Xueyan Yang’s research while affiliated with Shandong Normal University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (13)


Delayed Impulsive Control for Lag Synchronization of Delayed Neural Networks Involving Partial Unmeasurable States
  • Article

June 2022

·

7 Reads

·

14 Citations

IEEE Transactions on Neural Networks and Learning Systems

Mingyue Li

·

Xueyan Yang

·

Xiaodi Li

In the framework of impulsive control, this article deals with the lag synchronization problem of neural networks involving partially unmeasurable states, where the time delay in impulses is fully addressed. Since the complexity of external environment and uncertainty of networks, which may lead to a result that the information of partial states is unmeasurable, the key problem for lag synchronization control is how to utilize the information of measurable states to design suitable impulsive control. By using linear matrix inequality (LMI) and transition matrix method coupled with dimension expansion technique, some sufficient conditions are derived to guarantee lag synchronization, where the requirement for information of all states is needless. Moreover, our proposed conditions not only allow the existence of unmeasurable states but also reduce the restrictions on the number of measurable states, which shows the generality of our results and wide-application in practice. Finally, two illustrative examples and their numerical simulations are presented to demonstrate the effectiveness of main results.


Trajectories of drive system (26)
Trajectories of error ζi=yi(t)-xi(t-σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _i=y_i(t)-x_i(t-\sigma )$$\end{document} with σ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =1$$\end{document} under controller (17)
Trajectories of systems (26) and (27) with σ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =1$$\end{document} without/with controller (17) in Example 1
Finite-time lag synchronization for uncertain complex networks involving impulsive disturbances
  • Article
  • Publisher preview available

April 2022

·

75 Reads

·

11 Citations

Neural Computing and Applications

This paper focuses on the finite-time lag synchronization (FTLS) of uncertain complex networks involving impulsive disturbance effects. By designing two different controllers, some Lyapunov-based conditions are established in terms of linear matrix inequalities to ensure the FTLS of impulsive systems, where the upper bound of the synchronizing times can be estimated via constructing Lyapunov functions. It is interesting to discover that the synchronizing time depends not only on the initial value but also on the impulse sequences, which implies that different impulses will lead to different synchronization times. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed FTLS criterion.

View access options

Dynamic analysis of delayed neural networks: Event-triggered impulsive Halanay inequality approach

April 2022

·

44 Reads

·

4 Citations

Neurocomputing

This paper proposes a generalized impulsive Halanay inequality from the impulsive control standpoints, where the impulse action is event-triggered. Namely, the control task is executed when an external event generated by the state-dependent event-triggered mechanism (ETM) is activated, rather than at a fixed time. It is shown that under the proposed event-triggered impulsive control (ETIC) strategy, the solution of the underlying inequality is guaranteed to converge to zero asymptotically. Moreover, the key point is the introduction of monitoring value to ensure a positive minimum inter-execution time, which exactly assists ETIC with reducing the pressure of information transmission. Then, the generalized impulsive Halanay inequality with appropriate ETIC scheme is utilized to the analysis of delayed neural networks (DNNs). In particular, some synchronization and asymptotic stability criteria of DNNs are derived, where the design of impulsive controller is based on ETIC strategy. At last, some numerical examples are provided to illustrate the validity of the obtained results.


Finite-Time Stability of Nonlinear Impulsive Systems With Applications to Neural Networks

July 2021

·

33 Reads

·

26 Citations

IEEE Transactions on Neural Networks and Learning Systems

This article studies the problem of finite-time stability (FTS) and finite-time contractive stability (FTCS) for nonlinear impulsive systems, where the possibility of time delay in impulses is fully considered. Some sufficient conditions for FTS/FTCS are constructed in the framework of Lyapunov function methods. A relationship between impulsive frequency and the time delay existing in impulses is established to reveal FTS/FTCS performance. As an application, we apply the theoretical results to finite-time state estimation of neural networks, including time-varying neural networks and switched neural networks. Finally, two illustrated examples are given to show the effectiveness and distinctiveness of the proposed delay-dependent impulsive schemes.


