Xin Yan’s research while affiliated with Nanjing Agricultural University and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


FIGURE 1 | Optimization of the electroporation system. (A) Effect of the number of linearized DNA fragments on the electroporation efficiency of strain Methylomicrobium buryatense 5GBlSfadE. (B-D) Effects of the cell density (B), methanol concentration (C), and the recovery time (D) on the electroporation efficiency of strain Methylomicrobium buryatense 5GB1S. Lowercase letters above bars indicate significant differences (P < 0.05).
FIGURE 2 | Framework of the heterologous expression of 2-ketoisovalerate decarboxylase (KivD) in strain Methylomicrobium buryatense 5GB1S. (A) Artificial pathway for isobutyraldehyde production from methanol or methane in strain M. buryatense 5GB1S. (B) Scheme of the plasmid-based expression of the foreign gene kivd in strain M. buryatense 5GB1S. (C) Scheme of the integration of the foreign gene kivd into the chromosome of strain M. buryatense 5GB1S. Word in red represents an exogenous gene. Words in black represent endogenous genes. These genes coded for acetohydroxyacid synthase (ilvHI), acetohydroxyacid isomeroreductase (ilvC), and dihydroxyacid dehydratase (ilvD). Intersecting lines indicate homologous recombination. LF, left flanking region; RF, right flanking region.
FIGURE 3 | Expression of the kivd gene in the fadE site of strain Methylomicrobium buryatense 5GB1S. (A) Agarose gel electrophoresis results of the kanamycin gene (816 bp) and the left flanking region (1,000 bp) for kivd expression. (B) Agarose gel electrophoresis results of the right flanking region (1,000 bp) for kivd expression of the kanamycin gene (1,000 bp) and the kivd gene (1,719 bp). (C) PCR confirmation of the expression complex of the kivd gene (LF + Km r + kivd + RF). A 1-kb marker was used. LF, left flanking region; RF, right flanking region; Km r , kanamycin.
FIGURE 4 | Growth performance of the wild-type (Methylomicrobium buryatense 5GB1S) and mutant strains for isobutyraldehyde biosynthesis.
Exploration of an Efficient Electroporation System for Heterologous Gene Expression in the Genome of Methanotroph
  • Article
  • Full-text available

August 2021

·

95 Reads

·

9 Citations

Lizhen Hu

·

·

Xin Yan

·

[...]

·

Qiang Fei

One-carbon (C1) substrates such as methane and methanol have been considered as the next-generation carbon source in industrial biotechnology with the characteristics of low cost, availability, and bioconvertibility. Recently, methanotrophic bacteria naturally capable of converting C1 substrates have drawn attractive attention for their promising applications in C1-based biomanufacturing for the production of chemicals or fuels. Although genetic tools have been explored for metabolically engineered methanotroph construction, there is still a lack of efficient methods for heterologous gene expression in methanotrophs. Here, a rapid and efficient electroporation method with a high transformation efficiency was developed for a robust methanotroph of Methylomicrobium buryatense 5GB1. Based on the homologous recombination and high transformation efficiency, gene deletion and heterologous gene expression can be simultaneously achieved by direct electroporation of PCR-generated linear DNA fragments. In this study, the influence of several key parameters (competent cell preparation, electroporation condition, recovery time, and antibiotic concentration) on the transformation efficiency was investigated for optimum conditions. The maximum electroporation efficiency of 719 ± 22.5 CFU/μg DNA was reached, which presents a 10-fold improvement. By employing this method, an engineered M. buryatense 5GB1 was constructed to biosynthesize isobutyraldehyde by replacing an endogenous fadE gene in the genome with a heterologous kivd gene. This study provides a potential and efficient strategy and method to facilitate the cell factory construction of methanotrophs.

