June 2016
·
368 Reads
·
6 Citations
Lecture Notes in Computer Science
Diversifying the results retieved is an effective approach to tackling users’ information needs in Twitter, which typically described by query phrase are often ambiguous and have more than one interpretation. Due to tweets being often very short and lacking in reliable grammatical sytle, it reduces the effectiveness of traditional IR and NLP techniques. However, Twitter, as a social media, also presents interesting opportunies for this task (for example the author information such as the number of statuses). In this paper, we firstly address diversitication of the search results in Twitter with a learning method and explore a series of diversity features describing the relationship between tweets which include tweet content, sub-topic of tweet and the Twitter specific social information such as hashtags. The experimental results on the Tweets2013 datasets demonstrate the effectiveness of the learning approach. Additionally, the Twitter retrieval task achieves improvement by taking into account the diversity features. Finally, we find the sub-topic and Twitter specific social features can help solve the diversity task, especially the post time, hashtags of tweet and the location of author.