Science topics: Mathematics
Science topic
Mathematics - Science topic
Mathematics, Pure and Applied Math
Questions related to Mathematics
Recently I've discussed this topic with a tautologist researcher, Quine's follower. The denial of the capacity of deductive logic to generate new knowledge implies that all deductive results in mathematics wont increase our knowledge for real.
The tautologic nature of the deduction seems to lead to this conclusion. In my opinion some sort of logic omniscience is involved in that position.
So the questions would be:
- Is the set of theorems that follow logically from a set A of axioms, "implicit" knowledge? if so, what would be the proper difference between "implicit" and "explicit" knowledge?
- If we embrace the idea that no new knowledge comes from deduction, what is the precise meaning of "new" in this context?
- How do you avoid the problem of logic omniscience?
Thanks beforehand for your insights.
In the 'Collection of Geometric Problems' from 1966, there is a problem in which the author made a mistake.
Try to find the author's error!
In the picture, you can see the conditions of this mathematical problem without changes, with an error.
The experiment conducted by Bose at the Royal Society of London in 1901 demonstrated that plants have feelings like humans. Placing a plant in a vessel containing poisonous solution he showed the rapid movement of the plant which finally died down. His finding was praised and the concept of plant’s life has been established. If we scold a plant it doesn’t respond, but an AI bot does. Then how can we disprove the life of a Chatbot?
Article Topic: Some Algebraic Inequalitties
I have been collecting some algebraic inequalities, soonly it has been completed and published on Romanian Mathematical Magazine.
For computer science, is mathematics more of a tool or a language?
The choice of coordinate systems is a mathematical tool used to describe physical events. Local or universal spatial events occur in multiple coordinate systems of space and time or spacetime as we know it under classical, relativistic and cosmological physics.
Whether the fundamental laws of physics remains consistent across different coordinate systems.
The fundamental theorem of calculus is the backbone of natural sciences, thus, given the occasional thin line between the natural and social, how common is the fundamental theorem of calculus in social sciences?
Examples I found:
Ohnemus , Alexander . "Proving the Fundamental Theorem of Calculus through Critical Race Theory." ResearchGate.net . 1 July 2023. www.researchgate.net/publication/372338504_Proving_the_Fundamental_Theorem_of_Calculus_through_Critical_Race_Theory. Accessed 9 Aug. 2023.
Ohnemus , Alexander . "Correlations in Game Theory, Category Theory, Linking Calculus with Statistics and Forms (Alexander Ohnemus' Contributions to Mathematics Book 9)." amazon.com. 12 Dec. 2022. www.amazon.com/gp/aw/d/B0BPX1CSHS?ref_=dbs_m_mng_wam_calw_tkin_8&storeType=ebooks. Accessed 11 July 2023.
Ohnemus , Alexander . "Linguistic mapping of critical race theory(the evolution of languages and oppression. How Germanic languages came to dominate the world) (Alexander Ohnemus' Contributions to Mathematics Book 20)." amazon.com. 3 Jan. 2023. www.amazon.com/Linguistic-evolution-oppression-Contributions-Mathematics-ebook/dp/B0BRP1KYLR/ref=mp_s_a_1_13?qid=1688598986&refinements=p_27%3AAlexander+Ohnemus&s=digital-text&sr=1-13. Accessed 5 July 2023.
Ohnemus , Alexander . "Fundamental Theorem of Calculus proved by Wagner's Law (Alexander Ohnemus' Contributions to Mathematics Book 8)." amazon.com. 11 Dec. 2022. www.amazon.com/gp/aw/d/B0BPS2ZMXC?ref_=dbs_m_mng_wam_calw_tkin_7&storeType=ebooks. Accessed 25 June 2023.
Most masters focus on general review of qm, classical mechanics, assesing students skills in classical yet heneric and self-value calculative and interpreting capabilities.
The English MSc's on the other hand, provide an introduction to the physical principles and mathematical techniques of current research in:
general relativity
quantum gravity
quantum f. Theory
quantum information
cosmology and the early universe
There is also a particular focus on topics reflecting research strengths.
Graduates are more well equiped to contribute to research and make impressive ph. D dissertations.
Of course instructors that teach masters are working in classical and quantum gravity, geometry and relativity, to take the theoretical physics sub-domain, in all universities but the emphasis on current research's mathematical techniques and principles is only found in English university'masters offerings.
I have deep neural network where I want to include a layer which should have one input and two outputs. For example, I want to construct an intermediate layer where Layer-1 is connected to the input of this intermediate layer and one output of the intermediate layer is connected to Layer-2 and another output is connected to Layer-3. Moreover, the intermediate layer just passes the data as it is through it without doing any mathematical operation on the input data. I have seen additionLayer in MATLAB, but it has only 1 output and this function is read-only for the number of outputs.
"Mathematics is logical systems formulising relationships of variable(s) with other variable(s) quantitatively &/or qualitatively as science language." (Sinan Ibaguner)
I tried to devise my best description as shortly & clearly !
For physics, is mathematics more of a tool or a language?
