Zi-Ying Chen’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Bi-level Unbalanced Optimal Transport for Partial Domain Adaptation
  • Preprint

May 2025

Zi-Ying Chen

·

Chuan-Xian Ren

·

Hong Yan

Partial domain adaptation (PDA) problem requires aligning cross-domain samples while distinguishing the outlier classes for accurate knowledge transfer. The widely used weighting framework tries to address the outlier classes by introducing the reweighed source domain with a similar label distribution to the target domain. However, the empirical modeling of weights can only characterize the sample-wise relations, which leads to insufficient exploration of cluster structures, and the weights could be sensitive to the inaccurate prediction and cause confusion on the outlier classes. To tackle these issues, we propose a Bi-level Unbalanced Optimal Transport (BUOT) model to simultaneously characterize the sample-wise and class-wise relations in a unified transport framework. Specifically, a cooperation mechanism between sample-level and class-level transport is introduced, where the sample-level transport provides essential structure information for the class-level knowledge transfer, while the class-level transport supplies discriminative information for the outlier identification. The bi-level transport plan provides guidance for the alignment process. By incorporating the label-aware transport cost, the local transport structure is ensured and a fast computation formulation is derived to improve the efficiency. Extensive experiments on benchmark datasets validate the competitiveness of BUOT.


Geometry-Aware Unsupervised Domain Adaptation

December 2021

·

15 Reads

Unsupervised Domain Adaptation (UDA) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain in the presence of dataset shift. Most existing methods cannot address the domain alignment and class discrimination well, which may distort the intrinsic data structure for downstream tasks (e.g., classification). To this end, we propose a novel geometry-aware model to learn the transferability and discriminability simultaneously via nuclear norm optimization. We introduce the domain coherence and class orthogonality for UDA from the perspective of subspace geometry. The domain coherence will ensure the model has a larger capacity for learning separable representations, and class orthogonality will minimize the correlation between clusters to alleviate the misalignment. So, they are consistent and can benefit from each other. Besides, we provide a theoretical insight into the norm-based learning literature in UDA, which ensures the interpretability of our model. We show that the norms of domains and clusters are expected to be larger and smaller to enhance the transferability and discriminability, respectively. Extensive experimental results on standard UDA datasets demonstrate the effectiveness of our theory and model.