Xiang-Sheng Wang’s research while affiliated with University of Louisiana at Lafayette and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (73)


On the periodic solutions of switching scalar dynamical systems
  • Article

January 2025

·

8 Reads

Journal of Differential Equations

Xuejun Pan

·

·

Lin Wang

·

[...]

·

Jianshe Yu

Orthogonal polynomials with periodic recurrence coefficients

December 2024

·

23 Reads

In this paper, we study a class of orthogonal polynomials defined by a three-term recurrence relation with periodic coefficients. We derive explicit formulas for the generating function, the associated continued fraction, the orthogonality measure of these polynomials, as well as the spectral measure for the associated doubly infinite tridiagonal Jacobi matrix. Notably, while the orthogonality measure may include discrete mass points, the spectral measure(s) of the doubly infinite Jacobi matrix are absolutely continuous. Additionally, we uncover an intrinsic connection between these new orthogonal polynomials and Chebyshev polynomials through a nonlinear transformation of the polynomial variables.


A flow diagram of interactions among lizard species in model (1.1)
Illustration of equilibrium BT populations BT∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_T^*$$\end{document} versus the bifurcation parameter m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2$$\end{document}. The solid (dotted) curve means the positive equilibrium E∗=(GA∗,BA∗,BT∗,CT∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*=(G^*_A,B^*_A,B^*_T,C^*_T)$$\end{document} is stable (unstable), and the asterisk stands for the branch point (BP). The parameters are chosen as r3=1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_3=1.2$$\end{document}, β=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =2$$\end{document}, γ=1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =1.3$$\end{document}, σ=0.54\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =0.54$$\end{document}, m1=0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1=0.6$$\end{document}, and θ=0.42\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =0.42$$\end{document}. The other parameter values in the four panels are given as follows:ar1=3.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1=3.5$$\end{document}, r2=3.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2=3.2$$\end{document}, α=0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0.9$$\end{document}; br1=1.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1=1.6$$\end{document}, r2=2.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2=2.3$$\end{document}, α=0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0.9$$\end{document}; cr1=1.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1=1.4$$\end{document}, r2=2.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2=2.3$$\end{document}, α=1.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =1.6$$\end{document} and dr1=1.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1=1.8$$\end{document}, r2=1.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2=1.5$$\end{document}, α=0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0.9$$\end{document}
Stability regions of the equilibria E20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{20}$$\end{document}, E03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{03}$$\end{document} and E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*$$\end{document} in the plane of m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2$$\end{document} and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. The other parameters are chosen as r1=1.48\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_1=1.48$$\end{document}, r2=7.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_2=7.4$$\end{document}, r3=1.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_3=1.2$$\end{document}, α=0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0.9$$\end{document}, β=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =2$$\end{document}, γ=1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =1.3$$\end{document}, m1=0.43\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1=0.43$$\end{document}, and θ=0.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =0.25$$\end{document}. The equilibria listed in the brackets are locally asymptotically stable in the corresponding parameter region. The biological meanings of these five regions are listed as follows. D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_1$$\end{document}: coexistence of all four species; D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_2$$\end{document}: exclusion of GA lizards; D3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_3$$\end{document}: either coexistence of all four species or exclusion of GA lizards; D4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_4$$\end{document}: either exclusion of GA lizards or exclusion of BA and BT lizards; D5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_5$$\end{document}: exclusion of BA and BT lizards. In particular, bistability dynamics of equilibria occurs when the parameters lie in D3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_3$$\end{document} or D4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_4$$\end{document}
Phase orbits of system (1.2) projected on the GA-BA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_A-B_A$$\end{document} plane. The panels (a)-(e) correspond to the parameters in the regions D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_1$$\end{document}-D5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_5$$\end{document}, respectively. In particular, we fix σ=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =3$$\end{document} and choose m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2$$\end{document} to be the following values: (a) m2=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2=2$$\end{document}; (b) m2=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2=8$$\end{document}; (c) m2=10.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2=10.5$$\end{document}; (d) m2=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2=12$$\end{document} and (e) m2=20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2=20$$\end{document}. The red (resp. blue) curves in panels (c) and (d) denote the unstable (resp. stable) manifolds of the saddle equilibria E∗∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^{**}$$\end{document} and E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*$$\end{document}, respectively
Bifurcation diagram of CT lizards with m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_2$$\end{document} as the bifurcation parameter. The red solid (resp. dotted) curve denotes the stable (resp. unstable) E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*$$\end{document}; the blue solid (resp. dotted) curve represents the stable (resp. unstable) E03\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{03}$$\end{document}; the green solid (resp. dotted) curve stands for the stable (resp. unstable) E20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{20}$$\end{document}. Here, LPi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LP_i$$\end{document}, i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2$$\end{document}, and BPj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BP_j$$\end{document}, j=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,3$$\end{document} are the limit points and branch points, respectively. We fix σ=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =3$$\end{document} and choose other parameters as given in Fig. 3. The branch points in Figs. 2 and 5 are different as the parameter values are different