Event-triggered impulsive control for nonlinear delay systems

July 2020

·

140 Reads

·

194 Citations

Automatica

This paper studies the exponential stability of nonlinear delay systems by means of event-triggered impulsive control (ETIC) approach, where impulsive instants are determined by a Lyapunov-based event-triggered mechanism (ETM). Based on the ETM, sufficient conditions are presented to exclude Zeno behavior and guarantee the exponential stability in the framework of Lyapunov–Razumikhin method. Different from time-triggered impulsive control in which the triggered time is determined artificially, ETIC is activated only when some well-designed events occur. Moreover, control input is only needed at triggered instants and there is no any control input during two consecutive triggered instants. As an application, the theoretical result is applied to nonlinear delay multi-agent systems. A class of ETIC strategies is designed to achieve consensus of the addressed systems. Finally, two numerical examples are presented to illustrate the effectiveness of the developed approach.


Lyapunov stability analysis for nonlinear systems with state-dependent state delay

November 2019

·

73 Reads

·

56 Citations

Automatica

This paper addresses the stability problem for systems with state-dependent state delay (delay which involves the state of the system). Different from the time-dependent delay, the state dependence of the delay makes the value of delay dependent on the state change, which indicates that it is impossible to exactly know a priori how far in the history the state-information is needed. We apply the Lyapunov stability theory to obtain sufficient conditions for exponential stability of the zero equilibrium. Then we apply those results to some specific examples to illustrate the effectiveness of the approach and our general results. A class of stabilizing memoryless controllers for a second-order system with state-dependent state delay is also proposed.


Lyapunov conditions for finite-time stability of time-varying time-delay systems

May 2019

·

50 Reads

·

169 Citations

Automatica

In this paper, we develop the Lyapunov–Razumikhin method to finite-time stability (FTS) and finite-time contractive stability (FTCS) of time-delay systems. Several Lyapunov-based sufficient conditions for establishing these FTS properties are obtained. Then the theoretical results are applied to FTS and FTCS for a class of linear time-varying (LTV) time-delay system. The efficiency of the proposed criteria is illustrated by three numerical examples, where a stabilizing memoryless controller for FTCS of a second-order LTV system with time delay is proposed.


Persistence of delayed cooperative models: Impulsive control method

February 2019

·

44 Reads

·

241 Citations

Applied Mathematics and Computation

In this paper, the problem of impulsive control for persistence of N-species cooperative models with time-varying delays are studied. A method on impulsive control is introduced to delayed cooperative models and some sufficient conditions for the persistence of the addressed models are derived, which are easy to check in real problems. The results show that proper impulsive control strategy may contribute to the persistence of cooperative populations and maintain the balance of an ecosystem. Conversely, the undesired impulsive control such as impulsive harvesting too frequently or impulsive harvesting too drastically may destroy the persistence of populations and leads to the extinction of some species. In addition, some discussions and comparisons with the recent works in the literature are given. Finally, the proposed method is applied to two numerical examples to show the effectiveness and advantages of our results.


Review of stability and stabilization for impulsive delayed systems

December 2018

·

100 Reads

·

179 Citations

Mathematical Biosciences & Engineering

This paper reviews some recent works on impulsive delayed systems (IDSs). The prime focus is the fundamental results and recent progress in theory and applications. After reviewing the relative literatures, this paper provides a comprehensive and intuitive overview of IDSs. Five aspects of IDSs are surveyed including basic theory, stability analysis, impulsive control, impulsive perturbation, and delayed impulses. Then the research prospect is given, which provides a reference for further study of IDSs theory.


Finite-time boundedness and stabilization of uncertain switched delayed neural networks of neutral type

July 2018

·

19 Reads

·

18 Citations

Neurocomputing

In this paper, we investigate the finite-time boundedness (FTB) and finite-time stabilization (FTS) of uncertain switched delayed neural networks of neutral type. Some sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to guarantee the FTB and FTS of the uncertain delayed switched neural networks of neutral type by using the multiple Lyapunov–Krasovskii functional, free-weighting matrix method, and average dwell time (ADT) methods, which are dependent on both the transmission delay and time delay in neutral term. Moreover, a state feedback controller is designed via the established LMIs. Finally, two examples are given to illustrate the effectiveness of the main results.


Citations (13)


... As a result, synchronization has garnered significant attention from scholars. Various types of synchronization, such as complete synchronization [12], lag synchronization [13], Mittag-Leffler synchronization [14], projective synchronization [15], and exponential synchronization [16], have been explored. According to current understanding, CGNNs cannot achieve synchronization autonomously. ...

