Hydrogen Energy

Hydrogen Energy

  • Anurag Pandey added an answer:
    Is there any database or list which collects the hydrogen hybrid generation systems which are currently operating in the world (labs, etc.)? Any clue?

    As the title says, I am trying to find out the projects which have tested the operation of hydrogen based hybrid generation systems.

    For example, I found that there was a Project titled "Photovoltaic fuel-cell hybrid system for electricity and heat production for remote sites ('PVFC-SYS')" but its resulting papers do not show information about the operation of the system (I found only papers related to simulations).

    If somebody can share in this question any webpage or anything related to the operation of these systems I would be grateful.

    Anurag Pandey

    For more detail see "18th World Hydrogen Energy Conference 2010 – WHEC 2010 Proceedings" it is also available on google.

    + 2 more attachments

  • Zahoor Alam added an answer:
    Is there any funding schemes available for hydrogen energy production?

    We are developing clean hydrogen producing system from sea water. Kindly provide information regarding any funding schemes available for the research.

    Zahoor Alam

    In India funding agencies are as  below

    1- UGC

     2- DST

    3-  Ministry of Petroleum (Government of India)

  • Debananda Mohapatra added an answer:
    Why does the voltage of fuel cells decrease when we increase the load (i.e. current)?
    As an open circuit voltage of individual cell is about 1 volt (theoretically 1.23 V). When we apply the load then there is a sudden drop in voltage decreasing gradually by increasing the load (current). What happen within the cell? Is it due to decrease the reaction site available to the reactant gases? Or ability of proton conducting membrane? Or due to there catalyst activity?
    Debananda Mohapatra

    Why voltage drop decreases with increasing current density in a supercapacitor ?

  • Hae-Yoon Choi added an answer:
    Is there any hydrogen storage alloy which has low melting point?

    Hi. I'm planning the experiment using hydrogen storage alloy.

    The experiment will be carried out like below.

    First, dissolve a lot of hydrogen in alloy as possible.

    Second, heat the alloy using induction heating and the alloy is melted after all.

    Third, the hydrogen is emitted from the alloy.

    I want to know the alloy that has low melting point..

    Are there any papers that describe the information about hydrogen dissolve conditions or properties?

    Thank you!

    Hae-Yoon Choi

    Thank you Ressell Barton, Alexandre A C Asselli.

    I learned a lot, thanks !

  • Hervé Toulhoat added an answer:
    Looking for specialist to make thermodynamic calculations for reaction of hydrogen (H2) with minerals?

    If calculations will show theoretical possibility for such reactions, we have the possibility to run experiments.

    Hervé Toulhoat

    Dear Slava,

    I can do that for you to some extent. Just give me the T and PH2 conditions.

    Best regards,


  • Carlos Enrique Perez Heredia added an answer:
    How can I express the rate of hydrogen production in terms of L/L-molasses/day if 40 g/l of molasses concentration yield 3.6 l of hydrogen?

    Comprehensive study on a two-stage anaerobic digestion
    process for the sequential production of hydrogen and
    methane from cost-effective molasses 

    in the above paper the yield of hydrogen production is 2.8 l/l-reactor/day but the value in L/L-molass/ day is 27 litre. 

    **international journal of hydrogen energy 35 (2010) 6194 e6202

    Carlos Enrique Perez Heredia

    You must bring the volume from which you got the 3.6 L, to perform the calculation. Anyway the standards set for production employs a molasses with certain characteristic, your molasses has the same characteristics ???

  • Juan Casado added an answer:
    Can anyone give me a reference or suggestion on how the acid or alkaline environment has any influence on PEM (proton exchange membrane) fuel cells?

    For example, would I damage PEM fuel cell if I used hydrogen which was generated from alkaline water (high pH level) reaction with aluminum or acid water (low pH level) reaction with magnesium metal?

    2Al + 6H2O → 2Al(OH)3 + 3H2    (promoter NaOH)

    Juan Casado

    Acid or alkaline vapors or aerosols should be better avoided in H2 feeding a fuel cell. For instance, in H2 produced by your cited equation in alkaline media, impure H2 should be passed through an acidic scrubber of alkaline aerosol (eg. aqueous acetic acid) and the outcoming gas should be passed through a water flask to filter acid vapors.

  • Subramanian Ramachandran added an answer:
    What kind of coolant for hydrogen storage in metal hydrides should I use?

    The use of a coolant is necessary to regulate temperature in hydrogen storage tank based on metal hydrides. What kind of coolant is more efficient and most used actually?