+3

Coexistence or extinction: Dynamics of multiple lizard species with competition, dispersal and intraguild predation
  • Article
  • Publisher preview available

November 2024

·

111 Reads

Journal of Mathematical Biology

Biological invasions significantly impact native ecosystems, altering ecological processes and community behaviors through predation and competition. The introduction of non-native species can lead to either coexistence or extinction within local habitats. Our research develops a lizard population model that integrates aspects of competition, intraguild predation, and the dispersal behavior of intraguild prey. We analyze the model to determine the existence and stability of various ecological equilibria, uncovering the potential for bistability under certain conditions. By employing the dispersal rate as a bifurcation parameter, we reveal complex bifurcation dynamics associated with the positive equilibrium. Additionally, we conduct a two-parameter bifurcation analysis to investigate the combined impact of dispersal and intraguild predation on ecological structures. Our findings indicate that intraguild predation not only influences the movement patterns of brown anoles but also plays a crucial role in sustaining the coexistence of different lizard species in diverse habitats.

View access options

Asymptotics, orthogonality relations and duality for the q and q1q^{-1}-symmetric polynomials in the q-Askey scheme

November 2024

·

3 Reads

In this survey we summarize the current state of known orthogonality relations for the q and q1q^{-1}-symmetric and dual subfamilies of the Askey--Wilson polynomials in the q-Askey scheme. These polynomials are the continuous dual q and q1q^{-1}-Hahn polynomials, the q and q1q^{-1}-Al-Salam--Chihara polynomials, the continuous big q and q1q^{-1}-Hermite polynomials and the continuous q and q1q^{-1}-Hermite polynomials and their dual counterparts which are connected with the big q-Jacobi polynomials, the little q-Jacobi polynomials and the q and q1q^{-1}-Bessel polynomials. The q1q^{-1}-symmetric polynomials in the q-Askey scheme satisfy an indeterminate moment problem, satisfying an infinite number of orthogonality relations for these polynomials. Among the infinite number of orthogonality relations for the q1q^{-1}-symmetric families, we attempt to summarize those currently known. These fall into several classes, including continuous orthogonality relations and infinite discrete (including bilateral) orthogonality relations. Using symmetric limits, we derive a new infinite discrete orthogonality relation for the continuous big q1q^{-1}-Hermite polynomials. Using duality relations, we explore orthogonality relations for and from the dual families associated with the q and q1q^{-1}-symmetric subfamilies of the Askey--Wilson polynomials. In order to give a complete description of the convergence properties for these polynomials, we provide the large degree asymptotics using the Darboux method for these polynomials. In order to apply the Darboux method, we derive a generating function with two free parameters for the q1q^{-1}-Al-Salam--Chihara polynomials which has natural limits to the lower q1q^{-1}-symmetric families.



The parameter estimation for Hubei cumulative data with different last report dates
The parameter estimation for Wuhan cumulative data with different last report dates
Data Fixing by Data Fitting: Estimating the Unreported Cases During the Early COVID-19 Outbreak in Hubei, China

August 2024

·

6 Reads

Journal of Basic & Applied Sciences

On February 13, 2020, the Health Commission of Hubei Province changed the definition of confirmed cases, resulting in a reported daily case number that is significantly larger than on other dates. Such abnormal data points pose a challenge in data fitting and parameter estimation. To address this, we derive a simple formula from the classical Kermack-McKendrick model and introduce a new quantity to capture the number of unreported cases hidden in the data. We then use this new formula to fit the inconsistent data and estimate key epidemic parameters. Based on the reported cumulative case numbers until February 21, 2020, we estimate that the unreported case number in Hubei is 60856 (95% CI: [33513, 91206]), while the unreported case number in Wuhan is estimated as 29374 (95% CI: [18205, 40665]). The peak times in Hubei and Wuhan are February 6, 2020, and February 8, 2020, respectively. The basic reproduction numbers are 2.334 (95% CI: [2.053, 2.711]) for Hubei and 2.189 (95%CI: [1.992, 2.448]) for Wuhan.


