November 2024
·
3 Reads
This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.
November 2024
·
3 Reads
May 2024
·
5 Reads
·
1 Citation
November 2022
·
53 Reads
·
1 Citation
Neuroinformatics
Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, keywords associated with studies, etc. Furthermore, there is inherent uncertainty associated with brain scans arising from the mapping between voxels—3D pixels—and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this task is that only very limited propositional query languages have been developed. In this paper we present NeuroLang, a probabilistic language based on first-order logic with existential rules, probabilistic uncertainty, ontologies integration under the open world assumption, and built-in mechanisms to guarantee tractable query answering over very large datasets. NeuroLang’s primary objective is to provide a unified framework to seamlessly integrate heterogeneous data, such as ontologies, and map fine-grained cognitive domains to brain regions through a set of formal criteria, promoting shareable and highly reproducible research. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios.
February 2022
·
15 Reads
Researchers in neuroscience have a growing number of datasets available to study the brain, which is made possible by recent technological advances. Given the extent to which the brain has been studied, there is also available ontological knowledge encoding the current state of the art regarding its different areas, activation patterns, key words associated with studies, etc. Furthermore, there is an inherent uncertainty associated with brain scans arising from the mapping between voxels -- 3D pixels -- and actual points in different individual brains. Unfortunately, there is currently no unifying framework for accessing such collections of rich heterogeneous data under uncertainty, making it necessary for researchers to rely on ad hoc tools. In particular, one major weakness of current tools that attempt to address this kind of task is that only very limited propositional query languages have been developed. In this paper, we present NeuroLang, an ontology language with existential rules, probabilistic uncertainty, and built-in mechanisms to guarantee tractable query answering over very large datasets. After presenting the language and its general query answering architecture, we discuss real-world use cases showing how NeuroLang can be applied to practical scenarios for which current tools are inadequate.
... NeuroLang only allows stratified negation 25 . For a detailed description of Neurolang's semantics, please refer to Zanitti et al. 26 . ...
November 2022
Neuroinformatics