synoptic patterns that drive cyclones evolution; studies on extraction and interpretation of multidecadal trends are also welcomed. Expected future trends of cyclones frequency and intensity associated with the anthropogenic factors is the second task of SI. Besides, it is well-known that cyclones can cause extreme weather conditions and may trigger natural disasters. Therefore, special attention should be paid to study of extremes associated with cyclones, and this is the third task of SI. Actually, these problems should be solved using both various probabilistic and interdisciplinary methods of experimental data analysis, as well as numerical, stochastic and statistical modeling including outputs of CORDEX, CMIP6 etc.
Above tasks are very important not only from academic point of view, but also for a high number of applications which are also in the focus of the SI. Among them are sustainable agriculture, social infrastructure and recreational potential, optimal design and use of wind power plants, transport and maritime safety etc. The scope of these problems covers an essential part of issues to be resolved to attain optimal regional strategies for adaptation and sustainable planning all over the World.
Topics of interest for the Special Issue include but are not limited to:
- Climatology of cyclones in the regions.
- Climatology of extreme events associated to the cyclones/anticyclones
- Low-frequency variability of cyclone/anticyclone activity associated with the global climate modes
- Cyclone/anticyclone activity under the climate change
- Methods and models for cyclonic climate analysis
- Predictability of cyclonic activity change in the different regions
- Practical applications
- Scenarios of cyclonic activity change in the future.
- Future extreme events associated with cyclonic activity
- Low-frequency variability of future cyclonic activity associated with the global climate modes
Prof. Dr. Elena Nikolaevna Voskresenskaya
Dr. Vladislav Evstigneev
Guest Editors
Can the temporal changes and trends of precipitation and temperature in the western region of Amhara, Ethiopia be analyzed synoptically? Aren't the changes in rainfall and temperature due to successive droughts? What is the role of monsoons in the Indian Ocean in this region of the Horn of Africa?
Over Western Amhara, Ethiopia. 75 meteorological stations of daily rainfall and 49 stations of daily maximum and minimum temperature were collected from 1989 to 2018 from West Amhara Meteorological Service Center. Then, after quality control, the daily data were arranged in a Microsoft Excel spreadsheet and analyzed using statistical analysis software. (XLSTAT), Arc GIS 10.3 software and R program. The results showed that Western Amhara receives the highest rainfall in the country. Bega, Belg and Kiremt receive 100-300mm, 120-350mm, 800-1600mm and 1100-2000mm respectively. The particle for the direct object statistics shows that the maximum and minimum temperature of the region increased by 0.0905°C and 0.0886°C. respectively. Similarly, rainfall trends increased slightly during Belg, Kermat and Annual seasons, but not during Bega season, rainfall variability was high, with coefficient of variation (CV = 48.42% and CV = 37.2%) in Bega and according to Belgian seasons, but the rainfall variability in Kermet was average and annual (CV = 29.02% and CV = 27.79%). Also, the results showed that the Avi zone has the best distribution of rainfall, which is mostly more than 1600 mm. Some points of this area. Like Anjibara and Tilili, it received more than 2200 mm of rainfall in the west of Gandhar.This study was carried out in the west of Amhara and 9°80 to 14°N. and the Tigray in the north. It comprises a chain of plateaus ranging from less than 700 meters above sea level to 4,620 meters at Ras Dashen, Ethiopia's highest peak, as well as plains, midlands and highlands, mountains and rugged terrain. Influenced by several variables, including its varied topographical features, Tai states that the climate of the Amhara region can be divided into three categories based on altitude: the Kola (warm zone) below 1,500 square meters, which accounts for 31% of the area; to give Woyina Dega (warm zone) between 1500 and 2500 square meters, which accounts for 44% of the area. and dega (cold zone) between 2,500 and 4,620 square meters, which constitutes 25% of the area. The average annual temperature in the region is between 15 and 21 °C, although it reaches 27 °C in the valleys and marginal areas.
The question of whether deep learning models can outperform traditional numerical weather prediction (NWP) systems is increasingly relevant in meteorology. NWP relies on complex physical models and equations to simulate atmospheric processes, but it can be computationally expensive and slow. In contrast, deep learning models, those utilizing neural networks like LSTM, CNN, and Transformer architectures, offer the potential for faster and more data-driven predictions by learning complex patterns directly from historical weather data. While deep learning shows promise in specific applications such as short-term forecasting, its ability to consistently surpass NWP remains an active area of research requiring further validation.
Dear Research Community,
I am currently looking for collaborators who may have access to measured data on reference evapotranspiration in greenhouses, as well as meteorological parameters. I am interested in conducting a study and co-authoring a paper on this topic. If anyone has such data available and is interested in collaborating, please feel free to reach out to me.
Thank you in advance for your attention and assistance.
Best regards,
Morteza khoshsima
Hello, scientific community hope you are doing well. I am modeling the prediction of meteorological drought using the climate data (RCP4.5 & 8.5). However, I got stuck in the bias correction of downloaded data. Could anyone please help me out with this? I have tried to do it in Cmhyd software earlier but did not get the desired results. If anyone has Python code to do it, please share it in DM. Happy modeling. Thanks in advance.
I've 52 meteorological stations of the city of Girona (NE Spain) and it environs. How do I know that an area or a certain point in the territory is rural, suburban or urban. Could you use CORINE COVER land uses or local climate zones to determine whether a meteorological observatory, a point in the territory or an area is urban, rural or suburban? I need your help for urban climate studies.
What is the impact of changes in rainfall in tropical and subtropical regions on global climate change? What is the answer?
Changes in tropical rainfall have direct social connections and cause climate change worldwide through teleconnections. Convective precipitation occurs when sea surface temperature (SST) exceeds a threshold, SSTthr, which is usually fixed in time and space. Our 40 years of monthly observations show that we find that SSTthr varies by up to 48°C. In space and with season based on the local convective instability, we develop a quantitative theory that mainly changes SSTthr using the climatological state of the tropical atmosphere. Although it is often assumed that the spatial variation of tropical upper troposphere temperature is small and can be neglected, low climatological values have been shown to favor lower SSTthr. Similarly, a small increase in climatological surface relative humidity also leads to its decrease, or climate change in tropical rainfall should include high temperatures and near-surface humidity and temperature in addition to SST and needs to be better understood. What controls their distribution in space and time. as a result ; It has a great impact on global climate change.
Andre Francisco Pogas added a reply
Precipitation changes in tropical regions play an important role in the global climate system, because such precipitation is influenced by various factors, including atmospheric circulation patterns, changes in sea surface temperature, and the presence of weather phenomena such as El Niño and La Niña. and changes in atmospheric moisture patterns.
Changes in the pattern or regime of tropical precipitation can have cascading effects throughout the global climate system. For example, a decrease in rainfall in the tropics can lead to changes in atmospheric circulation patterns and affect the distribution of heat and moisture on a global scale, thereby significantly affecting the formation of cloud systems and the occurrence of extreme weather events in affect other parts of the world. .
In addition, they can have significant consequences for tropical ecosystems, affecting biodiversity, flowering and fruiting patterns, and the availability of water resources for local communities.
