Xueqi Cheng's research while affiliated with Chinese Academy of Sciences and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (539)
Despite achieving great success, graph neural networks (GNNs) are vulnerable to adversarial attacks. Existing defenses focus on developing adversarial training or robust GNNs. However, little research attention is paid to the potential and practice of immunization on graphs. In this paper, we propose and formulate graph adversarial immunization, i....
Recently, Graph Neural Networks (GNNs) achieve remarkable success in Recommendation. To reduce the influence of data sparsity, Graph Contrastive Learning (GCL) is adopted in GNN-based CF methods for enhancing performance. Most GCL methods consist of data augmentation and contrastive loss (e.g., InfoNCE). GCL methods construct the contrastive pairs...
Diffusion network inference aims to reveal the message propagation process among users and has attracted many research interests due to the fundamental role it plays in some real applications, such as rumor-spread forecasting and epidemic controlling. Most existing methods tackle the task with exact node infection time. However, collecting infectio...
Graphs consisting of vocal nodes ("the vocal minority") and silent nodes ("the silent majority"), namely VS-Graph, are ubiquitous in the real world. The vocal nodes tend to have abundant features and labels. In contrast, silent nodes only have incomplete features and rare labels, e.g., the description and political tendency of politicians (vocal) a...
Company financial risk is ubiquitous and early risk assessment for listed companies can avoid considerable losses. Traditional methods mainly focus on the financial statements of companies and lack the complex relationships among them. However, the financial statements are often biased and lagged, making it difficult to identify risks accurately an...
Video corpus moment retrieval~(VCMR) is the task of retrieving a relevant video moment from a large corpus of untrimmed videos via a natural language query. State-of-the-art work for VCMR is based on two-stage method. In this paper, we focus on improving two problems of two-stage method: (1) Moment prediction bias: The predicted moments for most qu...
Current natural language understanding (NLU) models have been continuously scaling up, both in terms of model size and input context, introducing more hidden and input neurons. While this generally improves performance on average, the extra neurons do not yield a consistent improvement for all instances. This is because some hidden neurons are redu...
Dense subtensor detection gains remarkable success in spotting anomalies and fraudulent behaviors for multi-aspect data (i.e., tensors), like in social media and event streams. Existing methods detect the densest subtensors flatly and separately, with the underlying assumption that those subtensors are exclusive. However, many real-world tensors us...
Script is a kind of structured knowledge extracted from texts, which contains a sequence of events. Based on such knowledge, script event prediction aims to predict the subsequent event. To do so, two aspects should be considered for events, namely, event description (i.e., what the events should contain) and event encoding (i.e., how they should b...
Information retrieval aims to find information that meets users' needs from the corpus. Different needs correspond to different IR tasks such as document retrieval, open-domain question answering, retrieval-based dialogue, etc., while they share the same schema to estimate the relationship between texts. It indicates that a good IR model can genera...
Graph contrastive learning (GCL) emerges as the most representative approach for graph representation learning, which leverages the principle of maximizing mutual information (InfoMax) to learn node representations applied in downstream tasks. To explore better generalization from GCL to downstream tasks, previous methods heuristically define data...
Visual Entity Linking (VEL) is a task to link regions of images with their corresponding entities in Knowledge Bases (KBs), which is beneficial for many computer vision tasks such as image retrieval, image caption, and visual question answering. While existing tasks in VEL either rely on textual data to complement a multi-modal linking or only link...
Users participate in multiple social networks for different services. User identity linkage aims to predict whether users across different social networks refer to the same person, and it has received significant attention for downstream tasks such as recommendation and user profiling. Recently, researchers proposed measuring the relevance of user-...
The human-oriented applications aim to exploit behaviors of people, which impose challenges on user modeling of integrating social network (SN) with knowledge graph (KG), and jointly analyzing two types of graph data. However, existing graph representation learning methods merely represent one of two graphs alone, and hence are unable to comprehens...
Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts over the past decades, the first-stage retrieval has long been domina...
Machine unlearning aims to erase the impact of specific training samples upon deleted requests from a trained model. Re-training the model on the retained data after deletion is an effective but not efficient way due to the huge number of model parameters and re-training samples. To speed up, a natural way is to reduce such parameters and samples....
Unsupervised representation learning for dynamic graphs has attracted a lot of research attention in recent years. Compared with static graphs, dynamic graphs are the integrative reflection of both the temporal-invariant or stable characteristics of nodes and the dynamic-fluctuate preference changing with time. However, existing dynamic graph repre...
A Temporal Knowledge Graph (TKG) is a sequence of KGs with respective timestamps, which adopts quadruples in the form of (\emph{subject}, \emph{relation}, \emph{object}, \emph{timestamp}) to describe dynamic facts. TKG reasoning has facilitated many real-world applications via answering such queries as (\emph{query entity}, \emph{query relation}, \...