    Subramanian Ramachandran

    Hi, based on my experience, for transition metal hydrides with enthalpy of absorption about 30kJ/mol H2, water as a coolant worked well in keeping the temperature constant during exothermic hydriding process as well during the endothermic dehydriding process. . However, proper designing of the heat and mass transfer aspect is important.

  • A.I. Manilov added an answer:
    What are some porous materials with chemically bonded hydrogen on the surface?

    Please, provide me with examples of organic/inorganic materials having the next features:
         1. Solid-state porous structure or framework, compound with the high specific surface area.
         2. Surface, covered with chemically bonded hydrogen (not physically adsorbed).
         3. The hydrogen should be extracted from the surface by way of chemical reaction without destruction of the porous composition.
         The examples of common porous hydrides, organic frameworks and other like hydrogen-containing solid-state compounds are suitable. Also, their chemical properties, the ways of hydrogenation/dehydrogenation are under interest.

    A.I. Manilov

    I will be pleased for a link to the corresponding article or review.

  • Artur Braun added an answer:
    How to successfully convert water into fuel using sunlight and earth abundant materials?
    What are the options for:
    Water into hydrogen, oxygen, or low carbon fuel?
    At what cost, materials, infrastructure, etc?
    Artur Braun

    Making hydrogen from water and sunlight. 

    This is a controversial topic because, if you can make hydrogen from water and sunlight, then you challenge current hydrogen technologies and energy business models. As soon as you come up with solar hydrogen, you will face the killer question "what efficiency?". The purpose of this question is to make you forget about the issue of "sustainability". Sustainability means, solar hydrogen will work, when all coal and fossil fuels is used up.  

    There are some concepts for solar hydrogen, but no real technology yet.

    The most direct one is by combination of photovoltaics electricity connecting with a water electrolyzer. Take 4 PV panels which gives 0.5 Volt each, then you get the necessary 2 volts for water splitting. Having only 3 PV units at 1.5 volt is not enough. The thermodynamic 1.23 volt for water electrolysis won't work because there are some kinetic barriers, over potentials to be overcome. 

    An alternative is solar water splitting in a photoelectrocemical cel, where you directly insert the photo electrodes into the aqueous electrolyte. For this you need materials which are corrosion resistant. The conventional semiconductors from PV won't to this because they soon corrode. 

    You can try TiO2 as photo anode and it will work, but because of its large band gap it will need UV light for operation, and there is not so much UV coming fem the sun down on earth compared wit the other visible wave lengths.

    Iron oxide is an earth abundant material but it needs some tricky materials tailoring to get by its poor electronic properties.

    You will have to do a contemporary literature study to get a grip of the whole diversity in approaches which is currently being - again - explored. 

  • Dhiraj K. Mahajan added an answer:
    Does anyone have any knowledge on hydrogen pressure chambers for fatigue testing?

    Dear all,

    At our institute, we are planning to install a fatigue testing facility for metals under pressurised hydrogen.

    While I can find guidelines on security concerns involving such kind of experiments. I was not able to find a company that can help install such facility.

    In case some one can provide some link or reference to such organization/company, it will be extremely helpful.

    Thanks in advance,

    Dhiraj K. Mahajan

    Assistant Professor

    IIT Ropar, India 

    Dhiraj K. Mahajan

    Thank you so much.

    This is exactly what I was looking for.

    Kind regards,


  • V.ladimir Nikolaevich. Fateev added an answer:
    What is the best binder to fabricate membrane-electrode assemblies for HT-PEMFCs using PBI-based proton-exchange membranes?
    While it is well-known that the electrodes for HT-PEMFCs generally include Teflon as the binder (originally added to the electrode inks in suspension form), suppliers provide several different types of Teflon suspensions, including a variety of surfactants (both ionic and non-ionic). Does the type of surfactant make a difference? If yes, how? What's the best Teflon suspension to fabricate electrodes for HT-PEMFCs?
    V.ladimir Nikolaevich. Fateev

    I suppose that teflon is OK but without surfactants - they can act as a catalyst poison.

  • Jaliya Samarakoon added an answer:
    What is best chemical way to detect hydrogen evolution?

    I'm developing a new reaction that hydrogen is generated as key product. I want to experimentally show that hydrogen is generated. My idea is to connect the Schlenk tube (which the hydrogen evolution reaction undergoes) with other reaction which requires the hydrogen gas as reactant. Perhaps something like Rh catalyzed hydrogenation reaction. Could you give me a good candidate for this type of 'hydrogen detecting reaction'?

    Thank you.
    Jaliya Samarakoon

    Hey Kadier, what type of method you used in GC MS?