Therefore, the observations presented in your question, taking into account a specific location, show changes in the mechanisms controlling tropical precipitation changes, which, in my opinion, are useful for predicting the effects of global climate change and developing effective adaptation strategies. It is of great importance.
What is the effect of changes in rainfall in tropical and tropical regions on global climate change?
Changes in tropical rainfall have direct social connections and cause climate change worldwide through teleconnections. Convective precipitation occurs when sea surface temperature (SST) exceeds a threshold, SSTthr, which is usually fixed in time and space. Our 40-year monthly observations show that we find that SSTthr varies by up to 48°C. In space and with season based on the local convective instability, we develop a quantitative theory that is largely SSTthr variations using the climatological state of the tropical atmosphere. Although it is often assumed that the spatial variation of tropical upper troposphere temperature is small and can be neglected, low climatological values have been shown to favor lower SSTthr. Similarly, a small increase in climatological surface relative humidity also leads to its decrease, or climate changes in tropical rainfall should include high temperatures and near-surface humidity and temperature in addition to SST, and need to be better understood. of what controls their distribution in space and time. in conclusion ; It has a great impact on global climate change.
The components parallel to the ground of the Coriolis force and the centrifugal force, at mid-latitudes (40°N), are respectively 2ωvsenφ≅4.67×10^(-4) ms^(-2), 1/2ω^ 2Rsen( 2φ) ≅1.62×10^(-2) ms^(-2). Therefore the ground-parallel component of the centrifugal force is much greater than the corresponding component of the Coriolis force. Why does only the effect of the Coriolis force appear in meteorology books for educational use?
Is there a drought or drought in Iran this year?
As you know, through statistical climatology and according to the statistical methods and forecasting of the synoptic states of the atmosphere in the region, it is possible through the time series of meteorological data and checking the temperature and precipitation in a meteorological station and its downward and upward trends. During 20 to 50 years, he predicted the past, present and future through climatology software. Based on the fact that I wrote my book under the title "Blocking Time Series in Iran Plateau", I have stated that during the process of meteorological data and meteorological sites that show the circulation maps of blocking through Gordes maps, it can be said: According to the graphs on page 18 to 21 of the book, there are graphs from 2016 to 2058, and the graph shows the breakdown of the time series of rainfall at Mashhad station, and because blocking in Iran is of Omega or Rex type and its hours It is about 4000 kilometers long and covers the entire plateau of Iran. So we conclude that this year the amount of precipitation in the eastern areas where most of the blocking prevails will reach up to 200 mm and in the western part of Iran where the blocking wave reaches and less maybe it will reach about 250-300 mm and because of the rotation factor It is mentioned and the high pressure areas are integrated from the side of Sibarb and the Tibetan Plateau and towards the northeast of these blockings which create a dry or cold and icy hole in the winter season and because it has a dynamic state, it is more cold and dry and in the omega state. This blocking is formed. So, according to this process, this year, in 2023 and 2024, the process of drought prevails, and this downward trend prevails in Iran, and we have this downward trend in the upward direction until 2025, and in the years 2025, 2026, 2027, and 2028, there will be rain due to That the blocking pressure is removed from Iran a little and the conditions of the atmospheric river in Iran are the same as in the past few years, when the low-level Scandinavian blocking system is weak and the AO is positive, the Atlantic precipitation system rains over Europe, and the atmospheric surface rains over Europe. But when the Scandinavian blocking system is strong and the AO is negative, it means that the Scandinavian blocking has formed to the bottom of the omega state, and the atmospheric surface that is from the Atlantic Ocean above the Azores region in the north of the equatorial region is moving towards the east with its sinusoidal state. And according to the synoptic maps in Hepto Pascal levels in Gardes or NOAA maps, it shows that, for example, 2 years ago in the Khuzestan region of Iran, especially Pul Dokhtar, heavy rains and floods fell. which shows that there is a coordination between the atmospheric river in the west of Iran and the Siberian blogging in the northeast of Iran, and there is a close connection in terms of synoptic and drought activity in Iran.
- Describe methods for determining vapor pressure and relative humidity.
- Analyze the relationship between vapor pressure and relative humidity.
- Summarize how these measurements contribute to weather predictions.
How can I make extrapolation of weather data of a given area which located near to my study area? (I only have the climate data of that region)
The Heat Wave Phenomenon is seen nowadays almost in all continents of the Planet.
This RG question tries to address the issue in such a way that it could be understood by non-specialists in Meteorology.
Thanks in advance for your interest in this thread question.
After computation of NDVI over a region it has to be correlated with meteorology or hydrological indices. How to fulfill this?
I want to compare ensemble mean and member mean with era5 data as time serise
involving stations which have been set up recently in SPI mapping
This question delves into the fundamental nature of turbulence, a ubiquitous phenomenon in fluid dynamics that is characterized by chaotic and unpredictable fluid motion. Exploring the mechanisms behind turbulence and finding ways to better understand and predict its behavior is a challenging and active area of research with broad implications in various fields, including engineering, meteorology, and environmental sciences. This question opens up avenues for investigating turbulence models, turbulence control strategies, and the development of advanced computational techniques to simulate and analyze turbulent flows.
A project I am working on is the evaluation of stigma temperature in outdoor conditions (solar radiation up to 800-900 W/m2 and air temperature varying between 10-30 degrees).
I am utilizing three different instruments,
1. Thermal Camera that can be attached to a cell phone (thermal expert Q1)
2. Type T thermocouples 32 AWG (0.008 inches in diameter or 0.3255 mm2)
3. IR thermometer
The instruments were calibrated with a certified digital thermometer.
When all three methods are pooled together, we notice that IR camera and thermocouples have near consistent results while the IR thermometer is nearly systematically cooler than the two other methods (of about 1.5 degrees Celsius). This is odd and difficult to explain. Also, these values for the IR thermometer always make stigma cooler than air, which would not make much physical sense as the stigmas don't have any cooling mechanisms to our knowledge. Consequently, I am wondering if anybody has had any experience with any of these three instruments in order to help me get a better understanding of what could be the issue, but most importantly which instrument is actually the best to measure temperature.
Thank you for your time,
Assume you have lots of data measured by weather stations, but unfortunately their temporal coverage is not sufficient to compute a full 30 years climatology (e.g. over the 1991-2020 period). However, you still want to compute some reference for the station which will allow one to get an idea on how warmer/colder or drier/wetter a certain period (week, month, season, year...) was.
I came up with a cool trick, that I believe someone else in the literature used, although I could not find evidence anywhere. Using reanalysis (ERA5-Land) data on a period where I have coverage from both model and station data I can attempt to build a relationship that links the two: can be something simple from a linear regression to something more complicated like find a SVM model that fits the closest grid points values from the reanalysis to the station data.
Once this "model" is found, I can use it on the reanalysis data of the period 1991-2020 to get, as output, a "fictitious" climatology for the station. This works pretty well for temperature, as it has a clear seasonal cycle and no distinct day-to-day variability, but fails completely to capture the precipitation sudden changes, maybe also due to the fact that reanalysis are hardly capturing local precipitation features.
Does someone have any literature suggestion that could make me improve the model?
I have meteorology datasets of 30 meteorology stations from 1992-2022.