"Matematik, değişken(ler)in diğer değişken(ler)le ilişkilerini niceliksel ve(ya) niteliksel tarz formüle eden mantıksal sistemlerin sanatsal bilim dili. "
Kısa ve net matematik tanımım ! Daha iyisi ne olabilir !?
Hello,
I am looking for mathematical formulas that calculate the rigid body movement of an element based on the nodal displacements. Can anyone give a brief explanation and recommend some materials to read? Thanks a lot.
Best,
Chen
I am using SPSS to perform binary logistic regression. One of the parameters generated is the prediction probability. Is there a simple mathematical formula that could be used to calculate it manually? e.g. based on the B values generated for each variable in model?
Paradox Etymology can be traced back to at least Plato's Parmenides [1]. Paradox comes from para ("contrary to") and doxa ("opinion"). The word appeared in Latin "paradoxum" which means "contrary to expectation," or "incredible. We propose, in this discussion thread, to debate philosophical or scientific paradoxes: their geneses, formulations, solutions, or propositions of solutions... All contributions on "Paradoxes", including paradoxical ones, are welcome.
Illustration from: "Science Paradoxes Bulletin Board Set": https://www.teacherspayteachers.com/Product/Science-Paradoxes-Bulletin-Board-Set-Unique-Classroom-Decor-Black-Holes-More-10342713
If someone can help me understand Helicity in the context of the High Harmonic Generation, it will be helpful. Due to mathematical notations, the exact question can be found "https://physics.stackexchange.com/questions/778274/what-is-helicity-in-high-harmonic-generation".
In what ways may a STEM facility develop these skills?
1. On the “Field” concept of objective reality:
Einstein in an August 10, letter to his friend Besso (1954): “I consider it quite possible that physics cannot be based on the field concept, i.e., continuous structure. In that case, nothing remains of my entire castle in the air, gravitation theory included, (and of) the rest of modern physics” A. Pais, Subtle is the Lord …” The Science and the Life of Albert Einstein”, Oxford University Press, (1982) 467,
2. On “Black Hole”:
"The essential result of this investigation is a clear understanding as to why the "Schwarzschild singularities" do not exist in physical reality. Although the theory given here treats only clusters whose particles move along circular paths it does not seem to be subject to reasonable doubt that more general cases will have analogous results. The "Schwarzschild singularity" does not appear for the reason that matter cannot be concentrated arbitrarily. And this is due to the fact that otherwise the constituting particles would reach the velocity of light.
This investigation arose out of discussions the author conducted with Professor H. P. Robertson and with Drs. V. Bargmann and P. Bergmann on the mathematical and physical significance of the Schwarzschild singularity. The problem quite naturally leads to the question, answered by this paper in the negative, as to whether physical models are capable of exhibiting such a singularity.", A. Einstein, The Annals of Mathematics, Second Series, Vol. 40, No. 4 (Oct., 1939), pp. 922-936
3. On the Quantum Phenomena:
“Many physicists maintain - and there are weighty arguments in their favour – that in the face of these facts (quantum mechanical), not merely the differential law, but the law of causation itself - hitherto the ultimate basic postulate of all natural science – has collapsed”. A. Einstein, “Essays in Science”, p. 38-39 (1934)
4. On Gravitational Wave:
Einstein dismissed the idea of gravitational wave until his death:
“Together with a young collaborator, I arrived at the interesting result that gravitational waves do not exist, though they had been assumed a certainty to the first approximation,” he wrote in a letter to his friend Max Born. Einstein's paper to the Physical Review Letters titled “Do gravitational waves exist?”; was rejected.
Arthur Eddington who brought an obscure Einstein to world fame, and considered himself to be the second person (other than Einstein), who understood General Relativity (GR); dismissed the idea of gravitational wave in the following way: "They are not objective, and (like absolute velocity) are not detectable by any conceivable experiment. They are merely sinuosities in the co-ordinate-system, and the only speed of propagation relevant to them is 'the speed of thought'".
A.S. Eddington, F.R.S., The Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character. The Propagation of Gravitational Waves. (Received October 11, 1922), page 268
Dear Colleaugues & Allies ~ I just posted the final prepublication draft of an article on the nature of the Langlands Program, RH, P v. NP, and other "open" problems of pure maths, number theory, etc., and the proofs. I would deeply appreciate your feedback and suggestions. So, if you are interested, please send me a request for access to the [private] file, for review and comment. Thanks & best of luck etc. ~ M
The mathematical function of TPMS unit cell is as follows: (for example Gyroid)
sin x * cos y+ sin y * cos z+ sin z * cos x = c
parameter 𝑐 determines the relative density of the unit cell.
I am interested to design TPMS unit cell with nTopology software. In this software, TPMS network-based unit cell is designed with "Mid-surface offset" parameter and TPMS sheet-based unit cell is designed with "approximate thickness" parameter.
What is the relation between these parameters and the relative density of the unit cell?
After sharing that article, I received an email saying
"I have read the abstract. But can not see the connections between the individual topics. They are completely different areas that can not be easily related to each other. e.g. the electromagnetic wave to the Wick rotation or Möbius band."