  • Ran Hong added an answer:
    Suppose an electron loses all its energy and falls into a nucleus, what will happen?
    My assumption is that energy will be released and only neutrons will exist.
    Ran Hong

    If we only allow EM interaction, the electron can never lose all its kinetic energy. It will stay in its ground state (like a hydrogen atom at ground state) forever. It does spend time inside the nucleus, since the wave function has non zero value there. If weak interaction is allowed, and for some nucleus, electron capture can happen. It will be converted into a e-neutrino.

  • Lionel Flandin added an answer:
    Should I use TGA or XPS for determining the Pt loading of carbon support in PEM & DM fuel cells?
    After the catalyst synthesis and decoration of the support materials (carbon species in this case decorated with Pt nano-particles, by any method), one needs to know “how much” Pt is there to take it into account for normalizing the electrochemical results by the mass of Pt catalyst. One reliable and mostly used method is the TGA to determine the Pt fraction of the “support-catalyst” system, right after the synthesis of the material (washing & drying of course considered).
    However, this is not exactly when this “support-catalyst” system is electrochemically characterized, but there are also intermediate steps such as preparation of the slurry or paste for casting on the glassy carbon electrode which involves a lot of sonication. Since this sonication could give rise to some of Pt nano-particles come off the support, the final loading could be less than what measured by the primary TGA.
    Another necessary step to characterize the behavior of the “support-catalyst” system is the surface chemistry that is assessed by the XPS. Usually the prepared slurry can be drop-cast on a XPS neutral substrate (e.g., Si wafer) and analyzed. This XPS can also give a quantitative measurement of the materials and their oxidation states. But since it is done after the sonication, the probably disintegrated Pt particles can be assumed to be put out of the total sum (to avoid any destructive interference in the final XPS results, nafion can be added to the slurry after the sample collection for XPS).
    So, the question is if one can rely on this XPS result for Pt loading instead of TGA.
    Lionel Flandin

    We've used TGA for this purpose during the last couple of years. It works fine. It remains the most efficient way, although the standard error is rather high.


  • Rina Dao added an answer:
    What is the relation of SOMO energy and the reaction barrier of hydrogen atom transfer?
    I am working on this reaction: R-H + X· → R· + X-H
    I'm curious about the relationship of the SOMO energy of the abstracting radical and the reaction barrier. The radical SOMO is somewhere between the R-H LUMO and HOMO, when X· is electrophilic, SOMO energy is more close to HOMO. because the interaction between the radical SOMO and the R-H HOMO helps to lower the overall barrier, so the lower the radical SOMO evergy, the better. But, is there a theory, maybe, supporting this viewpoint? Is there a numerical relationship between the SOMO energy and the barrier?
    Here is the answer they gave me on computational chemistry list. He said the barrier and orbital gap are related in, eg. Diels Alder reaction. So, is it true in hydrogen abstraction reaction? I am really confused. Please help me.

    (by Marcel Swart from CCL)
    When you look into the literature of Frontier MO for e.g. Diels-Alder reaction,you can see a good correlation (I seem to remember between the
    HOMO(diene)-LUMO(dienophile) and the reaction barrier). And this
    was also related to the change in barrier and MO-levels when electron-
    withdrawing or -donating groups are added.
    Rina Dao

    To Prof. Peter Daminan Jarowski

    I have read both FMOT and PMOT, but how to mix them? The gap of the interacting orbital might be considered as the driving force ? Could you perhaps give an example paper or anything ?

  • Chandrasekhar Kuppam added an answer:
    How do you see Hydrogen as next generation biofuel?
    I have read that hydrogen (generated by microorganisms) can be used as fuel for automobiles but its overproduction and rough handling may prove toxic and even lethal.
    What are the prospects in using hydrogen as fuel or biofuel? Would it be safe, non toxic and economical? What are the main parameters that need to be checked for its production and application?
    Chandrasekhar Kuppam

    Hydrogen is a fuel of the future because it has a excessive energy density, nearly 3 times that of petrol or diesel, and hence its use produces only H2O instead of greenhouse gases and other exhaust pollutants. Moreover, using petrol and diesel in combustion engines waste at least two thirds of the energy in the fuel, whereas hydrogen can be used in fuel cells, which are about twice as efficient, so much more of the fuel’s energy is put to good use and less fuel is needed.

    Nevertheless, H2 is not an energy source but an energy carrier; it’s a useful way of carrying energy from renewable sources such as sun, wind and water to valuable applications such as a car. Many types of microbe can convert renewable energy sources into H2.

