Yi Zhang’s research while affiliated with Sichuan University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (4)


Figure 1: Performance of MSCViT on CIFAR-10 and CIFAR-100. MSCViT performs better than some models with similar structures.
Figure 2: The overall architecture of the proposed MSCViT.
Figure 3: The comparison of the model sizes and accuracies among different methods.
Figure 5: Visual demonstration of the functions of the proposed LFE, CFF and LMSSA modules.
The number of samples and classes of different tiny datasets.

+2

MSCViT: A Small-size ViT architecture with Multi-Scale Self-Attention Mechanism for Tiny Datasets
  • Preprint
  • File available

January 2025

·

4 Reads

Bowei Zhang

·

Yi Zhang

Vision Transformer (ViT) has demonstrated significant potential in various vision tasks due to its strong ability in modelling long-range dependencies. However, such success is largely fueled by training on massive samples. In real applications, the large-scale datasets are not always available, and ViT performs worse than Convolutional Neural Networks (CNNs) if it is only trained on small scale dataset (called tiny dataset), since it requires large amount of training data to ensure its representational capacity. In this paper, a small-size ViT architecture with multi-scale self-attention mechanism and convolution blocks is presented (dubbed MSCViT) to model different scales of attention at each layer. Firstly, we introduced wavelet convolution, which selectively combines the high-frequency components obtained by frequency division with our convolution channel to extract local features. Then, a lightweight multi-head attention module is developed to reduce the number of tokens and computational costs. Finally, the positional encoding (PE) in the backbone is replaced by a local feature extraction module. Compared with the original ViT, it is parameter-efficient and is particularly suitable for tiny datasets. Extensive experiments have been conducted on tiny datasets, in which our model achieves an accuracy of 84.68% on CIFAR-100 with 14.0M parameters and 2.5 GFLOPs, without pre-training on large datasets.

Download



A Self-Supervised Few-Shot Semantic Segmentation Method Based on Multi-Task Learning and Dense Attention Computation

July 2024

·

5 Reads

·

1 Citation

Nowadays, autonomous driving technology has become widely prevalent. The intelligent vehicles have been equipped with various sensors (e.g. vision sensors, LiDAR, depth cameras etc.). Among them, the vision systems with tailored semantic segmentation and perception algorithms play critical roles in scene understanding. However, the traditional supervised semantic segmentation needs a large number of pixel-level manual annotations to complete model training. Although few-shot methods reduce the annotation work to some extent, they are still labor intensive. In this paper, a self-supervised few-shot semantic segmentation method based on Multi-task Learning and Dense Attention Computation (dubbed MLDAC) is proposed. The salient part of an image is split into two parts; one of them serves as the support mask for few-shot segmentation, while cross-entropy losses are calculated between the other part and the entire region with the predicted results separately as multi-task learning so as to improve the model’s generalization ability. Swin Transformer is used as our backbone to extract feature maps at different scales. These feature maps are then input to multiple levels of dense attention computation blocks to enhance pixel-level correspondence. The final prediction results are obtained through inter-scale mixing and feature skip connection. The experimental results indicate that MLDAC obtains 55.1% and 26.8% one-shot mIoU self-supervised few-shot segmentation on the PASCAL-5i and COCO-20i datasets, respectively. In addition, it achieves 78.1% on the FSS-1000 few-shot dataset, proving its efficacy.