Reference:

Complete synchronization of discrete‐time fractional‐order Cohen–Grossberg neural networks with time delays via adaptive nonlinear controller
Delayed Impulsive Control for Lag Synchronization of Delayed Neural Networks Involving Partial Unmeasurable States
  • Citing Article
  • June 2022

IEEE Transactions on Neural Networks and Learning Systems

... Unlike eventtriggered sampling scheme, the transmission scheme designed in [29] can radically avoid Zeno behavior. In the past few decades, owing to the event-triggered generator selectively releases data packets into the communication network, the ETS has won much attention [30][31][32][33][34][35][36][37][38]. In [37], the traditional threshold is a scalar which takes values from 0 to 1. ...

Dynamic analysis of delayed neural networks: Event-triggered impulsive Halanay inequality approach
  • Citing Article
  • April 2022

Neurocomputing

... dynamical systems with time-varying delays by employing the comparison principle and finite-time escape function. The readers with interest may refer to the references [12][13][14] for more recent advances and references included. ...

Finite-Time Stability of Nonlinear Impulsive Systems With Applications to Neural Networks
  • Citing Article
  • July 2021

IEEE Transactions on Neural Networks and Learning Systems

... In all kinds of synchronization behavior research, it is always hoped to realize synchronization as soon as it also effectively suppresses disturbances and exhibits robustness in the face of uncertainties. Therefore, synchronization of finite time has been extensively studied for multilayer networks [27][28][29][30][31][32][33]. For example, the relationship between topological structure, multiple weights, internal coupling mode, coupling strength, and cross-layer was established in [27]. ...

Finite-time lag synchronization for uncertain complex networks involving impulsive disturbances

Neural Computing and Applications

... Ignoring the effects of these delays can have serious consequences, such as reduced system performance or even instability, since time delays tend to degrade the control process by introducing phase shifts and reducing the control bandwidth (Mondié et al., 2022;Shangguan et al., 2020;Wu et al., 2023). Therefore, the development of appropriate control principles for timedelayed dynamic systems with uncertainties has been an important research topic (Li et al., 2020;Abbasspour et al., 2020;Belhamel et al., 2020). In classical control theory, root locus (RL) analysis is a widely used graphical method to investigate how the roots of a system change in response to variations in system parameters, in particular the feedback gain (Luyben, 2020;Werth et al., 2020). ...

Event-triggered impulsive control for nonlinear delay systems
  • Citing Article
  • July 2020

Automatica

... Recently, there has been an influx of research on state-dependent delay (SDD), which implies that time delay may change depending on the current system state (see, e.g., previous research [5][6][7]). Nevertheless, once the time delay is related to system state, the bound of time delay is a priori unknown. ...

Lyapunov stability analysis for nonlinear systems with state-dependent state delay
  • Citing Article
  • November 2019

Automatica

... For example, in [31], the finite-time boundedness is extended to nonlinear impulsive switched systems. Considering the linear time-varying time-delay system, the finite-time stability and finite-time contractive stability are developed with the Lyapunov-Razumikhin method [32]. However, in the existing works on bumpless transfer control for switched systems, only the asymptotic stability of the system is considered, but the system state is not guaranteed to be bounded in finite time, which leaves much room for improvment. ...

Lyapunov conditions for finite-time stability of time-varying time-delay systems
  • Citing Article
  • May 2019

Automatica

... Impulsive control is attractive because it allows the stabilization of the system with only small control impulses. Many results about impulsive control have been reported [23][24][25]. Noting that the aforementioned impulsive instances are artificially determined. ...

Persistence of delayed cooperative models: Impulsive control method
  • Citing Article
  • February 2019

Applied Mathematics and Computation

... The prolongation of solutions will be essentially used later on to establish Lyapunov-like stability results for the system (1.1), particulary when studying the asymptotic behaviour of solutions around an equilibrium. Our stability study is inspired by results from classical theory and works such as [14,16,34,35], which address dynamic equations on time scales and impulsive differential equations. To the best of our knowledge, this is the first work to introduce Lyapunov's method adapted to Stieltjes differential equations. ...

Review of stability and stabilization for impulsive delayed systems
  • Citing Article
  • December 2018

Mathematical Biosciences & Engineering

... Moreover, if the solution and the connection weight function in the D-operators are differentiable, then the D-operators is also differentiable, but the inverse does not hold. In recent years, many preeminent stability results on NTNNs with D-operators have been established, such as asymptotic stability [5], exponential stability [39], finite-time stability [4], [41]. Meanwhile, time delays, especially the time-varying delays, may lead to some undesired complex dynamical behaviors of the NNs. ...

Finite-time boundedness and stabilization of uncertain switched delayed neural networks of neutral type
  • Citing Article
  • July 2018

Neurocomputing