However, there are stations that are missing 20% of the sunshine time.
I have completed these using IDV with the help of Python. Is it an appropriate method?
I have time series data regarding "air temperature" collected from experimental field and in parallel i have also collected the air temperature from local meteorological department for 12 months.
So, right now i am eager to know about relationship between them. Is their any statistical significant difference between them (even in any particular month)?
Please suggest the appropriate statistical test we can perform.
Thanks in advance.
There are several ways to obtain solar irradiance data for a specific location in India. Some of the most common sources of this data include:
- National Renewable Energy Laboratory (NREL) - NREL provides a variety of solar resource data, including solar irradiance data, for locations worldwide. This data can be accessed through the NREL website.
- Indian Meteorological Department (IMD) - IMD provides solar radiation data for various locations in India. The data can be accessed through the IMD website.
- Solar Irradiance Monitoring Stations (SIMS) - SIMS are operated by various government and private organizations in India to measure solar radiation levels in different locations. Contacting the operators of the SIMS in the location you are interested in will provide you with more detailed data.
- Research Institutes - Many research institutes in India conduct research on solar energy and may have access to solar irradiance data for specific locations.
- Satellite Data - A number of satellite-based remote sensing agencies like NASA, EUMETSAT, NOAA, etc provides solar irradiance data for certain location.
It's important to note that the accuracy of the data may vary from source to source, so it's important to carefully evaluate the data before using it for any analysis or decision-making.
What are the key contributions, meteorology used, limitations, gaps which the article attempted to close and how the current study can be improved?
Dear colleagues I wonder why when I compute the number of cold days using reanalysis data am getting higher percentage over areas where we know climatologically have warmer temperatures and lower in areas where is known climatologically has cold temperatures?
Please see the attached figure for clarification.

I am looking to understand squall lines without having to do a crash course in meteorology. Thanks.
I'm making a nested, high resolution simulation (~300m*300m) of WRF in the polar region. The existing static sea ice data is of low resolution and I want to update this static data with a satellite based high resolution data. I need to update the static field only for the inner domain.
How can I do it?
What are the best tools for the same?
Anything in particular I should be careful about?
Thank you in advance.
Hello, everyone! Do you know some open-source weather generator, which could generate meteorological factors at the daily scale, including precipitation, radiation, wind speed, wind direction, humidity, and temperature.
I will preciate that if you could share it with me.
Do we have a convenient database to get knowledge about mean annual values of precipitates (MAP) and temperatures (MAT) around the world? For example, I have longitude and latitude coordinates. How can I get MAP and MAT values?
Thank you!
Please give an example of a scientific hypothesis about Antarctica that has not yet been confirmed. I am also interested in the gaps in scientific knowledge about Antarctica. As a member of Russian Antarctic program I am familiar with general enigmas (ice sheet stability, life in subglacial lakes, paleoclimatic records, influence of subglacial heat flows etc.). So here I would like you to share with me not so common things about Antarctica
I have a GRIB1 file in which I need to modify values for several datasets.
I create my own np.array and want to replace values for particular dataset in existing file.
Does pygrib have the options/possibility for doing that?
I have a time series of daily snow cover area for certain years. How can i calculate daily,monthly and seasonal snow cover anomalies? I want to make histogram of snow cover anomalies vs number of occurrences.
Scientists have observed nearly 1 degree Celsius increase of global mean temperature during the last 100 years and they make different predictions / projections on climate change. Has any researcher observed significant change in rainfall amount / pattern in a country or a region during the same period (last 100 years)? If there is so, how you explain that in meteorological / hydrological point of view?
We want to use satellite imagery to find annual meteorological information such as direction charts, frequency and intensity of winds or evaporation rates in an area where there are no meteorological stations.Thank you very much for your help
Many methods in meteorology consider a threshold of grid points that satisfy a certain criterion. I want to select, from daily Era-Interim gridded data, those days in with areas of potential vorticity greater than 20 grid points.
I am interested in high spatial resolution (1-2 km) simulation of surface meteorological variables over the complex mountaineous topography for 2-3 years or more along with historical surface meteorological observations in diverse climatic zones for the past 10 years or more. I would like to develop model and share results.
Hello everyone,
I'm working on predicting the output power of a power plant using machine learning. I see in multiple articles that they use meteorological parameters like solare irradiation, temperature, wind speed..etc.
I want to know if the power plant parameters affect the output power ? and if there's some article that they use power plant parameters or other parameter that meteorological to predict the output power ?
Thanks,
Saad
We are looking for a basic meteorological system with data logger (temp., wind, rain, pressure etc.), solar-powered, suitable for mountain region (1000-2000 m a.s.l.), perhaps with possibility to add some air quality and soil moisture sensors. I would like to hear your experience on which ones you have used and how did it work for your research projects.
I'm going to download meteorological information from the meteorology section of the hysplit software, but I get an error. What should I do to fix this problem?
I´m wondering, whether and where the dust and airborne particles would finally land and be accumulated, like (re-)suspended sediments do in freshwater bodies and oceans? And is there a way to determine the age of the stabilized dust? For reference I would like to mention the following paper which demonstrated a method for the age analysis of sediments.
Thanks for your time and sharing of knowledge.
- Szmytkiewicz, Angelika, and Tamara Zalewska. "Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the Outer Puck Bay (Baltic Sea)." Oceanologia 56.1 (2014): 85-106.
hi
i,m need calculate air pollution potential for meteorology station without upper station?
and for describe of climate potential of air pollution need method?
Dear respected RG professionals, I'm doing my climate data with MKT (Mann Kendall Test) and SST (Sens' Slope Test) methods to test TREND and VARIABILITY of the basic climate variables (rainfall and temperature). Can I proceed to do these with climate data of 30 years but only from 5 meteorological stations? What is the minimum number of meteorological stations required for analysis of climate TREND and VARIABILITY?
Thank you in advance for your genuine and helpful answers!!!
Alem
The threats that global warming has recently posed to humans in many parts of the world have led us to continue this debate.
So the main question is that what actions need to be taken to reduce the risk of climate warming?
Reducing greenhouse gases now seems an inevitable necessity.
In this part in addition to the aforementioned main question, other specific well-known subjects from previous discussion are revisited. Please support or refute the following arguments in a scientific manner.
% -----------------------------------------------------------------------------------------------------------%
% ---------------- *** Updated Discussions of Global Warming (section 1) *** ---------------%
The rate of mean temperature of the earth has been increased almost twice with respect to 60 years ago, it is a fact (Goddard Institute for Space Studies, GISS, data). Still a few questions regarding physical processes associated with global warming remain unanswered or at least need more clarification. So the causes and prediction of this trend are open questions. The most common subjects are listed below:
1) "Greenhouse effect increases temperature of the earth, so we need to diminish emission of CO2 and other air pollutants." The logic behind this reasoning is that the effects of other factors like the sun's activity (solar wind contribution), earth rotation orbit, ocean CO2 uptake, volcanoes activities, etc are not as important as greenhous effect. Is the ocean passive in the aforementioned scenario?