I admit that I struggled with the connections between topics myself, and I wasn't satisfied with my posting. I'd decided to dispense with a classical approach and tackle these topics from the point of view that everything is connected to everything else (what may be called a Theory of Everything or Quantum Gravity or Unified Field approach). I'm convinced the connections are there, and wrote the following in my notepad before getting out of bed this morning (I dreamed about the Riemann hypothesis last night). It clarified things for me and I hope it will help the other ResearchGaters I'm sharing with.
The Riemann hypothesis, proposed in 1859 by the German mathematician Georg Friedrich Bernhard Riemann, is fascinating. It seems to fit these ideas on various subjects in physics very well. The Riemann hypothesis doesn’t just apply to the distribution of prime numbers but can also apply to the fundamental structure of the mathematical universe’s space-time (addressed in the article with the Mobius strip, figure-8 Klein bottle, Wick rotation, and vector-tensor-scalar geometry). In mapping the distribution of prime numbers, the Riemann hypothesis is concerned with the locations of “nontrivial zeros” on the “critical line”, and says these zeros must lie on the vertical line of the complex number plane i.e. on the y-axis in the attached figure of Wick Rotation. Besides having a real part, zeros in the critical line (the y-axis) have an imaginary part. This is reflected in the real +1 and -1 of the x-axis in the attached figure, as well as by the imaginary +i and -i of the y-axis. In the upper half-plane of the attached figure, a quarter rotation plus a quarter rotation equals a half – both quadrants begin with positive values and ¼ + ¼ = ½. (The Riemann hypothesis states that the real part of every nontrivial zero must be 1/2.) While in the lower half-plane, both quadrants begin with negative numbers and a quarter rotation plus a negative quarter rotation equals zero: 1/4 + (-1/4) = 0. In the Riemann zeta function, there may be infinitely many zeros on the critical line. This suggests the y-axis is literally infinite. To truly be infinite, the gravitational and electromagnetic waves it represents cannot be restricted to the up-down direction but must include all directions. That means it would include the horizontal direction and interact with the x-axis – with the waves rotating to produce ordinary mass (and wave-particle duality) in the x-axis’ space-time, and (acting as dark energy) to produce dark matter in the y-axis’ imaginary space-time.
The Riemann hypothesis can apply to the fundamental structure of the mathematical universe’s space-time, and VTS geometry unites the fermions composing the Sun and planets with bosons filling space-time. Thus, the hypothesis also applies to the bodies of the Sun and Mercury themselves. Its link to Wick Rotation means Mercury’s orbit rotates (the Riemann hypothesis is the cause of precession, which doesn’t only exist close to the Sun but throughout astronomical space-time as well as the quantum scale). The link between the half-planes of the hypothesis and the half-periods of Alternating Current’s sine wave suggests the Sun is composed, in part, of AC waves.
Vector-Tensor-Scalar (VTS) Geometry suggests matter is built up layer by layer from the 1 divided by 2 interaction described in the article. The Sun and stars are a special case of VTS geometry in which stellar bodies are built up layer by layer with AC waves in addition to matter such as hydrogen and helium etc. If the Sun only used 1 / 2 (without the AC interaction), it’d be powered by high temperatures and pressures compressing its particles by nuclear fusion. When powered by AC waves, the half-periods entangle to produce phonons which manifest as vibrations apparent in its rising and falling convection cells of, respectively, hot and cooler plasma.
Summation of AC’s sine waves leads to the Sun’s vibratory waves, emission of photons (and to a small extent, of gravitons whose push contributes to planetary orbits increasing in diameter). Because of the connection to Wick rotation, the convective rising and falling in the Sun correlates with time dilation’s rising and falling photons and gravitons. As explained in the article, this slows time near the speed of light and near intense gravitation because the particles interfere with each other. Thus, even if it's never refreshed/reloaded by future Information Technology, our solar system's star will exist far longer than currently predicted.
II need to know how a suggested mechanism for a problem of players' private information which describes a market of selling and buying things can change the outcome and direction of incentives.
I need to discuss this more. It would be my gratitude if any expert in mechanism design and game theory can help me to model the idea mathematically and prove its efficiency.
I did not find a mathematical formula to find or through which we can determine or choose the correspondences in the case of unequal sample sizes
This question is dedicated only to sharing important research of OTHER RESEARCHERS (not our own) about complex systems, self-organization, emergence, self-repair, self-assembly, and other exiting phenomena observed in Complex Systems.
Please keep in own mind that each research has to promote complex systems and help others to understand them in the context of any scientific filed. We can educate each other in this way.
Experiments, simulations, and theoretical results are equally important.
Links to videos and animations will help everyone to understand the given phenomenon under study quickly and efficiently.
Is it possible to create a random 2- dimensional shape using mathematical equations Or in software like 3D-max and AutoCAD? like this one:
If you have please share it with me at stevegjostwriter@gmail.com Basic Technical
Mathematics with
Calculus, SI Version, 11th edition
In the field of solid mechanics, Navier’s partial differential equation of linear elasticity for material in vector form is:
(λ+G)∇(∇⋅f) + G∇2f = 0, where f = (u, v, w)
The corresponding component form can be evaluated by expanding the ∇ operator and organizing it as follows:
For x-component (u):
(λ+2G)*∂2u/∂x2 + G*(∂2u/∂y2 + ∂2u/∂z2) + (λ+G)*(∂2v/(∂x∂y) + ∂2v/(∂x∂z)) = 0
However, I find it difficult to convert from the component form back to its compact vector form using the combination of divergence, gradient, and Laplacian operators, especially when there are coefficients involved.