    Biohydrogen is an example of an advanced biofuel (or third generation biofuel). In advanced biofuel technologies, microbes are grown in special bioreactors and provided with the energy and nutrients that they need including, sunlight, waste organic material, CO2 from the air or from conventional gas plants. As they grow the microbes produce the biofuel.

     However there are some parameters/factors affecting biological hydrogen production as follows...

    1) pH

    2) Temperature

    3) Hydrogen Partial Pressure

    4) Volatile Fatty Acid (VFA)

    5) Nutrients

    6) Metal Ions

    7) Hydraulic Retention Time (HRT) etc.....

  • Maxim Belkin added an answer:
    How can I go about visualizing first hydration layer oxygen and hydrogen average density?
    I have an MD trajectory file in TIP3P water. I want to use the trajectory to create a 3D visualization of the density map (or average polarization density whichever is easier) of the Oxygen and Hydrogen of the closest water molecules to the molecular surface. How do I go about it? I saw something in chimera tutorial but got confused. Something like the figure 2 in this article http://pubs.acs.org/doi/abs/10.1021/jp709958f is what I need.
    Maxim Belkin


    Figure 2 in that paper is density plot. You can easily do this type of analysis in VMD. To get density map, use the VolMap plugin. In "Selection" specify "water and oxygen" (or "water and hydrogen"), volmap type - "density", weights - "mass", check the box to average results for the entire trajectory, and output results to a file. You may also increase a bit the default values in the "atom size" field to get slightly smoother-looking results and in the "resolution" field to speed up calculations (at least for the initial test run). The result will be a 3D map, that you can visualize nicely in VMD.

    If you want to get g(r), use the GofRGUI plugin. Don't use GPU-accelerated version for now (or, at least, make sure to compare the results to the CPU version).

    In VMD, you can access both of these plugins under Extensions->Analysis menu. (The latter is called "Radial Pair Distribution Function g(r)" there).



  • Dave Modeste added an answer:
    What would be the most suitable method to separate a mixture of gases containing H2, H2O and HCl?
    The mixture of gases contains about 5vol.% of HCl, 25-30vol.% of hydrogen (H2), and the rest is water steam (65-70vol.%). I want to separate hydrogen to use it afterwards for power generation (i. e. in a fuel cell). I think one of the recommendations is using certain types of membranes, any ideas?