2) Two major physical turbulent fluids, the oceans and the atmosphere, interacting with each other, each of them has different circulation timescale, for the oceans it is from year to millennia that affects heat exchange. It is not in equilibrium with sun instantaneously. For example the North Atlantic Ocean circulation is quasi-periodic with recurrence period of about 7 kyr. So the climate change always has occurred. Does the timescale of crucial players (NAO, AO, oceans, etc) affect the results?
3) Energy of the atmospheric system including absorption and re-emission is about 200 Watt/m2 ; the effect of CO2 is about how many percent to this budget ( 2% or more?), so does it have just a minor effect or not?
4) Climate system is a multi-factor process and there exists a natural modes of temperature variations. How anthropogenic CO2 emissions makes the natural temperature variations out of balance.
6) Some weather and climate models that are based on primitive equations are able to reproduce reliable results. Are the available models able to predict future decadal variability exactly? How much is the uncertainty of the results. An increase in CO2 apparently leads in higher mean temperature value due to radiative transfer.
7) How is global warming related to extreme weather events?
Some of the consequences of global warming are frequent rainfall, heat waves, and cyclones. If we accept global warming as an effect of anthropogenic fossil fuels, how can we stop the increasing trend of temperature anomaly and switching to clean energies?
8) What are the roles of sun activities coupled with Milankovitch cycles?
9) What are the roles of politicians to alarm the danger of global warming? How much are scientists sensitive to these decisions?
10) How much is the CO2’s residence time in the atmosphere? To answer this question precisely, we need to know a good understanding of CO2 cycle.
11) Clean energy reduces toxic buildups and harmful smog in air and water. So, how much building renewable energy generation and demanding for clean energy is urgent?
% -----------------------------------------------------------------------------------------------------------%
% ---------------- *** Discussions of Global Warming (section 2) *** ---------------%
Warming of the climate system in the recent decades is unequivocal; nevertheless, in addition to a few scientific articles that show the greenhouse gases and human activity as the main causes of global warming, still the debate is not over and some opponents claim that these effects have minor effects on human life. Some relevant topics/criticisms about global warming, causes, consequences, the UN’s Intergovernmental Panel on Climate Change (IPCC), etc are putting up for discussion and debate:
1) All the greenhouse gases (carbon dioxide, methane, nitrous oxide, chlorofluorocarbons (CFCs), hydro-fluorocarbons, including HCFCs and HFCs, and ozone) account for about a tenth of one percent of the atmosphere. Based on Stefan–Boltzmann law in basic physics, if you consider the earth with the earth's albedo (a measure of the reflectivity of a surface) in a thermal balance, that is: the power radiated from the earth in terms of its temperature = Solar flux at the earth's cross section, you get Te =(1-albedo)^0.25*Ts.*sqrt(Rs/(2*Rse)), where Te (Ts) is temperature at the surface of the earth (Sun), Rs: radius of the Sun, Rse: radius of the earth's orbit around the Sun. This simplified equation shows that Te depends on these four variables: albedo, Ts, Rs, Rse. Just 1% variation in the Sun's activity lead to variation of the earth's surface temperature by about half a degree.
1.1) Is the Sun's surface (photosphere layer) temperature (Ts) constant?
1.2) How much is the uncertainty in measuring the Sun's photosphere layer temperature?
1.3) Is solar irradiance spectrum universal?
1.4) Is the earth's orbit around the sun (Rse) constant?
1.5) Is the radius of the Sun (Rs) constant?
1.6) Is the largeness of albedo mostly because of clouds or the man-made greenhouse gases?
So the sensitivity of global mean temperature to variation of tracer gases is one of the main questions.
2) A favorable climate model essentially is a coupled non-linear chaotic system; that is, it is not appropriate for the long term future prediction of climate states. So which type of models are appropriate?
3) Dramatic temperature oscillations were possible within a human lifetime in the past. So there is nothing to worry about. What is wrong with the scientific method applied to extract temperature oscillations in the past from Greenland ice cores or shifts in types of pollen in lake beds?
4) IPCC Assessment Reports,
IPCC's reports are known as some of the reliable sources of climate change, although some minor shortcomings have been observed in them.
4.1) "What is Wrong With the IPCC? Proposals for a Radical Reform" (Ross McKitrick):
IPCC has provided a few climate-change Assessment Reports during last decades. Is a radical reform of IPCC necessary or we should take all the IPCC alarms seriously? What is wrong with Ross argument? The models that are used by IPCC already captured a few crudest features of climate change.
4.2) The sort of typical issues of IPCC reports:
- The summary reports focus on those findings that support the human interference theory.
- Some arguments are based on this assumption that the models account for most major sources of variation in the global mean temperature anomaly.
- "Correlation does not imply causation", in some Assessment Reports, results gained from correlation method instead of investigating the downstream effects of interventions or a double-blind controlled trial; however, the conclusions are with a level of reported uncertainty.
4.3) Nongovernmental International Panel on Climate Change (NIPCC) also has produced some massive reports to date.
4.4) Is the NIPCC a scientific or a politically biased panel? Can NIPCC climate reports be trusted?
4.5) What is wrong with their scientific methodology?
5) Changes in the earth's surface temperature cause changes in upper level cirrus and consequently radiative balance. So the climate system can increase its cooling processes by these types of feedbacks and adjust to imbalances.
6) What is your opinion about political intervention and its effect upon direction of research budget?
I really appreciate all the researchers who have had active participation with their constructive remarks in these discussion series.
% -----------------------------------------------------------------------------------------------------------%
% ---------------- *** Discussions of Global Warming (section 3) *** ---------------%
In this part other specific well-known subjects are revisited. Please support or refute the following arguments in a scientific manner.
1) Still there is no convincing theorem, with a "very low range of uncertainty", to calculate the response of climate system in terms of the averaged global surface temperature anomalies with respect to the total feedback factors and greenhouse gases changes. In the classical formula applied in the models a small variation in positive feedbacks leads to a considerable changes in the response (temperature anomaly) while a big variation in negative feedbacks causes just small variations in the response.
2) NASA satellite data from the years 2000 through 2011 indicate the Earth's atmosphere is allowing far more heat to be emitted into space than computer models have predicted (i.e. Spencer and Braswell, 2011, DOI: 10.3390/rs3081603). Based on this research "the response of the climate system to an imposed radiative imbalance remains the largest source of uncertainty. It is concluded that atmospheric feedback diagnosis of the climate system remains an unsolved problem, due primarily to the inability to distinguish between radiative forcing and radiative feedback in satellite radiative budget observations." So the contribution of greenhouse gases to global warming is exaggerated in the models used by the U.N.’s Intergovernmental Panel on Climate Change (IPCC). What is wrong with this argument?
3) Ocean Acidification
Ocean acidification is one of the consequences of CO2 absorption in the water and a main cause of severe destabilising the entire oceanic food-chain.
4) The IPCC reports which are based on a range of model outputs suffer somehow from a range of uncertainty because the models are not able to implement appropriately a few large scale natural oscillations such as North Atlantic Oscillation, El Nino, Southern ocean oscillation, Arctic Oscillation, Pacific decadal oscillation, deep ocean circulations, Sun's surface temperature, etc. The problem with correlation between historical observations of the global averaged surface temperature anomalies with greenhouse gases forces is that it is not compared with all other natural sources of temperature variability. Nevertheless, IPCC has provided a probability for most statements. How the models can be improved more?