Does anyone have any experience with this? Any advice would be appreciated.
Mathematical Literacy prepares students for real-life situations while using aspects of Mathematics taught in younger grades. Students will be able to do basic tax, calculate water and electricity tariffs, the amount of paint needed to paint a room or the amount of tiles needed to tile a floor. Isn't this adding to adulting life and preparing students for society? While Mathematics can be a compulsory subject for those that want to go to university and have a great talent in Mathematics?
Invitation to Contribute to an Edited Book
Banach Contraction Principle: A Centurial Journey
As editors, we are pleased to invite you and your colleagues to contribute your research work to an Edited Book entitled Banach Contraction Principle: A Centurial Journey to be published by Springer.
The main objective of this book is to focus on the journey of the Banach Contraction Principle, its generalizations, extensions, and consequences in the form of applications that are of interest to a wide range of audiences. Different results for fixed points as well as fixed figures for single-valued and multi-valued mappings satisfying various contractive conditions in distinct spaces have been investigated, and this research is still ongoing. The book is expected to contain new applications of fixed point techniques in diverse fields besides the survey/advancements of 100 years of the celebrated Banach contraction principle.
Please go through the details below for the deadlines.
Full chapter submission: July 12, 2023
Review results: Aug. 12, 2023
Revision Submission: Sept. 01, 2023
Final acceptance/rejection notification: Sept.16, 2023
Submission of final chapters to Springer: Sept.21, 2023
Email your papers to anitatmr@yahoo.com or jainmanish26128301@gmail.com (pdf and tex files) at the earliest possible. Submitted papers will be peer-reviewed by 3 reviewers. On acceptance, authors will be requested to submit the final paper as per the format of the book.
We firmly believe that your contribution will enrich the academic and intellectual content of the book along with opening up of new endeavors of research.
Kindly note that there is no fee or charge from authors at any stage of publication.
Looking forward to your valuable contribution.
Best Regards
Anita Tomar
Professor & Head
Department of Mathematics
Pt. L. M. S. Campus
Sridev Suman Uttarakhand University
Rishikesh-249201, India
&
Manish Jain
Head
Department of Mathematics,
Ahir College, Rewari-123401, India
How we express the quantitative research method in mathematical forms including studied variables?
Could something that does not have an end be related to the concept of eternal in nature? Could you cite without any doubt something that could prove it?
If could the infinity to be linked to eternity, is it possible to think about it that it is something without any limit known? How assume that something that you can observe its limits could be infinite in its area? If the infinity doesn't fit in limits, and cannot be totally observed, how we can assume that the infinity could be inside a circle, for example? Or between two numbers as zero and 1, with zero and 1 being limits?
Dear Professional/Researchers/Students,
Can you please suggest any technique or mathematical approach to optimize spare parts management(Automobile industry) for improve or increase production.
Is it logical to assume that the probability created by nature produces symmetry?
And if this is true, is anti-symmetry just a mathematical tool that can be misleading in specific situations?
I understand that we can produce that number in MATLAB by evaluating exp(1), or possibly using exp(sym(1)) for the exact representation. But e is a very common constant in mathematics and it is as important as pi to some scholars, so after all these many versions of MATLAB, why haven't they recognize this valuable constant yet and show some appreciation by defining it as an individual constant rather than having to use the exp function for that?
Below is a conversation between me and MATLAB illustrating why MATLAB developers have ZERO common sense... Enjoy the conversation dear fellows and no regret for MATLAB staff...
Me: Hello MATLAB, how is things?
MATLAB: All good! How can I serve you today sir?
Me: Yes, please. Could you give me the value of Euler's number? You know... it's a very popular and fundamental constant in mathematics.
MATLAB: Sure, but wait until I call the exponential function and ask it to evaluate it for me...
Me: Why would you call the exponential function bro??? Isn't Euler's number always constant and its value is well known for thousands of digits?
MATLAB: You will never know sir... Maybe its value will change in the future, so we continuously check its value with the exponential function every time I'm turned on...
Me: You do WHAT!!!
MATLAB: Well... This is a normal procedure sir and I have to do this every time you turn me on...
Me: Stop right there and don't tell me more please...
MATLAB: No, wait sir... I agree with you that this is perhaps one of the most cloddish things that was ever made in the history of programming, but what can I do sir? The guys who developed me actually believe that this is ingenius.
Me: Ooooh oooh ooooh.... reeeeeally!!! Now ain't that something...
MATLAB: They say sir that this is for your security plus there are no applications for that number sir, so why should they care? Even Euler himself, if resurrected again, would fail to find a single application for that number sir. Probably Jacob Bernoulli, the first to discover this number in 1683, would fail also sir, so why should we bother sir? Though it's a mathematical constant and deeply appreciated by the mathematicians around the world for centuries, we don't respect that number sir and find it useless.
Me: Who decides on the importance of Euler's number as a mathematical quantity? Mathematicians or the guys who develop you?