    The mixture of gases is coming from the exothermic reaction between Al(OH)3 and HCl (mainly), carried out during the preparation of PAC (aluminium polychloride) and ACH (aluminium hydroxide).
    Dave Modeste
    A membrane separation approach is an option depending on the operating conditions. Another alternative is an absorber, using a packed bed with water, or a weak NaOH solution as the absorbent. As long as the incoming water is cool enough, and you have a means to remove the heat of absorption due to HCL, you should be able to get a fairly clean H2 stream overhead, and some aqueous HCl solution if water is the absorbent. This approach can be evaluated using ChemCad as mentioned earlier or Aspen Plus, or Pro II. Key issue for the separation approach may be the capital cost of a separation column vs a membrane separation unit. There may be other contributing factors that may affect the decision; things like operating costs, and the reliability of membrane separation vs absorption.
  • Juan Casado added an answer:
    Is it time to think other catalyst than TiO2 for water splitting?
    There are so many papers on water splitting using TiO2 based photocatalysts. However, the yields of hydrogen production are very low. I think some compositions other than the trends need to be synthesised and tested...I would like to have your opinion on this and would like to welcome your views.
    Juan Casado
    Anwar, Any data on the stability of the system you have worked in?
  • Zol Bahri Razali added an answer:
    Does Silicate-1 still have hydrophobicity under high pressure and temperature condition?
    I read that silicate-1 usually has good hydrophobicity under certain conditions. As we know, H2O is gas phase under high temperature and pressure condition. Thus, I would like to know whether the silicate-1 still has good hydrophobicity or not. Some recommended references would be useful.
  • Wan Ahmad Najmi Wan Mohamed added an answer:
    How can we handle the flooding issue in large PEM fuel cell stack?
    There is durability issue of PEM fuel cells due to flooding problem. When we operate the cells above 500 watts there is a big voltage drop. This may due to dryness or flooding on the individual cells.
    Wan Ahmad Najmi Wan Mohamed
    In my experience with large stacks (single cell active area >200 cm2) the operational key to minimize flooding is constant purging on both sides. But expect a greater loss in fuel usage.
  • Partha Sarathy added an answer:
    What is the best possible way to quantify H2 gas concentration in a mixture of gases?
    Assuming no use of any analytical instrument is to be performed. Any idea of using simple method without the need of any instrument is highly welcome. For information, gas mixture may contain CH4,CO,CO2,H2,H2O.
    Partha Sarathy
  • Taib Iskandar Mohamad added an answer:
    How can I design the cam for inlet and exhaust if I want to convert single cylinder SI engine to hydrogen engine?
    The flame speed of hydrogen is higher than the gasoline and the ignition energy required is very low but the auto ignition temperature of hydrogen is higher than that of gasoline. So in the combustion of the hydrogen, how we can calculate the Lift and Dwell for the both intake and exhaust cam? What changes will be needed in the cam design?
    Taib Iskandar Mohamad
    The breathing pattern of engine has significant effect on combustion, performance and emission. Engine designs are optimized for specific fuel. Among the optimize parameters are the cam profile. Referring to some characteristics of hydrogen-air reaction it is not easy to give theoretical reference for designing cam because the engine geometry also need to be considered. I would suggest that you use simulation tool with your engine geometry to predict engine response to hydrogen combustion by varying the cam profile. Some useful software include AVL Boost. It is easy to change the cam profile and predict engine performance and emission.
  • Jorge Morales Pedraza added an answer:
    What are the other popular applications of hydrogen other than in energy (fuel cell)?
    I'm looking for possible applications of hydrogen in microchannel system, preferably other than energy applications.
    Jorge Morales Pedraza
    A limited number of analytical techniques have been used for measuring hydrogen sulfide in the breath (expired air) . These include gas chromatography coupled with flame ionization detection (GC/FID), gas chromatography coupled with flame photometric detection (GC/FPD), iodometric titration, potentiometry with ion-selective electrodes (ISE), spectrophotometry, and high-performance liquid chromatography (HPLC). Puacz et al. (1995) developed a catalytic method, based on the iodine-azide reaction, for the determination of sulfide in whole human blood. The method involves the generation of hydrogen sulfide in an evolution-absorption apparatus. In addition, the method allows for the determination of sulfide in blood without interference from other sulfur compounds in blood. This method is appropriate for the determination of sulfide in the concentration range of 4–3,000 μg/L. A percent recovery of 98–102% was achieved. Although the accuracy and precision of the catalytic method are comparable to those of the ion-selective electrode method, the catalytic method is simpler, faster, and would be advantageous in serial analysis. Richardson and others developed a method for measuring sulfide in whole blood and feces, which overcomes the problems of viscosity and turbidity that are typical for these types of samples. Turbidity of the sample interferes with colorimetric assays such as methylene blue. In this method, samples are first treated with zinc acetate to trap the sulfide as an insoluble zinc complex. Next, a microdistillation pretreatment is used to release the complexed sulfide into a sodium hydroxide solution. This