5) If we look at micro-physics of carbon dioxide, theoretically a certain amount of heat can be trapped in it as increased molecular kinetic energy by increasing vibrational and rotational motions of CO2, but nothing prevents it from escaping into space. During a specific relaxation time, the energetic carbon dioxide comes back to its rest statement.
6) As some alarmists claim there exists a scientific consensus among the scientists. Nevertheless, even if this claim is true, asking the scientists to vote on global warming because of human made greenhouse gases sources does not make sense because the scientific issues are not based on the consensus; indeed, appeal to majority/authority fallacy is not a scientific approach.
% -----------------------------------------------------------------------------------------------------------%
% ---------------- *** Discussions of Global Warming (section 4) *** ---------------%
In this part in addition to new subjects, I have highlighted some of responses from previous sections for further discussion. Please leave you comments to support/weaken any of the following statements:
1) @Harry ten Brink recapitulated a summary of a proof that CO2 is such an important Greenhouse component/gas. Here is a summary of this argument:
"a) Satellites' instruments measure the radiation coming up from the Earth and Atmosphere.
b) The emission of CO2 at the maximum of the terrestrial radiation at 15 micrometer.
b1. The low amount of this radiation emitted upwards: means that "back-radiation" towards the Earth is high.
b2. Else said the emission is from a high altitude in the atmosphere and with more CO2 the emission is from an even higher altitude where it is cooler. That means that the emission upwards is less. This is called in meteorology a "forcing", because it implies that less radiation /energy is emitted back into space compared to the energy coming in from the sun.
The atmosphere warms so the energy out becomes equals the solar radiation coming in. Summary of the Greenhouse Effect."
At first glance, this reasoning seems plausible. It is based on these assumptions that the contribution of CO2 is not negligible and any other gases like N2O or Ozone has minor effect. The structure of this argument is supported by an article by Schmidt et al., 2010:
By using the Goddard Institute for Space Studies (GISS) ModelE radiation module, the authors claim that "water vapor is the dominant contributor (∼50% of the effect), followed by clouds (∼25%) and then CO2 with ∼20%. All other absorbers play only minor roles. In a doubled CO2 scenario, this allocation is essentially unchanged, even though the magnitude of the total greenhouse effect is significantly larger than the initial radiative forcing, underscoring the importance of feedbacks from water vapour and clouds to climate sensitivity."
The following notions probably will shed light on the aforementioned argument for better understanding the premises:
Q1) Is there any observational data to support the overall upward/downward IR radiation because of CO2?
Q2) How can we separate practically the contribution of water vapor from anthropogenic CO2?
Q3) What are the deficiencies of the (GISS) ModelE radiation module, if any?
Q4) Some facts, causes, data, etc relevant to this argument, which presented by NASA, strongly support this argument (see: https://climate.nasa.gov/evidence/)
Q5) Stebbins et al, (1994) showed that there exists "A STRONG INFRARED RADIATION FROM MOLECULAR NITROGEN IN THE NIGHT SKY" (thanks to @Brendan Godwin for mentioning about this paper). As more than 78% of the dry air contains nitrogen, so the contribution of this element is not negligible too.
2) The mean global temperature is not the best diagnostic to study the sensitivity to global forcing. Because given a change in this mean value, it is almost impossible to attribute it to global forcing. Zonal and meridional distribution of heat flux and temperature are not uniform on the earth, so although the mean temperature value is useful, we need a plausible map of spatial variation of temperature .
3) "The IPCC model outputs show that the equilibrium response of mean temperature to a doubling of CO2 is about 3C while by the other observational approaches this value is less than 1C." (R. Lindzen)
4) What is the role of the thermohaline circulation (THC) in global warming (or the other way around)? It is known that during Heinrich events and Dansgaard‐Oeschger (DO) millennial oscillations, the climate was subject to a number of rapid cooling and warming with a rate much more than what we see in recent decades. In the literature, these events were most probably associated with north-south shifts in convection location of the THC. The formation speed of North Atlantic Deep Water (NADW) affects northerly advection velocity of the warm subtropical waters that would normally heat/cool the atmosphere of Greenland and western Europe.
I really appreciate all the researchers who have participated in this discussion with their useful remarks, particularly Harry ten Brink, Filippo Maria Denaro, Tapan K. Sengupta, Jonathan David Sands, John Joseph Geibel, Aleš Kralj, Brendan Godwin, Ahmed Abdelhameed, Jorge Morales Pedraza, Amarildo de Oliveira Ferraz, Dimitris Poulos, William Sokeland, John M Wheeldon, Michael Brown, Joseph Tham, Paul Reed Hepperly, Frank Berninger, Patrice Poyet, Michael Sidiropoulos, Henrik Rasmus Andersen, and Boris Winterhalter.
%%-----------------------------------------------------------------------------------------------------------%%
I read a paper today regarding trends in drought using SPI values. That got me thinking if there is or can be an index for flooding as well. The issue is that drought is usually a long term meteorological phenomenon while flooding occurs in and for a much shorter time period than drought. So I am now thinking along the lines of the concept of rainy days where any day with a daily rainfall more than 2.5 mm is considered a rainy day. Can a similar concept be applied for flooding as well with maybe rainfall and AMC being the decisive factors? Are there any already established criteria this?
There is a network of weather meteorological stations in a city and I would like to assess the representative ratio of each one. Would you suggest to me a methodology to do this assessment? Thanks
I'm not getting actual/source citation for Indian Meteorological Department (IMD) empirical reduction formula. Who has developed it first?? is it available online for reading??
Hi everyone
I'm looking for a quick and reliable way to estimate my missing climatological data. My data is daily and more than 40 years. These data include the minimum and maximum temperature, precipitation, sunshine hours, relative humidity and wind speed. My main problem is the sunshine hours data that has a lot of defects. These defects are diffuse in time series. Sometimes it encompasses several months and even a few years. The number of stations I work on is 18. Given the fact that my data is daily, the number of missing data is high. So I need to estimate missing data before starting work. Your comments and experiences can be very helpful.
Thank you so much for advising me.
My field of expertize is in CFD and not in climatology. But I would start a discussion about the relevance of the numerical methods adopted to solve physical models describing the climate change.
I am interested in details in physical as well as mathematical models and the subsequent numerical solution.
I have SPI values for each meteorological station but I should have SPI value for each pixel of satellite image.
We all know that the process of teaching and learning is a philosophy. Therefore, educational institutions are interested in finding the best means and tools that make the learner receive lessons in an effective and thoughtful manner, taking into account the factors of speed and accuracy. Meteorology is a physical science concerned with the atmosphere in which humans live, just as fish live in the sea. Weather phenomena are processes that occur in a large laboratory, which is the atmosphere, in which many factors that take place together influence each other. Being a teacher, learner or new meteorologist, what is the most important topic that should be focused on and understood?
