March 2024
·
5 Reads
·
4 Citations
Proceedings of the AAAI Conference on Artificial Intelligence
Medical image segmentation methods based on deep learning network are mainly divided into CNN and Transformer. However, CNN struggles to capture long-distance dependencies, while Transformer suffers from high computational complexity and poor local feature learning. To efficiently extract and fuse local features and long-range dependencies, this paper proposes Rolling-Unet, which is a CNN model combined with MLP. Specifically, we propose the core R-MLP module, which is responsible for learning the long-distance dependency in a single direction of the whole image. By controlling and combining R-MLP modules in different directions, OR-MLP and DOR-MLP modules are formed to capture long-distance dependencies in multiple directions. Further, Lo2 block is proposed to encode both local context information and long-distance dependencies without excessive computational burden. Lo2 block has the same parameter size and computational complexity as a 3×3 convolution. The experimental results on four public datasets show that Rolling-Unet achieves superior performance compared to the state-of-the-art methods.