microdistillation step is coupled to ion chromatography with electron capture detection. A detection limit of 2.5 μmol/L (80 μg/L) and percent recoveries of 92–102% (feces) and 79–102% (blood) were reported. GC/FPD was employed for measuring hydrogen sulfide in human mouth air with a detection limit of 7 ppb (Blanchette and Cooper 1976) and included improvements such as calibration of the system with permeation tubes, use of a variable beam splitter to produce a wide range of vapor concentrations, and the ability to handle samples of limited volume. For occupational measurements of airborne concentrations, NIOSH (1977a) recommended the use of a midget impinger for sampling breathing zone air and the methylene blue/spectrophotometric method for the analysis of hydrogen sulfide. The detection limit was 0.14 ppb. GC/FID has been used for quantifying sulfur volatiles such as hydrogen sulfide in human saliva (Solis and Volpe 1973). This method included microcoulometric titrations and a procedure for incubation of saliva and sampling of headspace sulfur volatile components. The amount of total sulfur volatiles detected in control samples of saliva incubated at 37 °C for 24 hours ranged from 4.55 to 13.13 ppm. Fresh and frozen mouse tissue samples obtained from brain, liver, and kidney have been analyzed for hydrogen sulfide levels by sulfide-derived methylene blue determination using ion-interaction reversed-phase HPLC. This method can quantify nmol/g levels of sulfide. Gas dialysis/ion chromatography with ECD has been utilized for measurement of sulfide in rat brain tissue with 95–99% recovery. The methods most commonly used to detect hydrogen sulfide in environmental samples include GC/FPD, gas chromatography with electron capture detection (GC/ECD), iodometric methods, the methylene blue colorimetric or spectrophotometric method, the spot method using paper or tiles impregnated with lead acetate or mercuric chloride, ion chromatography with conductivity, and potentiometric titration with a sulfide ion-selective electrode. Several methods for determining hydrogen sulfide in air have been investigated. GC/FPD has been widely used for analyses of hydrogen sulfide at levels ranging from 10-11 to 10-8 grams/0.56 mL and for hydrogen sulfide in emissions from tail gas controls units of sulfur recovery plants to a sensitivity of 0.5 ppmv. Sampling of a standard reference (0.055 ppm hydrogen sulfide) with this method resulted in a relative standard deviation of <3%. The sensitivity of hydrogen sulfide detection in air was improved with GC/ECD. The detector operation is based upon the measurement of the current when hydrogen sulfide is electrochemically oxidized at a diffusion electrode. Use of this method resulted in a lower detection limit of 3x10-12 grams hydrogen sulfide and a precision of 0.5%. Analyses were achieved within 2 minutes. GC/FPD has been used to measure hydrogen sulfide that has been removed from air by activated carbon fiber. Activated carbon fiber, made from coal tar, effectively oxidized hydrogen sulfide (200 ppm) to sulfate. Methylene blue techniques have been widely utilized for continuous, quantitative monitoring of hydrogen sulfide in air and are sensitive to hydrogen sulfide concentrations down to approximately 1–3 ppb. This method provides adequate specificity with good accuracy and precision. The amount of sulfide is determined by spectrophotometric or colorimetric measurement of methylene blue. The method has been improved to eliminate the formation of the precipitate cadmium sulfide, which can result in the obstruction of the sampling impinger. Also, the simplified method can be used to measure hydrogen sulfide levels in the viscose rayon industry because it is not as sensitive to carbon disulfide. Limitations of the methylene blue method include potential interferences from light, mercaptans, sulfides, nitrogen dioxide, and sulfur dioxide, and that the system is not portable. Photoacoustic spectroscopy of hydrogen sulfide converted to methylene blue has been demonstrated to yield greater sensitivity than standard spectrophotometric methods. By maximizing instrument response to the 750-nm peak, it was possible to achieve a detection limit of 0.01 μg when collected at 2.0 L/minute for a 1-hour period. NIOSH (method 6013) describes the measurement of hydrogen sulfide in the air by ion chromatography. This method has a working range of 0.6–14 ppm for a 20-L air sample and an estimated limit of detection of 11 μg per sample. However, sulfur dioxide may interfere with the measurement of hydrogen sulfide. The iodometric method has been utilized in analyzing hydrogen sulfide in the air. The method is based on the oxidation of hydrogen sulfide by absorption of the gas sample in an impinger containing a standardized solution of iodine and potassium iodide. This solution will also oxidize sulfur dioxide. The iodometric method is suitable for occupational settings. The accuracy of the method is approximately 0.50 ppm hydrogen sulfide for a 30-L air sample. Another application of the iodometric method is for the determination of hydrogen sulfide in fuel gas emissions in petroleum refineries. In this method, the sample is extracted from a source and passed through a series of impingers containing cadmium sulfate. The hydrogen sulfide is absorbed, forming cadmium sulfide, which is then measured iodometrically. The sensitivity range of this method is 8–740 mg/m3 (6– 520 ppm). Paper tapes impregnated with lead acetate have been widely used for air sample measurements of hydrogen sulfide in the field. The presence of other substances capable of oxidizing lead sulfide can lead to errors. This method has been improved by impregnating the paper with mercuric chloride or silver nitrate. Mercuric chloride paper tape is sensitive and reliable for measurement of hydrogen sulfide in air with a sensitivity of 0.7 μg/L. Tapes impregnated