In my study area, there are three different sites I can access meteorological data for the purpose of dispersion using AERMOD. I am however unable to choose between the three and would appreciate it if you would assist me on how to justify the choice for the specific meteorological site to work as a representation of the onsite data
Site-specific weather data is required in order to perform historical simulation of power plants and similar systems. A long record of information is needed to adequately capture the range of operating conditions. An excellent source of such data is the Global Surface Summary of the Day (GSOD) database maintained by the National Climate Data Center (NCDC) operated by the National Oceanographic and Atmospheric Administration (NOAA). Data from thousands of meteorological stations around the world are packaged in "tar balls" (LINUX zip files), one for each year, available at their site ftp.ncdc.noaa.gov/pub/data/gsod/ While these files provide daily values, there is enough information to infer hourly behavior using the method of Waichler and Wigmosta described in, "Development of Hourly Meteorological Values From Daily Data," Proceedings of the American Meteorological Society, 2003.
I want to use climatological ocean circulation data into my numerical model as open boundary condition. I found that HYCOM, SODA or CMEMS do not seem to provide climatological circulation data, and WOA only contains climatological temperature and salinity. Previous method I used is that calculated the mean current velocity by many years Reanalysis data, which is complex and need to download many daily or monthly data. So I wonder is anyone use a climatological ocean current data product? Where can I found? Or why many Reanalysis dataset don't have this?
Thank you!
Dated: 10-June-2020.
Perhaps!
Prefatory, it may be, because this year the radiations and greenhouse gases interaction feedback processes on different timescale (one of the main factor in monsoon dynamics) which makes the monsoon predictability erratic is not expected to add much uncertainty in the prediction system due to the substantial reduction in the greenhouse gas emissions. Implies, may be an upper hand for potential predictive models in the line. Recall that model ability to predict the SW monsoon is higher with initial conditions been used for the month of Feb., March, April (this years these are main lockdown month in the world when atmosphere is not invaded by atmospheric gases) than months closer to the SW monsoon. On other side, can be also be test bed for the models have near accurate long rage forecasting tendency with early months (as mentioned above) initial conditions.
Over all it may be also be manifested that NATURE can be predicted correctly if it is not disturbed. BUT if we keep on disturbing it then predictability may not be that easy and precise.
If yes, then "Commendations" to the accurate predictability of the monsoon system will be higher this year, I think. Good! This may also considered because of Nature natural tendency is higher this year apart from having well resolved and improved interannual and climate systems predictability aspects in the modelling systems, etc...
Nature is in NATURAL swing. Enjoy and try to be safe! But we should also be ready for the monsoon system predictability in the times to come or years to come when emissions will again be dumped in the earth system. It will certainly obstruct the prediction realities. Consistency is the accuracy in the prediction should be addressed responsibly.
What’s your take on that!
In Poland, we have wind speed data collected from 10 meters according to the WMO (The World Meteorological Organization) standards. In the SWAT manual, the data is accepted for the model from a height of 1.7 meters. Can I convert it to SWAT according to the formula in the manual: uz2 = uz1 * (z2 / z1) ^ 0.2. So when I have wind speed uz1 = 3m / s at 1000cm (10m) then uz2 = 3 * (170/1000) ^ 0.2 = 2.1m / s Is that correct?
Best regards
As per the Indian Meteorological Department (IMD), for rainy days to be considered, in a day total amount of rainfall should be 2.5mm or more than that. I am curious to know the reason to keep it as 2.5mm not any other value?
What are the impacts associated if we let it be 1 mm instead of 2.5mm?
For Danish climate it is said that wind speeds are mainly generated by synoptic pressure forces; what would be the general situation?
I need to know weather hydro meteorological variability's have direct impact on wetland degradation. How can I relate the trend of hydro meteorological variables with that of wetland degradation trend? If there is any articles....please share to me..
Hi,
Except synoptic stations, does anybody know any website/software that gives the climatological data of unequipped places?
I am aware of using interpolation methods, but, I am looking for a method that extract data for a desired location numerically (like an excel format etc,.).
Thanks,
Dear researchers, I want to plot some rainfall trends at different areas of Nepal. Where can I download data for that? Website of Department of Hydrology and Meterology shows that we should buy data from them. I would be very happy to access data freely from any other websites. Thanks.
We have ERA5 time series data which was used to extract maximum and minimum temperature. As the spatial resolution was not good therefore we downscaled it to 90 meters to increase the correlation coefficent value against in-situ data.
so i wanted to know whether this step is scientifically correct or not???
I am from South Peru (Arequipa), I need to make a Raster of Erosivity but I only have climate data like precipitation, some ideas?Does somebody know the procedure? It's for work with InVEST models (Sediment Retention).
From several early research works, I have noticed the negative correlation between temperature and PM2.5. However, in my recent study using Wavelet Coherence (WTC), I found a positive correlation in high-spectrum regions with a delay of approximately one month. What may be the reason behind this? Should we consider the influence of the other meteorological factors?

The meteorological agencies that monitor global climate [NASA, Met Office, NOAA, Japanese Meteorological Agency] calculate temperature anomalies according to data from many stations around the globe.
Where one can find a full list of those stations for each agency?
Do those agencies rely upon the same stations or different?
Are those stations the same every year or different?
There are contradictory research papers about the correlation between meteorological parameters and incidence of COVID-19 in some countries worldwide.
Is there correlation between the meteorological parameters and incidence of COVID-19? Is this differ from country to another?
I want to do some sensitivity analysis by altering the meteorology (e.g. increasing temperature) in WRF-Chem model. Can anybody suggest me how I can do this?
Thanks in advance for your kind help.
Best Wishes,
Anwar Khan
Dear all,
I am currently searching for hourly weather data covering the European domain. I have found quite useful the source "ERA5-Land hourly data from 1981 to present", but it seems this is providing climatological data and I probably cannot use them for representing weather.
Do you know whether are there available similar datasets (i.e. with high spatio-temporal resolution) providing data on weather?
Thank you very much for the support.
Best,
Giorgio
Dated: 24-June-2020
Why “roadblocks are often been overlooked by forecasters” before moving to the “prediction system (PS)”? Can it (PS) be considered a sustainable in the long term?
Now a days most of the forecasting agencies in India are busy in giving seasonal weather forecast (regional) including extremes and making it instantly available on the net. Many are in race of launching new portal to do so without comprehension of the predictability charade. Mostly been done using numerical modelling systems without exploring (disclosing) the some main factor which are essentially are the roadblocks in predictability.
I think, correcting spatial bias via embedded station data network should not only be the focus, though it will be a help but not sustainable solution. Why main problem lies been often overlooked before moving to PS? For example- intraseasonal variability (main roadblock to the predictability) is not well resolved in GFS forecasting model (or alike other models) and these oftenly used by the forecaster as an input data to their chosen prediction model. My question is, if unresolved or inadequate in specific sense (exam.- not having tendency to reproduce intraseasonal signals) inputs goes into the main predictive model then how sustainable will be the forecast in the long run. I feel, to do any less may result in prediction unsustainable. Surely, it may results in few right prediction and leads to self-acclaimed commendations but in longer run chances of failure in prediction will be higher. In terse, these prediction will have no substantial value in the long term.