MATLAB: The guys who develop me sir; right?!?!?!?!?
Me: Bro I was obsessed with you in the past and I was truly a big fan of you for more than a decade. But, with the mentality I saw here from the guys who develop you, I believe you will beset with fundamental issues for a long time to come bro... No wonder why Python have beaten you in many directions and became the most popular programming language in the world. Time to move to Python you closed minded and thanks for helping me in my research works in the past decade!!! Good bye for good.
MATLAB: Wait sir... Don't leave please... As a way to compensate for the absence of Euler's number, we offer the 2 symbols i and j sir to represent the complex unity, so the extra symbol is a good compensation for Euler's number...
Me: What did you just say?
MATLAB: Say what?
Me: You provide 2 symbols to represent the same mathematical complex unity quantity, but you have none for Euler's number???
MATLAB: Yeeeeeeeap... you got it.
Me: You can't be serious!
MATLAB: I swear sir by the name of the machine I'm installed in that this is true; I'm not making that up.
Me: But why 2 symbols for the same constant; pick up one for God sake!
MATLAB: Well... There is a wisdom sir for picking 2 symbols for the same constant not just 1.
Me: What is it?
MATLAB: Have you seen the movie "The Man in the Iron Mask" written by Alexandre Dumas and Randall Wallace or read the novel "The Three Musketeers," by the nineteenth century French author Alexandre Dumas sir?
Me: I only saw the movie. But why???
MATLAB: Then you must have heard the motto the movie heros lived by in their glorious youth, "One for all, all for one".
Me: Yes, I did...
MATLAB: We sir were very impressed by this motto, so we came up with a new one.
Me: Impress me!
MATLAB: "i for j, j for i".
Me: You're killing me...
MATLAB: Wait sir, there is more...
Me: More what?????
MATLAB: Many experts around the world project that the number of letters to represent the complex unity in MATLAB may reach 52 letters sir by the end of 2050, so that you can use any English letter (capital or small) to represent the complex unity. How about this sir? Ain't this ingenious also? Sir ?!!?!?!?!?
Me: And this is when common sense was blown up by a nuclear weapon... This circus is over...
"What is a non-STEM major? A non-STEM major is a major that isn't in science, technology, engineering, or mathematics. This means non-STEM majors include those in business, literature, education, arts, and humanities. In STEM itself, programs in this category include ones that emphasize research, innovation or the development of new technologies."
Given: x = 10sin(0.2t), y = 10cos(0.2t), z = 2.5sin(0.2t) (1)
There exists the following mathematical relationship:
u = x'cos(z) + y'sin(z),
v = -x'sin(z) + y'cos(z), (2)
r = z'
How to express rd=[x,y,z,u,v,r]' in the form of drd/dt = h(rd), where the function h(rd) does not explicitly depend on the time variable t?
My approach is as follows:
From (2), we have:
x' = ucos(z) - vsin(z), y' = usin(z) + vcos(z), z' = r (3)
with initial values x(0) = 0, y(0) = 10, z(0) = 0
From (2), we have:
u' = x''cos(z) - x'sin(z)z' + y''sin(z) + y'cos(z)z',
v' = -x''sin(z) - x'cos(z)z' + y''cos(z) - y'sin(z)z',
r' = z''
By calculating based on (1), we obtain:
x' = 2cos(0.2t) = 0.2y
x'' = -0.4sin(0.2t) = -0.04x
y' = -2sin(0.2t) = -0.2x (4)
y'' = -0.4cos(0.2t) = -0.04y
z' = 0.5cos(0.2t) = 0.05y
z'' = -0.1sin(0.2t) = -0.01x
Substituting x', x'', y', y'', z', z'' into (4), we get:
u' = -0.04xcos(z) - 0.2y * 0.05ysin(z) - 0.04ysin(z) - 0.2x * 0.05y*cos(z)
v' = -x''sin(z) - x'cos(z)z' + y''cos(z) - y'sin(z)z'
r' = z''
with initial values u(0)=2, v(0)=0, r(0)=0.5
The calculation process is accurate, but is the problem-solving approach correct?
I have a dataset of rice leaf for training and testing in machine learning. Here is the link: https://data.mendeley.com/datasets/znsxdctwtt/1
I want to develop my project with these techniques;
- RGB Image Acquisition & Preprocessing (HSV Conversation, Thresholding and Masking)
- Image Segmentation(GLCM matrices, Wavelets(DWT))
- Classifications (SVM, CNN ,KNN, Random Forest)
- Results with Matlab Codings.
- But I have a confusion for final scores for confusion matrices. So I need any technique to check which extraction method is good for dataset.
- My main target is detection normal and abnormal(disease) leaf with labels.
#image #processing #mathematics #machinelearning #matlab #deeplearning
I am trying to find a mathematical model of a loudspeaker in an enclosure. By this, I mean an equation that describes the electrical impedance of the speaker as a function of the physical characteristics of the cone and the air in its enclosure.
As an analogy, I am familiar with the model of a servo motor, which relates its electrical impedance to the inertia of the load and the shaft speed. You can read an article I wrote about that at https://www.researchgate.net/publication/355587208_Regenerative_Brake_Charges_Your_Caving_Lamp_Whilst_You_Abseil.
