April 2025
·
12 Reads
An accurate 3D pose estimation of spherical objects remains challenging in industrial inspections and robotics due to their geometric symmetries and limited feature discriminability. This study proposes a texture-optimized simulation framework to enhance pose prediction accuracy through optimizing the surface texture features of the design samples. A hierarchical texture design strategy was developed, incorporating complexity gradients (low to high) and color contrast principles, and implemented via VTK-based 3D modeling with automated Euler angle annotations. The framework generated 2297 synthetic images across six texture variants, which were used to train a MobileNet model. The validation tests demonstrated that the high-complexity color textures achieved superior performance, reducing the mean absolute pose error by 64.8% compared to the low-complexity designs. While color improved the validation accuracy universally, the test set analyses revealed its dual role: complex textures leveraged chromatic contrast for robustness, whereas simple textures suffered color-induced noise (a 35.5% error increase). These findings establish texture complexity and color complementarity as critical design criteria for synthetic datasets, offering a scalable solution for vision-based pose estimation. Physical experiments confirmed the practical feasibility, yielding 2.7–3.3° mean errors. This work bridges the simulation-to-reality gaps in symmetric object localization, with implications for robotic manipulation and industrial metrology, while highlighting the need for material-aware texture adaptations in future research.