For example – in a year when these charade processes will be predominant, forecast will be failure and it leads to socio-economic loss and setback to forecasting organizations. In general it will then, as usual, follow with post-mortem which will again highlights the need in the improvement of microphysics, intraseasonal signals variability, lead lag relationship, issues associated to AWS, standards rules or norms, installations, implementations policies, and money etc. aspects and in some cases probably leads to blame game to defend the failure. Remember, these reasoning to defend the prediction sometimes makes other agency competitive and robust. Healthy criticism can substitute constructiveness. I think, scientific failure must be constructively accepted to explore afresh scientific causes behind instead politicization.
If such things continue then it will be followed with actions such as --- Despondent with exiting forecast, Govt. decided to search for new options, leaving or updating the existing.
I think, Obliviousness should not a substitute for decisive forecasting. Forecasters must ensure that all roadblock are properly addressed or informed properly to tackle forecasting related failures and contingency. The truth must not left to postmortem and implications of the words.
Best,
Vaid, B. H.
In Fukushima, a large amount of tritiated water (HTO), which was generated after the nuclear accident caused by the 2011 earthquake, has been stored, and the government is recently considering releasing it after diluting it to 1/7 of the IAEA's international standard concentration.
-----------------
"Releasing into the ocean is done elsewhere. It's not something new. There is no scandal here," IAEA Director General Rafael Mariano Grossi said in 2021.
-----------------
As for water isotopes, the global concentration distribution of heavy water (HDO) is well known from infrared observations by meteorological satellites. It is then used for more advanced meteorological analysis.
-----------------
Potential of Mid‐tropospheric Water Vapor Isotopes to Improve Large‐Scale Circulation and Weather Predictability
-----------------
My question: Similarly, HTO should be measured by meteorological satellites and its concentration should be controlled on a global scale if it is possible. Please let me know if there are any examples of it being implemented. Or is it technically possible but not yet done? Thank you very much for your attention.
Hello, I'm trying to extract daily soil temp out of air temp 0.5 m above the surface.
I have thermal imaging of several dates and daily air temp from the meteorological station. Can i connect between the two linearly?
One of the most important conditions for accepting applied agricultural research for international publication is to clarify the meteorological situation during the establishment of experiments, especially in the field, in order to ensure that there are no external factors that have a significant impact on the results of the experiment, and the most important of these factors are meteorological data such as temperature, moisture and others.
The conditions for agricultural experiments accepted for publication in the most prestigious agricultural scientific journals may be reviewed
Field Crops Research
Citscore: 7.4 and Impact Factor: 4.31
On the following link:
https://www.journals.elsevier.com/field-crops-research/
Assessing UV exposure is a tedious task, particularly because of the great variability (temporal, spatial, anatomical, etc.). When it comes to individual exposure, dosimetry is the gold standard because of its representativeness. At the population level, the question is more difficult since the implementation costs can be very high and the data processing is complex. The question of using other, more global exposure proxies arises.
One such alternative is the use of satellite data (corrected for the erythemal UV spectrum). We recently published two papers describing recent advances in that direction. The first publication describes the elaboration of a high-resolution 15-year climatology of global UV erythemal irradiance over Switzerland based on satellite data:
Vuilleumier, L., T. Harris, A. Nenes, C. Backes, D. Vernez (2020). Developing a UV climatology for public health purposes using satellite data. Environ. Int., 146, 106177, doi:10.1016/j.envint.2020.106177.
The second publication discusses how this UV climatology can be used to estimate individual UV exposure on specific anatomical zones and makes comparisons with measurements using UV dosimeters mounted on individual subjects. It discusses how satellite-based UV dose estimation can be used to complement UV dosimetry campaign and understand the variability within such campaign studies:
Harris, T. C., L. Vuilleumier, C. Backes, A. Nenes and D. Vernez (2021). Satellite-based personal UV dose estimation. Atmosphere, 12, 268, doi:10.3390/atmos12020268.
Although satellite data represent maximum exposure values because they do not take into account shading effects in particular, they represent an interesting alternative.
Rather than opposing the two techniques, it seems to me that using these two approaches in a complementary way would be judicious. What is your opinion on this issue?
How can I get the correlation between a meteorological observatory between one meteorological station and 10 meteorological stations or more? I’d to calculate this correlation for 1 climatic variable (for example, temperature), or more climatic variables (precipitation, wind speed, solar radiation) for different temporal resolutions (annual, seasonal or monthly). I’m going to calculate this correlation with some software, Excel, Anclim or Rclimdex. What is the best software for my purpose?
My goal is to obtain a table that relates different observatories with their correlation for a certain meteorological variable and some temporal resolutions (monthly, seasonal or anual).
In the Wikipedia definition says: (Lapse Rate) "is the rate of decrease of temperature with altitude in the stationary atmosphere at a given time and location" .
However, I haven't found specific further information about changing with time. Specifically, I'd like to know if a Lapse Rate for a given region calculated in year 2000 would be different of the Lapse Rate in the same space in 2021. Can the Lapse Rate change over time?
When I need to determine an alternative equation for estimating reference evapotranspiration for local with missing data, using meteorological data, from official weather stations, this means that I assume that the humidity is missing and I ignore it and estimate it according to the equations recommended by (FAO Irrigation and Drainage Paper No. 56 Chapter 3) and then determine suitable an alternative equation for estimating reference evapotranspiration, and then also determine the evapotranspiration from the standard equation (FAO Penman-Monteith equation 56) to performance evaluation with an alternative equation.
I also assume for temperature is missing and I ignore it and estimate it according to the equations and determine an alternative equation for estimating reference evapotranspiration, and so on for all climatological parameters.
Or what is the basic rule in determining alternative equations to calculate the reference evapotranspiration in places that are missing data, using meteorological data?
Because all those who define alternative equations for estimating reference evapotranspiration rely on data from agro-meteorological stations.
I would like to create my own TYM2 file to run TRNSYS simulation with my own meteorological data. How should I create my weather data file?
Previous research has suggested an involvement of meteorological conditions in the spread of droplet-mediated viral diseases, such as influenza. However, as for the recent novel coronavirus, few studies have discussed systematically about the role of daily weather in the epidemic transmission of the virus.
Basically, I want to estimate PM2.5 using CNN and LSTM model by considering AOD and Meteorological variables (x1...Xn). In this context, I have decided to train the model by ground-based PM2.5 observation and extracted satellite meteorological variables. After completing the training and testing and validation part(Point-based), I want to apply this model for the spatial prediction of PM2.5. But I am confused about how to I prepare the datasets for this modeling. If anyone gives me technical guidance then I will be highly obliged.
Thank you In advance.
Some people hope that outbreaks of the new coronavirus will wane as temperatures rise, but pandemics often don’t behave in the same way as seasonal outbreaks..
I am looking to test meteorological drought cycle in my study area using Fourier transforms having read on numerous articles. I have come upon the fft function in R but can't seem to get a hang of it and it's interpretation. Any help in the form of code and reading material would be welcomed
Hi,
Is there any relationship between a cyclonic storm in Bay of Bengal (BOB), SST of BOB and rainfall events in the coastal region of India?
Would be great to have any suggestions.