Interestingly, one of the terms in that expression is the inertia divided by the product of torque constant and voltage constant, which has the dimensions of capacitance, showing that a electrical model of a servo motor includes a large capacitance. I am looking for something similar for loudspeakers, which shows how the physical characteristics of the enclosure and speaker are reflected in its electrical circuit model.
Подтверждается мнение о том, что математическая подготовка физиков, даже ведущих, недостаточна. Именно такие претензии В.А. Фок и Н.Н. Боголюбов предъявляли Ландау. Математика не сводится к набору формул и решения уравнений. Предложена формулировка принципа эквивалентности гравитационного поля и ускоренной системы отсчета на основе стандартного математического эпсилон-дельта метода (черновик).
Другая статья
Hi, My name Is Debi, I'm master student Mathematics Education major at Yogyakarta State University 2nd month. Please give me advice what the trend topic on mathematics education aspecially topic learning media math and learning psychology of math. May you share with me about it on your country or your universisty. Thank you so much.
Actually, I am working these field. Sometimes I don't understand what should I do. If anyone supervise me, I will be thankful.
I have a dataset of rice leaf for training and testing in machine learning. Here is the link: https://data.mendeley.com/datasets/znsxdctwtt/1
I want to develop my project with these techniques;
- RGB Image Acquisition & Preprocessing (HSV Conversation, Thresholding and Masking)
- Image Segmentation(GLCM matrices, Wavelets(DWT))
- Classifications (SVM, CNN ,KNN, Random Forest)
- Results with Matlab Codings.
- But I have a confusion for final scores for confusion matrices. So I need any technique to check which extraction method is good for dataset.
- My main target is detection normal and abnormal(disease) leaf with labels.
Attached image is collected from a paper.
Image processing is the beauty of mathematics. Because many basic parts of mathematics used in this field. But I have a confusion about extraction methods.
The statement inquires about the potential mathematical relationship between entropy and standard deviation. Entropy and standard deviation are both concepts used in statistics and information theory.
Entropy is a measure of uncertainty or randomness in a probability distribution. It quantifies the average amount of information required to describe an event or a set of outcomes. It is commonly used in the field of information theory to assess the efficiency of data compression algorithms or to analyze the randomness of data.
On the other hand, standard deviation is a statistical measure that quantifies the dispersion or variability of a set of data points. It provides information about the average distance of data points from the mean or central value. It is widely used in data analysis to understand the spread of data and to compare the variability among different datasets.
While entropy and standard deviation are both statistical measures, they capture different aspects of data. Entropy focuses on the uncertainty or information content, while standard deviation focuses on the dispersion or variability. As such, there is no direct mathematical relationship between entropy and standard deviation.
However, depending on the specific context and the nature of the data, there might be some indirect connections or relationships between entropy and standard deviation. For instance, in certain probability distributions, higher entropy might be associated with higher variability or larger standard deviation, but this relationship is not universally applicable.
In summary, while entropy and standard deviation are both important statistical measures, they serve different purposes and do not have a direct mathematical relationship. The relationship between them, if any, would depend on the specific characteristics of the data being analyzed.
SOURCE OF MAJOR FLAWS IN COSMOLOGICAL THEORIES:
MATHEMATICS-TO-PHYSICS APPLICATION DISCREPENCY
Raphael Neelamkavil, Ph.D., Dr. phil.
The big bang theory has many limitations. These are,
(1) the uncertainty regarding the causes / triggers of the big bang,
(2) the need to trace the determination of certain physical constants to the big bang moments and not further backwards,
(3) the necessity to explain the notion of what scientists and philosophers call “time” in terms of the original bang of the universe,
(4) the compulsion to define the notion of “space” with respect to the inner and outer regions of the big bang universe,
(5) the possibility of and the uncertainty about there being other finite or infinite number of universes,
(6) the choice between an infinite number of oscillations between big bangs and big crunches in the big bang universe (in case of there being only our finite-content universe in existence), in every big hang universe (if there are an infinite number of universes),
(7) the question whether energy will be lost from the universe during each phase of the oscillation, and in that case how an infinite number of oscillations can be the whole process of the finite-content universe,
(8) the difficulty involved in mathematizing these cases, etc.
These have given rise to many other cosmological and cosmogenetic theories – mythical, religious, philosophical, physical, and even purely mathematical. It must also be mentioned that the thermodynamic laws created primarily for earth-based physical systems have played a big role in determining the nature of these theories.
The big bang is already a cosmogenetic theory regarding a finite-content universe. The consideration of an INFINITE-CONTENT universe has always been taken as an alternative source of theories to the big bang model. Here, in the absence of conceptual clarity on the physically permissible meaning of infinite content and without attempting such clarity, cosmologists have been accessing the various mathematical tools available to explain the meaning of infinite content. They do not also seem to keep themselves aware that locally possible mathematical definitions of infinity cannot apply to physical localities at all.