User Identity Linkage (UIL) aims to reveal the correspondence among account pairs across different social platforms. It has been a popular but challenging task in recent years as complex application scenarios have emerged. Existing UIL methods mainly formalize a classification problem based on symmetric information, but these techniques are hard to...
Neural ranking models (NRMs) have achieved promising results in information retrieval. NRMs have also been shown to be vulnerable to adversarial examples. A typical Word Substitution Ranking Attack (WSRA) against NRMs was proposed recently, in which an attacker promotes a target document in rankings by adding human-imperceptible perturbations to it...
Neural ranking models (NRMs) have become one of the most important techniques in information retrieval (IR). Due to the limitation of relevance labels, the training of NRMs heavily relies on negative sampling over unlabeled data. In general machine learning scenarios, it has shown that training with hard negatives (i.e., samples that are close to p...
Privacy issues on social networks have been extensively discussed in recent years. The user identity linkage (UIL) task, aiming at finding corresponding users across different social networks, would be a threat to privacy if unethically applied. The sensitive user information might be detected through connected identities. A promising and novel sol...
Real-world network data consisting of social interactions can be incomplete due to deliberately erased or unsuccessful data collection, which cause the misleading of social interaction analysis for many various time-aware applications. Naturally, the link prediction task has drawn much research interest to predict the missing edges in the incomplet...
Pre-training and fine-tuning have achieved significant advances in the information retrieval (IR). A typical approach is to fine-tune all the parameters of large-scale pre-trained models (PTMs) on downstream tasks. As the model size and the number of tasks increase greatly, such approach becomes less feasible and prohibitively expensive. Recently,...
Dense retrieval (DR) has shown promising results in information retrieval. In essence, DR requires high-quality text representations to support effective search in the representation space. Recent studies have shown that pre-trained autoencoder-based language models with a weak decoder can provide high-quality text representations, boosting the eff...
Knowledge-intensive language tasks (KILT) usually require a large body of information to provide correct answers. A popular paradigm to solve this problem is to combine a search system with a machine reader, where the former retrieves supporting evidences and the latter examines them to produce answers. Recently, the reader component has witnessed...
Node injection attacks against Graph Neural Networks (GNNs) have received emerging attention as a practical attack scenario, where the attacker injects malicious nodes instead of modifying node features or edges to degrade the performance of GNNs. Despite the initial success of node injection attacks, we find that the injected nodes by existing met...
Graph patterns play a critical role in various graph classification tasks, e.g., chemical patterns often determine the properties of molecular graphs. Researchers devote themselves to adapting Convolutional Neural Networks (CNNs) to graph classification due to their powerful capability in pattern learning. The varying numbers of neighbor nodes and...
Graph representation learning plays an important role in many graph mining applications, but learning embeddings of large-scale graphs remains a problem. Recent works try to improve scalability via graph summarization -- i.e., they learn embeddings on a smaller summary graph, and then restore the node embeddings of the original graph. However, all...
Entity representation plays a central role in building effective entity retrieval models. Recent works propose to learn entity representations based on entity-centric contexts, which achieve SOTA performances on many tasks. However, these methods lead to poor representations for unseen entities since they rely on a multitude of occurrences for each...
Stance detection aims to identify whether the author of a text is in favor of, against, or neutral to a given target. The main challenge of this task comes two-fold: few-shot learning resulting from the varying targets and the lack of contextual information of the targets. Existing works mainly focus on solving the second issue by designing attenti...
Training generative adversarial networks (GANs) with limited data is valuable but challenging because discriminators are prone to over-fitting in such situations. Recently proposed differentiable data augmentation techniques for discriminators demonstrate improved data efficiency of training GANs. However, the naive data augmentation introduces und...
Pseudo-relevance feedback (PRF) has proven to be an effective query reformulation technique to improve retrieval accuracy. It aims to alleviate the mismatch of linguistic expressions between a query and its potential relevant documents. Existing PRF methods independently treat revised queries originating from the same query but using different numb...
Dense retrieval has shown promising results in many information retrieval (IR) related tasks, whose foundation is high-quality text representation learning for effective search. Some recent studies have shown that autoencoder-based language models are able to boost the dense retrieval performance using a weak decoder. However, we argue that 1) it i...
Given a multivariate big time series, can we detect anomalies as soon as they occur? Many existing works detect anomalies by learning how much a time series deviates away from what it should be in the reconstruction framework. However, most models have to cut the big time series into small pieces empirically since optimization algorithms cannot aff...
Fact verification (FV) is a challenging task which aims to verify a claim using multiple evidential sentences from trustworthy corpora, e.g., Wikipedia. Most existing approaches follow a three-step pipeline framework, including document retrieval, sentence retrieval and claim verification. High-quality evidences provided by the first two steps are...