Thank you
I am starting a project to compare different meteorological sensors for austere sites (no power, and little solar or wind availability). I know battery performance is a topic I will have to cover, and at this point I have sensors running on NiCd, Li-Ion, and lead-sulphate battery technology. So far most sources focus on only one battery type usually applied to hybrid or normal cars. The internet has some information, but looking for a/some citable articles.
Hello Respected Researchers, I'm Looking forward to the ressearch community to share ideas and research work for future PhD candidates in Meteorology Direction related to Hydro Meteorology, remote sensing and landcover change.
Thanks
I am using IMD gridded daily rainfall data (0.25 deg x 0.25 deg resolution) that has been made freely downloadable. Is the daily accumulated precipitation measured / calculated from 00UTC on that day upto 00 UTC the next day, or is it from 03 UTC (i.e, 08:30 hrs LST) that day to 03 UTC the next?
Or, rather, is it the accumulated precipitation measured / calculated from 00UTC the previous day upto 00 UTC on that day, or from 03 UTC (i.e, 08:30 hrs LST) the previous day to 03 UTC that day?
For eg, if I access tha rainfall data of the 30th day (,i.e, 30 Jan) of the year, as given in the file, will the data be :
1. Accumulated precipitation from 30 Jan 00UTC to 31 Jan 00UTC? or
2. Accumulated precipitation from 30 Jan 03UTC to 31 Jan 03UTC? or
3. Accumulated precipitation from 29 Jan 00UTC to 30 Jan 00UTC? or
4. Accumulated precipitation from 29 Jan 03UTC to 30 Jan 03UTC?
Which one of the four options are correct?
Kindly help me out.
Thankyou.
Standardization Agreements
STANAG 1171 (NATO Military Oceanographic and Rapid Environmental Assessment Support Procedures)
STANAG 2103 (Reporting Nuclear Detonations, Biological and Chemical Attacks, and Predicting and Warning of Associated Hazards and Hazard Areas (Operator’s Manual) – ATP-45(C))
STANAG 2507 (Allied Joint Doctrine for Meteorological and Oceanographic Support to Joint Forces)
STANAG 4044 (Adoption of a Standard Atmosphere)
STANAG 4061 (Adoption of a Standard Ballistic Meteorological Message)
STANAG 4082 (Adoption of a Standard Artillery Computer Meteorological Message)
STANAG 4103 (Format of Requests for Meteorological Messages for Ballistic and Special Purposes)
STANAG 4131 (Adoption of a Standard Character-by-Character Meteorological Message Format)
STANAG 4140 (Adoption of a Standard Target Acquisition Meteorological Message)
STANAG 6006 (NATO Maritime Meteorological Procedures and Services - AWP-1(C))
STANAG 6013 (NATO Meteorological Support Manual)
STANAG 6014 (NATO Meteorological and Oceanographic (METOC) Communications Manual)
STANAG 6015 (NATO Meteorological Codes Manual - AWP-4(B))
STANAG 6022 (Adoption of a Standard Gridded Data Meteorological Message)
Standards
AAP-06 (NATO Glossary of Terms and Definitions (English and French))
AAP-15 (NATO Glossary of Abbreviations Used in NATO Documents and Publications)
AD 80-34 (Meteorological and Oceanographic (METOC) Services for Allied Command Operations)
AECTP-300 (Climatic Environmental Tests)
AJP-3.11 (Allied Joint Doctrine for Meteorological and Oceanographic Support to Joint Forces)
AMETOCP-2 (NATO Meteorological Support Manual)
AMETOCP-3 ED.A ((NATO Meteorological and Oceanographic (METOC) Communications Manual)
ATP-32 (NATO Military Oceanographic and Rapid Environmental Assessment Support Procedures)
ATP-45 (Warning and Reporting and Hazard Prediction of Chemical, Biological, Radiological and Nuclear Incidents (Operators Manual))
AWP-4(B) (Meteorological Codes Manual)
MC 0594/1 (Military Committee Policy on Meteorological and Oceanographic (METOC) Support to Allied Forces)
Dear all,
I am looking for operational photovoltaic and meteorological ( solar irradiance, wind speed and temperature) data.
In case you know free acess, please share.
Thank you.
I have observed that there are many meteorological stations in the urban area of Girona with questionable data, thermometric and rainfall data. My question is how to know which stations are doubtful and what methodology of stadistics or geography do you propose to separate the stations with reliable meteorological data from those with faulty data?
I am analysing a flooding event and would like to look into quantifying the dependancy between multiple chosen factors. The factors have been categorised into meteorological and oceanic influences. I am unsure if there is a way to merge the factors within each category or if it would be better to look at all of the factors separately. I have looked into the possibility of using a copula however I am not sure if my data is suitable for this.
In daylighting calculation, celestial hemisphere is divided with 145 sky segments with a cone opening angle of 10.15° or with continuous plane divisions.
In SVF, the sky seems to be divided neatly with same height. Because of fisheye?
The TC track record can be checked easily from the Shenzhen Typhoon website, but how to check such records from the JMA website?
Looking forward to a positive response.
Dears,
I am looking for (daily or monthly) observed air temperature data for Europe.
Please, do you know any data repository that allows also bulk downloads (i.e. simultaneous download of data from multiple stations)?
Many thanks for your support.
Best,
Giorgio
I am trying to make an NN for meteorological prediction, for which I have input data of only one meteorological station. I have target data of more than one location.
I have to train the NN in such a way that I gove it two input values (e.g.current temperature, pressure) and want to obtain temperature output at more than 50 locations and more than one time steps.
e.g. the input :
(25, 101.32)
should give output:
temperature after 2 hrs = 25, 26, 28, 29, 27.5
temperature after 4 hrs = 24, 23, 26, 26.5, 27
In which pattern to arrange the input and target data, and how to change the number of NN output nodes to obtain these results?
I will use climatological models in my research work but I have not yet mastered any programming language, now I would like to have advice on the choices to start.
Dear All
This is Dr. Suman from IIT Bombay, India. Recently, I was evaluating model performance using Index of Agreement (Mbienda et al., 2017). IOA is a skill metrics used for performance evaluation of model designed by Willmott et al., 1981 which is again redefined by Willmott et al., 2012 and used in Mbienda et al., 2017. I have the following question.
In general, statistical metrics used in meteorology may be calculated considering space as well as time (Example space/time correlation). While the same is true for IOA calculation? I mean while calculating, he summation will be taken considering space or time? In particular, during IOA calculation, there are two summation. Whether those summation will be calculated over all time period or all the spatial grid points?
Please reply at the earliest.
Best
Suman
Hi,
I am checking the daily precipitation data from NASA POWER (https://power.larc.nasa.gov), which uses data from MERRA2.
When I compare values with other data sets' daily sum values, I see that POWER's values are much lower than other sources, especially in extreme rainy or snowy days. (data sources such as CHIRPS, or DarkSky)
The parameter definition for precipitation is "The daily average rain rate" on the POWER website. ( https://power.larc.nasa.gov/#resources )
Is this the accumulated rain in a day? If so, could it have a tendency to underestimate daily precipitation?
You can compare yourself here: https://climengine.page.link/dvut
using MERRA-2 and CHIRPS dataset. You should see that scales are different between the right and the left.