The result has been the acceptance of temporal eternality to the infinite-content universe without fixing physically possible varieties of eternality. For example, pre-existence from the past eternity is already an eternality. Continuance from any arbitrary point of time with respect to any cluster of universes is also an eternality. But models of an infinite-content cosmos and even of a finite-content universe have been suggested in the past one century, which never took care of the fact that mathematical infinity of content or action within a finite locality has nothing to do with physical feasibility. This, for example, is the source of the quantum-cosmological quick-fix that a quantum vacuum can go on create new universes.
But due to their obsession with our access to observational details merely from our local big bang universe, and the obsession to keep the big bang universe as an infinite-content universe and as temporally eternal by using the mathematical tools found, a mathematically automatic recycling of the content of the universe was conceived. Here they naturally found it safe to accommodate the big universe, and clearly maintain a sort of eternality for the local big bang universe and its content, without recourse to external creation.
Quantum-cosmological and superstrings-cosmological gimmicks like considering each universe as a membrane and the “space” between them as vacuum have given rise to the consideration that it is these vacua that just create other membranes or at least supplies new matter-energy to the membranes to continue to give rise to other universes. (1) The ubiquitous sensationalized science journalism with rating motivation and (2) the physicists’ and cosmologists’ need to stick to mathematical mystification in the absence of clarity concurring physical feasibility in their infinities – these give fame to the originators of such universes as great and original scientists.
I suggest that the need to justify an eternal recycling of the big bang universe with no energy loss at the fringes of the finite-content big bang universe was fulfilled by cosmologists with the automatically working mathematical tools like the Lambda term and its equivalents. This in my opinion is the origin of the concepts of the almighty versions of dark energy, virtual quantum soup, quantum vacuum, ether, etc., for cosmological applications. Here too the physical feasibility of these concepts by comparing them with the maximal-medial-minimal possibilities of existence of dark energy, virtual quantum soup, quantum vacuum, ether, etc. within the finite-content and infinite-content cosmos, has not been considered. Their almighty versions were required because they had to justify an eternal pre-existence and an eternal future for the universe from a crass physicalist viewpoint, of which most scientists are prey even today. (See: Minimal Metaphysical Physicalism (MMP) vs. Panpsychisms and Monisms: Beyond Mind-Body Dualism: https://www.researchgate.net/post/Minimal_Metaphysical_Physicalism_MMP_vs_Panpsychisms_and_Monisms_Beyond_Mind-Body_Dualism)
I believe that the inconsistencies present in the mathematically artificialized notions and in the various cosmogenetic theories in general are due to the blind acceptance of available mathematical tools to explain an infinite-content and eternally existent universe.
What should in fact have been done? We know that physics is not mathematics. In mathematics all sorts of predefined continuities and discretenesses may be created without recourse to solutions as to whether they are sufficiently applicable to be genuinely physics-justifying by reason of the general compulsions of physical existence. I CONTINUE TO ATTEMPT TO DISCOVER WHERE THE DISCREPENCIES LIE. History is on the side of sanity.
One clear example for the partial incompatibility between physics and mathematics is where the so-called black hole singularity is being mathematized by use of asymptotic approach. I admit that we have only this tool. But we do not have to blindly accept it without setting rationally limiting boundaries between the physics of the black hole and the mathematics applied here. It must be recognized that the definition of any fundamental notion of mathematics is absolute and exact only in the definition, and not in the physical counterparts. (See: Mathematics and Causality: A Systemic Reconciliation, https://www.researchgate.net/post/Mathematics_and_Causality_A_Systemic_Reconciliation)
I shall continue to add material here on the asymptotic approach in cosmology and other similar theoretical and application-level concepts.
Bibliography
(1) Gravitational Coalescence Paradox and Cosmogenetic Causality in Quantum Astrophysical Cosmology, 647 pp., Berlin, 2018.
(2) Physics without Metaphysics? Categories of Second Generation Scientific Ontology, 386 pp., Frankfurt, 2015.
(3) Causal Ubiquity in Quantum Physics: A Superluminal and Local-Causal Physical Ontology, 361 pp., Frankfurt, 2014.
(4) Essential Cosmology and Philosophy for All: Gravitational Coalescence Cosmology, 92 pp., KDP Amazon, 2022, 2nd Edition.
(5) Essenzielle Kosmologie und Philosophie für alle: Gravitational-Koaleszenz-Kosmologie, 104 pp., KDP Amazon, 2022, 1st Edition.
In mathematics, many authors working in the area of integer sequence, fibonacci polynomial, perin sequence......
Now what is the current research topics in this subject?.
I request , suggest some research topics which is related to Fibonacci sequence.
I am doing a project on plastic biodegradation by G. mellonella larvae. I am doing a project on plastic biodegradation by G. mellonella larvae. I am just getting into this field and I want to know how I can determine the biodegradation. Do I have to use some mathematical formula? Thank you very much.
From Newton's Metaphysics to Einstein's Theology!