Text matching is a fundamental technique in both information retrieval and natural language processing. Text matching tasks share the same paradigm that determines the relationship between two given texts. Evidently, the relationships vary from task to task, e.g. relevance in document retrieval, semantic alignment in paraphrase identification and a...
Neural ranking models (NRMs) have shown remarkable success in recent years, especially with pre-trained language models. However, deep neural models are notorious for their vulnerability to adversarial examples. Adversarial attacks may become a new type of web spamming technique given our increased reliance on neural information retrieval models. T...
The expressive power of message passing GNNs is upper-bounded by Weisfeiler-Lehman (WL) test. To achieve high expressive GNNs beyond WL test, we propose a novel graph isomorphism test method, namely Twin-WL, which simultaneously passes node labels and node identities rather than only passes node label as WL. The identity-passing mechanism encodes c...
A Temporal Knowledge Graph (TKG) is a sequence of KGs corresponding to different timestamps. TKG reasoning aims to predict potential facts in the future given the historical KG sequences. One key of this task is to mine and understand evolutional patterns of facts from these sequences. The evolutional patterns are complex in two aspects, length-div...
Question generation is an important yet challenging problem in Artificial Intelligence (AI), which aims to generate natural and relevant questions from various input formats, e.g., natural language text, structure database, knowledge base, and image. In this article, we focus on question generation from natural language text, which has received tre...
Given a stream of money transactions between accounts in a bank, how can we accurately detect money laundering agent accounts and suspected behaviors in real-time? Money laundering agents try to hide the origin of illegally obtained money by dispersive multiple small transactions and evade detection by smart strategies. Therefore, it is challenging...
Network is widely used to model interactions and relationships between entities from various domains. Aligning networks refers to finding node correspondence across different networks, and could be applied to many researches including anchor link prediction on social networks, inter-network connectivity of molecular networks and information diffusi...
Time series data naturally exist in many domains including medical data analysis, infrastructure sensor monitoring, and motion tracking. However, a very small portion of anomalous time series can be observed, comparing to the whole data. Most existing approaches are based on the supervised classification model requiring representative labels for an...
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many downstream applications, such as search, question-answering, recomme...
For small and medium-sized enterprises and large enterprises alike, crowdsourcing innovation has become an important element of a product’s whole life cycle. It is the open call process of soliciting consumers to harvest and evaluate ideas or other intellectual assets. The previous proposed taxonomic framework for charactering this process is mainl...
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as i...
In 2020, the COVID-19 pandemic has brought “digital contact tracing” to the forefront of public attention. In the context of COVID-19, technology has offered public health investigators a new capability for locating infected individuals, i.e., digital contact tracing. Through this technology, investigators were able to track the location of patient...
Scripts are structured sequences of events together with the participants, which are extracted from the texts.Script event prediction aims to predict the subsequent event given the historical events in the script. Two kinds of information facilitate this task, namely, the event-level information and the script-level information. At the event level,...
Unsupervised style transfer models are mainly based on an inductive learning approach, which represents the style as embeddings, decoder parameters, or discriminator parameters and directly applies these general rules to the test cases. However, the lacking of parallel corpus hinders the ability of these inductive learning methods on this task. As...
Information seeking is an essential step for open-domain question answering to efficiently gather evidence from a large corpus. Recently, iterative approaches have been proven to be effective for complex questions, by recursively retrieving new evidence at each step. However, almost all existing iterative approaches use predefined strategies, eithe...
Big data technology has had a significant impact on new business and financial services: for example, GPS and Bluetooth inspire location-based services, and search and web technologies motivate online shopping, reviews, and payments. These business services have become more connected than ever, and as a result, financial frauds have become a signif...
Node injection attack on Graph Neural Networks (GNNs) is an emerging and practical attack scenario that the attacker injects malicious nodes rather than modifying original nodes or edges to affect the performance of GNNs. However, existing node injection attacks ignore extremely limited scenarios, namely the injected nodes might be excessive such t...
Signed networks are such social networks having both positive and negative links. A lot of theories and algorithms have been developed to model such networks (e.g., balance theory). However, previous work mainly focuses on the unipartite signed networks where the nodes have the same type. Signed bipartite networks are different from classical signe...
Semantic text matching is a critical problem in information retrieval. Recently, deep learning techniques have been widely used in this area and obtained significant performance improvements. However, most models are black boxes and it is hard to understand what happened in the matching process, due to the poor interpretability of deep learning. Th...
Predicting the popularity of online content is a fundamental problem in various application areas. One practical challenge for popularity prediction takes roots in the different settings of popularity prediction tasks in different situations, e.g., the varying lengths of the observation time window or prediction horizon. In other words, a good mode...