with silver nitrate are suitable for determination of hydrogen sulfide concentrations in the range of 0.001–50 ppm. Potentiometric titration with a sulfide ion-selective electrode as an indicator has been used to measure hydrogen sulfide in the air at ppb levels. The method has been shown to have very good accuracy and precision. No interference could be found from nitrogen dioxide, sulfur dioxide, or ozone. Passive card monitors can be used to detect hydrogen sulfide in workplace environments. These monitors can be categorized as quantitative, semiquantitative, and indicator cards. Quantitative cards use an optical reader to assess exposure and calculate a hydrogen sulfide concentration in air; the results are digitally displayed. Semiquantitative cards are read by comparing the exposed card to a chart or by observing a progressive color development in windows on the card that represent differing exposure concentration ranges. The indicator cards change color above a certain threshold concentration of hydrogen sulfide. Badges that can be worn in a worker’s, breathing zone that change color based on exposure to toxic gases, including hydrogen sulfide, are available from American Gas & Chemical Co. The sensitivity for the hydrogen sulfide badges is 10 ppm/10 minutes with a color change from white to brown . Other colorimetric methods for monitoring of hydrogen sulfide include handheld colorimetric tubes. Air is drawn through the tube and a color change indicates the presence of hydrogen sulfide by reaction with a chemical reagent in the glass tube. Tubes for hydrogen sulfide are available from Draeger Safety, Inc. in various measuring ranges from 0–5 ppm to 100– 2,000 ppm. Electrochemical sensors are the most commonly used sensors for toxic gases, including hydrogen sulfide, and are the best sensor for ambient toxic gas monitoring. These sensors are specific to a particular gas, are very accurate, do not get poisoned, and monitor at the ppm level. However, they have a narrow temperature range and a short shelf life, particularly in very hot and dry areas. When sensitivity to low concentrations of hydrogen sulfide (ppm levels) is needed, semiconductor sensors are one of the best sensors. Some advantages of semiconductor sensors for hydrogen sulfide include small size, ruggedness, and sensitivity to ppm concentrations. Disadvantages include slow response on aged sensors, requirement of a temperature controlled heater, and cost. The Iowa Department of Natural Resources (DNR) monitors airborne levels of ammonia, hydrogen sulfide, and odor concentrations new animal feeding operations. Approved monitoring methods and equipments for the hydrogen sulfide must incorporate a thermal oxidizer and an EPA reference method analyzer that is designed for sulfur dioxide. There are several instruments that meet the requirements for the Iowa DNR, all of which detect hydrogen sulfide by first oxidizing it to sulfur dioxide, which is then measured using a fluorescence detector. The hydrogen sulfide and total reduces sulfide analyzer (Model 101A) from Advanced Pollution Instrumentation, Inc. has a range of 0–50 ppb to 0–2 ppm for hydrogen sulfide. In addition, three hydrogen sulfide analyzers from Thermo Electron Corporation are also approved by the Iowa DNR. Minimum detection limits as low as 0.5 ppb can be achieved for models 45C and 450C, and 0.06 ppb with model 450C-TL, respectively. The APHA (1998) defines three categories of sulfides that must be taken into account for analytical methods measuring sulfides in water: total sulfide, dissolved sulfide, and un-ionized hydrogen sulfide. Total sulfide includes all sulfide containing species, dissolved hydrogen sulfide, bisulfide ion, and acid-soluble metal sulfides in suspended matter. Dissolved sulfide includes sulfide-containing components that remain after suspended solids have been removed. The concentration of the un-ionized hydrogen sulfide can be calculated from the concentration of dissolved sulfide components, pH of the solution, and the acidity constants for hydrogen sulfide using the equilibrium expressions for the ionization of hydrogen sulfide and bisulfide ion. Samples that contain sulfide species can be either analyzed immediately after collection, or preserved with a zinc acetate solution for later analysis. The addition of zinc ion (Zn2+) to the sample will precipitate any sulfides as zinc sulfide. A qualitative sulfide test, such as a precipitation test using potassium antimony tartrate or testing for hydrogen sulfide vapors using lead acetate paper or silver foil, can be useful and are advisable when testing industrial wastes that may contain substances that interfere with certain test methods, such as the methylene blue method. The total sulfide concentration in a water sample can be determined using an iodometric titration. In this method sulfide is reacted with a measured excess of iodine in an acidic solution; the remaining unreacted iodine is then determined by titration with a thiosulfate solution. This method is an accurate method for determining sulfide concentrations of >1 mg/L, if interferences are absent and the loss of hydrogen sulfide from the solution is avoided. The iodometric method is best suited for the analysis of samples freshly taken (i.e., from wells and springs). The methylene blue method is applicable to sulfide concentrations ranging from 0.1 to 20.0 mg/L. In this method, an amine-sulfuric acid reagent and a ferric chloride solution are added to the sample to produce methylene blue, which is then quantified colorimetrically. In the automated methylene blue method, a gas dialysis technique separates the sulfide from the sample matrix, which removes most inferences (i.e., turbidity and color). Addition of ascorbic acid, an antioxidant, improves sulfide recovery. The automated methylene blue method is applicable at sulfide concentrations from 0.002 to 0.100 