The crisis in modern theoretical physics and cosmology has its root in its use, along with theology as a ruling-class tool, since medieval Europe. The Copernican revolution overthrowing the geocentric cosmology of theology led to unprecedented social and scientific developments in history. But Isaac Newton’s mathematical idealism-based and on-sided theory of universal gravitational attraction, in essence, restored the idealist geocentric cosmology; undermining the Copernican revolution. Albert Einstein’s theories of relativity proposed since the turn of the 20th century reinforced Newtonian mathematical idealism in modern theoretical physics and cosmology, exacerbating the crisis and hampering further progress. Moreover, the recognition of the quantum world - a fundamentally unintuitive new realm of objective reality, which is in conflict with the prevailing causality-based epistemology, requires a rethink of the philosophical foundation of theoretical physics and cosmology in particular and of natural science in general.
If we should calculate it by experimental test on target organism or we should find it mathematically?
co- toxicity factor =(O-E)*100/E
that
O is observed % mortality of combined plant extracts
E is expedcted m% mortality
Bonjour a tous,
je voudrais savoir la relation entre la temperature du verre ( viscosite ) et le radius de la fibre de verre?
merci
- What is the relationship between the scientific understanding of the world and the reality in nature? It may be said that the real world is much richer in terms of structure than the results of the physical and mathematical models that were developed for it. In these models, there is one or more angles of view limited to the natural phenomenon in question, inventing a complete theory, whose results are correct from any angle, may be the dream theory of "Theory of Everything"!
- Is there an unknown form of mathematics that has not yet been found to solve all the problems of a theory of everything?
- Is it necessary to change the conceptual view of physicists on the subject of the theory of everything? So that this new look can include new concepts for problem solving?
- Is there a mathematical system, which has a distinct ability to represent the maximum possible states of the world!?
- Is it possible to imagine that the world is like a carpet that has infinite texture, but its colors and roles are determined by scientists with their theories about the world?! And are we looking for the most realistic pattern and design for the world's carpet?
Three grade teachers response can help researcher measure the students creativity? Age of students is 8-11 years
Our department is offering an elective on Fluid Mechanics in daily life. The course is supposed to be more of a physical treatment of the fluid phenomena rather than mathematical. I would like some recommendations for books on the subject which are light and speak about fluid physics from a physical and application based perspective
hello
How can I determine the tortuosity factor in a porous material with simple mathematical formula?
Apart from the mathematical systems that confirm human feelings and perceptive sensors, there are countless mathematical systems that do not confirm these sensors and our sensory data! A question arises, are the worlds that these mathematical systems evoke are real? So in this way, there are countless worlds that can be realized with their respective physics. Can multiple universes be concluded from this point of view?
Don't we see that only one of these possible worlds is felt by our body?! Why? Have we created mathematics to suit our feelings in the beginning?! And now, in modern physics and the maturation of our powers of understanding, we have created mathematical systems that fit our dreams about the world!? Which of these mathematical devices is actually true about the world and has been realized?! If all of them have come true! So there is no single and objective world and everyone experiences their own world! If only one of these mathematical systems has been realized, how is this system the best?!
If the worlds created by these countless mathematical systems are not real, why do they exist in the human mind?!
The last question is, does the tangibleness of some of these mathematical systems for human senses, and the intangibleness of most of them, indicate the separation of the observable and hidden worlds?!
I know that δ(f(x))=∑δ(x−xi)/f′(xi). What will be the expression if "f" is a function of two variables, i.e. δ(f(x,y))=?
Why prime numbers have a great importance in mathematics for the rest of the numbers ?
Vehicle routing problem is a classical application case of Operation research.
I need to implement the same in electric vehicle routing problem with different constraints.
I want to understand mathematics behind this. The journals available discuss different applications without much talking of mathematics.
Any book/ basic research paper/ PhD/ m.tech thesis will do the needful.
Thanks in advance.
Qm is the ultimate realists utilization of the powerful differential equations, because the integer options and necessities of solutions correspond to nature's quanta.
The same can be said for GR whose differential manifolds, an sdvanced concept or hranch in mathematics, have a realistic implementation in nature compatible motional geodesics.
1 century later,so new such feats have been possible, making one to think if the limit of heuristic mathematical supplementation in powerful ways towards realist results in physics in reached.
Applying mathematical knowledge in research models: This question has been in my mind for a long time. Can advance mathematics and applied mathematics solve all the problems in modeling research? Especially the formula derivation in the theoretical model part, can the analysis conclusion be obtained through multiple derivations or other methods? You have also read some mathematics-related publications yourself, and you have to admire the mystery of mathematics.
Which areas in mathematics education is trending currently
As it is not possible to show mathematical expressions here I am attaching link to the question.
Your expertise in determining and comprehending the boundaries of integration within the Delta function's tantalizing grip will be treasured beyond measure.
An attempt to extrapolate reality
Our answer is a competitive YES. However, universities face the laissez-faire of old staff.
This reference must be included:
Gerck, E. “Algorithms for Quantum Computation: Derivatives of Discontinuous Functions.” Mathematics 2023, 11, 68. https://doi.org/10.3390/math1101006, 2023.
announcing quantum computing on a physical basis, deprecating infinitesimals, epsilon-deltas, continuity, limits, mathematical real-numbers, imaginary numbers, and more, making calculus middle-school easy and with the same formulas.
Otherwise, difficulties and obsolescence follows. A hopeless scenario, no argument is possible against facts.
What is your qualified opinion? Must one self-study? A free PDF is currently available at my profile at RG.