The CTL-inactivated steady state E1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_1$$\end{document} is globally asymptotically stable when R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0>1$$\end{document} and R1<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_1<1$$\end{document}
The CTL-activated steady state E2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_2$$\end{document} is globally asymptotically stable when R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0>1$$\end{document} and R1>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_1>1$$\end{document}
Viral infection dynamics with immune chemokines and CTL mobility modulated by the infected cell density

March 2024

·

48 Reads

·

2 Citations

Journal of Mathematical Biology

We study a viral infection model incorporating both cell-to-cell infection and immune chemokines. Based on experimental results in the literature, we make a standing assumption that the cytotoxic T lymphocytes (CTL) will move toward the location with more infected cells, while the diffusion rate of CTL is a decreasing function of the density of infected cells. We first establish the global existence and ultimate boundedness of the solution via a priori energy estimates. We then define the basic reproduction number of viral infection R0R_0 and prove (by the uniform persistence theory, Lyapunov function technique and LaSalle invariance principle) that the infection-free steady state E0E_0 is globally asymptotically stable if R0<1R_0<1. When R0>1R_0>1, then E0E_0 becomes unstable, and another basic reproduction number of CTL response R1R_1 becomes the dynamic threshold in the sense that if R1<1R_1<1, then the CTL-inactivated steady state E1E_1 is globally asymptotically stable; and if R1>1R_1>1, then the immune response is uniform persistent and, under an additional technical condition the CTL-activated steady state E2E_2 is globally asymptotically stable. To establish the global stability results, we need to prove point dissipativity, obtain uniform persistence, construct suitable Lyapunov functions, and apply the LaSalle invariance principle.


Interferometric Synthetic Aperture Radar Statistical Inference in Deformation Measurement and Geophysical Inversion: A review

March 2024

·

218 Reads

·

20 Citations

IEEE Geoscience and Remote Sensing Magazine

With the rapid advancements in synthetic aperture radar (SAR) satellites and associated processing algorithms over recent decades, interferometric SAR (InSAR) has emerged as a routine method for monitoring large-scale ground deformation and interpreting geophysical processes. Statistical inference serves as a major component in InSAR technique developments and applications. This article provides an overview of InSAR deformation measurement and InSAR-constrained geophysical inversion, using a statistical inference point of view. Its objectives are to facilitate understanding of the method by addressing its underlying mathematical challenges. We begin by introducing the concept of statistical inference and the structure of our content organization framework. Next, we investigate the distinct concerns associated with statistical inference in InSAR deformation measurement and InSAR-constrained geophysical inversion. Finally, we propose several significant directions for future research. Table 1 includes abbreviations used throughout this article. Additionally, we highlight relevant resources, such as mathematical background, open source codes, and data repositories, in an appendix, which is available as supplementary material at https://doi.org/10.1109/MGRS.2023.3344159 .


Plots of the q-ultraspherical measure w(λqx,β|q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(\lambda _q x,\beta \,|\,q)$$\end{document} in (4.4) with λq=1-q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _q = \sqrt{1-q}$$\end{document} and β=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 0.5$$\end{document}. In the first row, q is negative and increases from -0.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.9$$\end{document} to -0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.1$$\end{document} with a step size 0.2. While in the second row, q is positive and increases from 0.1 to 0.9 with a step size 0.2
From continuous to discrete: weak limit of normalized Askey–Wilson measure

The Ramanujan Journal

In this paper, we consider the weak limit of the normalized measure for Askey–Wilson polynomials when the parameter q approaches -11-1 from the right. We use two different methods to prove that the weak limit is a discrete measure with two mass points that are symmetric about the origin. The weights on these two mass points are, however, not always the same. We also calculate the weak limit of the q-ultraspherical measure when q approaches a complex root of unity.



Citations (48)


... Remark 2.12: In Theorem 2.11, we derive two formulas for computing the spread rates. Equation (5) facilitates direct computation of the spread rate, while Eq. (4) enables a clearer determination of whether the spread rate is positive. ...

Reference:

Survival properties and spread rates in non-autonomous spread models
Viral infection dynamics with immune chemokines and CTL mobility modulated by the infected cell density

Journal of Mathematical Biology

... The issue of missing environmental monitoring data has long been a focal point for researchers [1]. Various methods have been employed for processing missing values in air quality monitoring data, including linear interpolation [2], mean substitution [3], statistical model-based interpolation [4], machine learning methods [5], deep learning methods [6], and nearest neighbor methods [7]. ...