Download

Cell mass of M. buryatense 5GB1 in the cultures using different CH4/O2 ratios of 0.28, 0.58, 0.93, 1.31, and 5.24 at different time points of 12, 24, 36, 48, 60, and 72 h post inoculation, respectively. The * and ** indicated this ratio exhibited significant difference compared to that under the CH4/O2 ratio of 0.93 with statistical significance of P < 0.05 and P < 0.01, respectively. DCW, dry cell weight.
Identification of differentially expressed genes (DEGs) under different gas supply conditions (0.28/#1, 0.58/#2, 0.93/#3, 1.31/#4, 5.24/#5). (A) Hierarchical clustering was performed using the LSmean of DEGs, in which significant gene rows were included by comparing any two conditions with at least one p-value < 0.01. X-axis represented different gas supply conditions and Y-axis represented DEGs. (B) Venn analysis of DEGs under gas supply ratio of 0.93 (#3) compared with other three conditions of #2, #4, and #5, respectively.
Potential nitrogen fixation regulation system in M. buryatense 5GB1 and genes involved in nitrogen fixation regulation upregulated in #3 condition (CH4/O2 ratio of 0.93) compared with other three conditions of #2, #4, or #5, respectively. The numbers in shadow at right-side of protein name represent the log2-based changes of upregulated gene under condition #3 compared to #2, #4, or #5, respectively.
Overview of the differential expression of genes encoding enzymes involving in nitrogen fixation, methane metabolism, ClpX system, and Pst system in M. buryatense 5GB1 in condition #3 (0.93) compared with #2 (0.58), #4 (1.31), and #5 (5.24). Dotted arrow indicates multi-step reaction, while solid arrow represents one-step reaction. The numbers in shadow at right-side of protein represent the log2-based changes of differentially expressed gene under condition #3 compared to #2, #4, or #5, respectively. The red shadow means upregulation, while the blue shadow means downregulation.
Quantification of the amount of total protein, pyruvate, NADH, and MMO activity under different CH 4 /O 2 ratio conditions at time point 24 h post inoculation.
Molecular Mechanism Associated With the Impact of Methane/Oxygen Gas Supply Ratios on Cell Growth of Methylomicrobium buryatense 5GB1 Through RNA-Seq

April 2020

·

167 Reads

·

14 Citations

The methane (CH4)/oxygen (O2) gas supply ratios significantly affect the cell growth and metabolic pathways of aerobic obligate methanotrophs. However, few studies have explored the CH4/O2 ratios of the inlet gas, especially for the CH4 concentrations within the explosion range (5∼15% of CH4 in air). This study thoroughly investigated the molecular mechanisms associated with the impact of different CH4/O2 ratios on cell growth of a model type I methanotroph Methylomicrobium buryatense 5GB1 cultured at five different CH4/O2 supply molar ratios from 0.28 to 5.24, corresponding to CH4 content in gas mixture from 5% to 50%, using RNA-Seq transcriptomics approach. In the batch cultivation, the highest growth rate of 0.287 h–1 was achieved when the CH4/O2 supply molar ratio was 0.93 (15% CH4 in air), and it is crucial to keep the availability of carbon and oxygen levels balanced for optimal growth. At this ratio, genes related to methane metabolism, phosphate uptake system, and nitrogen fixation were significantly upregulated. The results indicated that the optimal CH4/O2 ratio prompted cell growth by increasing genes involved in metabolic pathways of carbon, nitrogen and phosphate utilization in M. buryatense 5GB1. Our findings provided an effective gas supply strategy for methanotrophs, which could enhance the production of key intermediates and enzymes to improve the performance of bioconversion processes using CH4 as the only carbon and energy source. This research also helps identify genes associated with the optimal CH4/O2 ratio for balancing energy metabolism and carbon flux, which could be candidate targets for future metabolic engineering practice.

Citations (2)


... All these construction methods are followed by transformation into bacteria. While chemical transformation methods such as PEG (polyethylene glycol) mediated transformation can be used, electroporation-mediated transformation has been preferred due to higher efficiency [98]. Electroporation is relatively easy for direct and high-efficiency insertion of DNA fragments into genome-specific sites when compared with other conjugation-based transformation methods [98]. ...

Reference:

The use of CRISPR-Cas-based systems in bacterial cell factories
Exploration of an Efficient Electroporation System for Heterologous Gene Expression in the Genome of Methanotroph

... Methane serves as both the carbon and energy source for methanotrophs, and oxygen acts as a critical electron acceptor. Maintaining a balanced ratio of carbon and oxygen is essential for their optimal growth [28,29]. Methane monooxygenase (MMO), existing in both soluble (sMMO) and particulate (pMMO) forms, is regulated by copper ions (Cu 2+ ). ...

Molecular Mechanism Associated With the Impact of Methane/Oxygen Gas Supply Ratios on Cell Growth of Methylomicrobium buryatense 5GB1 Through RNA-Seq