mg/L. Potentiometric methods using a silver electrode are also suitable for determination of sulfide concentrations in water and are unaffected by sample color or turbidly. In this method, an alkaline antioxidant reagent (AAR) and zinc acetate are added to the sample. The potential of the sample is measured using an ion selective electrode (ISE) and the measurement is compared to a calibration curve. This method is applicable for sulfide concentrations >0.03 mg/L. Three methods for quantifying acid volatile sulfides in sediment have been used. These include methylene blue/colorimetric methods, gravimetry, and potentiometry with ion-selective electrode. Prior to measurement, the acid volatile sulfide in the sample is converted to hydrogen sulfide by acidification. The hydrogen sulfide is then purged from the sample and trapped in aqueous solution for the colorimetric and potentiometric methods. In the gravimetric method, hydrogen sulfide is trapped with silver nitrate (AgNO3), and the mass of the insoluble silver sulfide (Ag2S) that is formed is determined. The methylene blue/colorimetric method is generally preferred and is capable of determining acid volatile sulfide concentrations in sediment as low as 0.01 μmol/g (0.3 μg/g) dry weight. The gravimetric method can be used for samples with moderate or high acid volatile sulfides. However, below concentrations of acid volatile sulfides in dry sediment of 10 μmol/g (320 μg/g), accuracy may be affected by incomplete recovery of precipitate or by weighing errors. The limit of detection of the ion-selective electrode method as applied to measuring hydrogen disulfide in sediment was not reported. GC/FPD has been used to measure hydrogen sulfide, free (uncomplexed) sulfide, and dissolved metal sulfide complexes in water (Radford-Knoery and Cutter 1993). Hydrogen sulfide was measured in the headspace of the sample (100 mL) with a detection limit of 0.6 pmol/L (20 pg/L). A detection limit of 0.2 pmol/L (6 pg/L) was obtained for total dissolved sulfide. This method allows for the determination of the concentration of free sulfide that is in equilibrium with hydrogen sulfide. Complexed sulfide can be estimated from the difference between total dissolved sulfide and free sulfide. A molecular absorption spectrophotometry method, using a sharp-line irradiation source, has been developed for the determination of sulfide (as hydrogen sulfide) in water and sludge samples. The method was tested with measurements of real waste water samples. The limit of detection was 0.25 μg (1–10 mL sample volume).
  • Xiaolan Huang (黄 晓澜) added an answer:
    Have you tried to get the hydrogen from these aluminum residues?
    Since these aluminum residues still have considerable amounts of metallic aluminum, why not to use it to get hydrogen as an new resource of energy? The product of hydrolysis of aluminum is hydrogen and aluminum hydroxide, which should further increase the values of residue.
    • Source
      [Show abstract] [Hide abstract]
      ABSTRACT: The huge number of research studies carried out during recent decades focused on finding an effective solution for the waste treatment, have allowed some of these residues to become new raw materials for many industries. Achieving this ensures a reduction in energy and natural resources consumption, diminishing of the negative environmental impacts and creating secondary and tertiary industries. A good example is provided by the metallurgical industry, in general, and the aluminium industry in this particular case. The aluminium recycling industry is a beneficial activity for the environment, since it recovers resources from primary industry, manufacturing and post-consumer waste. Slag and scrap which were previously considered as waste, are nowadays the raw material for some highly profitable secondary and tertiary industries. The most recent European Directive on waste establishes that if waste is used as a common product and fulfils the existing legislation for this product, then this waste can be defined as 'end-of-waste'. The review presented here, attempts to show several proposals for making added-value materials using an aluminium residue which is still considered as a hazardous waste, and accordingly, disposed of in secure storage. The present proposal includes the use of this waste to manufacture glass, glass-ceramic, boehmite and calcium aluminate. Thus the waste might effectively be recovered as a secondary source material for various industries.
      Full-text · Article · Nov 2011
    Xiaolan Huang (黄 晓澜)
    Thanks for your response. Dr. Cao. This might be a interesting approach to get the catalysis, however, either the waste from the secondary aluminum production, e.g. salt cake or the primary aluminum production, red mud, are huge. What I am concerning is the metallic aluminum in the wastes, minely SAP. How to use them before the waste to landfill?
  • D. Fruchart added an answer:
    Information on solid-state hydrogen reservoirs?
    I'm interested not only in the principle of the hydrogen storage device, but the conceptual methods of hydrogen accumulation and extraction.
    D. Fruchart
    Look at the web site of McPhy Energy please;

  • Pavel V. Komarov added an answer:
    gPROMS Fuel Cell or ANSYS - Fluent, PEMFC module?
    Does anybody know which software would be best to use for high-fidelity predictive modelling of PEM fuel cell, stack and system, gPROMS Fuel Cell or ANSYS - Fluent, PEMFC module?

    I want to solve key design problems and optimise design & operation. I want to implement the system of fuel cells to operate in a passive house.
  • Partha Sarathy added an answer:
    How to optimize hydrogen production in water electrolysis?
    For hydrogen fuel in motor or car engine.
    Partha Sarathy
    Optimize the current and electrode area which determines the amount of hydrogen produced

Topic followers (859) See all