Interferometric Synthetic Aperture Radar Statistical Inference in Deformation Measurement and Geophysical Inversion: A review
  • Citing Article
  • March 2024

IEEE Geoscience and Remote Sensing Magazine

... Es el caso de Jupyter Notebook, una herramienta gratuita tipo open source, que permite escribir y ejecutar programas utilizando distintos lenguajes de programación (Granger & Perez, 2021). La interfaz que ofrece Jupyter Notebook resulta amigable con el usuario que normalmente no tiene mucha experiencia en el ámbito de la programación (Wang et al., 2023). Un lenguaje de programación que ha ganado popularidad en la comunidad científica es Python, cuyos usuarios suelen elogiar por su sintaxis simple, característica que lo hace fácil de emplear para personas que no tienen experiencia en programación, además de que el acceso a él es gratuito (Perkel, 2015). ...

ATRP Kinetic Simulator: An Online Open Resource Educational Tool Using Jupyter Notebook and Google Colaboratory
  • Citing Article
  • June 2023

Journal of Chemical Education

... They seek the optimal strategy to minimize the total number of infected people while keeping some form of costs at a minimum. There are work focus on mitigating the epidemic with limited medical supply, such as ICU capacity [8], face masks [27] and vaccines [33,16,21,26,19]. In [19], an optimal vaccine distribution strategy is proposed with a limited total amount of vaccines and maximal daily supply. ...

Dynamic optimal allocation of medical resources: a case study of face masks during the first COVID-19 epidemic wave in the United States

Mathematical Biosciences & Engineering

... Since the outbreak of the COVID-19 epidemic, a large number of models have been proposed to describe, simulate, and forecast its transmission rule. Some models are individualbased [9] or multi-scale [10], some models are based on cells and viruses [11] or stochastic processes [12,13], and others are developments of classical SIR and SEIR models [14][15][16][17][18][19][20]. On the other hand, there are a lot of studies about control measures. ...

The importance of quarantine: modelling the COVID-19 testing process

Journal of Mathematical Biology

... A novel approach based on subset interpolation is proposed by improved Lagrange polynomials for the case of uneven distribution of rectangular grids in Chen et al. 20 A new format of Lagrange basis polynomials over regular schemes of chords has been introduced for surface reconstruction based on line integrals along segments of the unit disk in Georgieva and Uluchev. 21 Additionally, novel Lagrange interpolation basis functions based on rectangular grid nodes to enhance accuracy have been introduced in Cao et al. 22 and Harris. 23 Regarding cubic spline interpolation, research often centers on optimizing spline curve nodes. ...

Bivariate Lagrange interpolation at the checkerboard nodes
  • Citing Article
  • February 2022

Proceedings of the American Mathematical Society

... A fundamental model for HIV-1 dynamics inside the host was developed by Nowak and Bangham [39], and it depicts the interactions between uninfected CD4 + T cells (T ), infected cells (T * ), and free HIV-1 particles (H). The model has now been expanded in a number of ways, including the inclusion of the effects of the CTL response [6,10,39,48,56] and the antibody response [11,36,45,57,58,67]. Wodarz [59] studied a viral dynamics model that included both CTL and antibody immunity as: ...

Viral dynamics with immune responses: effects of distributed delays and Filippov antiretroviral therapy

Journal of Mathematical Biology

... She, Lao, Yang, and system. Note that due to different discretization schemes in time, the parallel-in-time direct solver proposed in [28] is not suitable for the time-space fractional inverse source problem yet. According to the generating function of multi-level Toeplitz block, we design a sine transform based preconditioner by replacing the symmetric multi-level Toeplitz block in the coefficient matrix with a novel multi-level τ -matrix [5]. ...

A direct parallel-in-time quasi-boundary value method for inverse space-dependent source problems
  • Citing Article
  • November 2022

Journal of Computational and Applied Mathematics

... [30,31] reported changes in a variance inflation factor (VIF) regression model and a linear regression model; the authors of ref. [32] considered changes in parameters using the Shiryaev-Roberts statistics; in ref. [33], the change of covariance structure in multivariate time series were considered; refs. [34][35][36] considered multiple change-points; in ref. [37], the authors investigated a Bayesian method for the change-point; the authors of ref. [38] investigated a new class of weighted CUSUM estimators of the mean change-point; in ref. [39], the least sum of the squared error (LSSE) and maximum log-likelihood (MLL) methods in the estimation of the change-point were examined; in ref. [40], multivariate change-points in a mean vector and/or covariance structure were considered; and ref. [41] discussed a CUSUM estimator in an ARMA-GARCH model. Furthermore, a test for the detection of outliers for continuous distribution data was investigated in [42]; refs. ...

A New Class of Weighted CUSUM Statistics

Entropy

... Some models take into account the spatial structure of the modeled system. Partial differential equations with diffusion terms are then used (recently, for example, [16]). This creates another type of difficulty in interpreting the results. ...

Spatiotemporal patterns of a structured spruce budworm diffusive model
  • Citing Article
  • November 2022

Journal of Differential Equations