Wim H. van der Putten's research while affiliated with Wageningen University & Research and other places

Publications (544)

Article
Plant and soil microbial community composition play a central role in maintaining ecosystem functioning. Most studies have focused on soil microbes in the bulk soil, the rhizosphere and inside plant roots, however, less is known about the soil community that exists within soil aggregates, and how these soil communities influence plant biomass produ...
Article
Full-text available
The GHG (CO2, CH4, N2O) emission potential along a chronosequence of former agricultural soils abandoned for 9 to 32 years were compared to an actively managed (on-going) agricultural soil (reference). The soils were incubated in mesocosms with and without manure amendment, and microbial functional groups involved in nitrous oxide emission were qua...
Article
Full-text available
Anthropogenic climate change is increasing the incidence of climate extremes. Consequences of climate extremes on biodiversity can be highly detrimental, yet few studies also suggest beneficial effects of climate extremes on certain organisms. To obtain a general understanding of ecological responses to climate extremes, we present a review of how...
Article
Full-text available
It is generally assumed that the dependence of conventional agriculture on artificial fertilizers and pesticides strongly impacts the environment, while organic agriculture relying more on microbial functioning may mitigate these impacts. However, it is not well known how microbial diversity and community composition change in conventionally manage...
Chapter
With the growing interest in aviation biofuels, various production alternatives have been developed and assessed, indicating that aviation biofuels have the potential to reduce emissions when compared to fossil-based kerosene. However, existing approaches for the design and ex-ante assessment of biofuel production tend to focus on techno-economic f...
Article
Full-text available
Current climate change causes range shifts of many species to higher latitudes and altitudes, and enhances their exposure to extreme weather events. It has been shown that range shifting plant species may perform differently in the new soil than related natives, however, little is known about how extreme weather events influence range-expanding pla...
Article
Full-text available
Beneficial soil microbes can enhance plant growth and defense, but the extent to which this occurs depends on the availability of resources, such as water and nutrients. However, relatively little is known about the role of light quality, which is altered during shading, resulting a low red: far-red ratio (R:FR) of light. We examined how low R:FR l...
Article
Evaluation of restoration activities is indispensable to assess the extent to which targets have been reached. Usually, the main goal of ecological restoration is to restore biodiversity and ecosystem functioning, but validation is often based on a single indicator, which may or may not cope with whole‐ecosystem dynamics. Network analyses are, howe...
Article
Is de veerkracht van onze bomen en bossen toereikend om hetere en drogere periodes en aanhoudende bodemverzuring in de toekomst te overleven? Welke bosbeheermaatregelen zijn mogelijk en nodig om de verschillende bosfuncties te behouden? Om deze vragen te beantwoorden en de gevolgen van klimaatverandering en bodemverzuring in kaart te brengen zijn w...
Article
Organisms throughout the tree of life accumulate chemical resources, in particular forms or compartments, to secure their availability for future use. Here we review microbial storage and its ecological significance by assembling several rich but disconnected lines of research in microbiology, biogeochemistry, and the ecology of macroscopic organis...
Article
Full-text available
Aims Numerous organisms show range expansions in response to current climate change. Differences in expansion rates, such as between plants and soil biota, may lead to altered interactions in the new compared to the original range. While plant-soil interactions influence plant performance and stress tolerance, the roles of specific soil organisms d...
Article
Full-text available
Establishment and growth of grassland plant species is generally promoted by arbuscular mycorrhizal fungi (AMF) when grown in isolation. However, in grassland communities AMF form networks that may connect individual plants of different ages within and between species. Here, we use an in‐growth core approach to examine how mycorrhizal networks infl...
Article
Global change frequently disrupts the connections among species, as well as among species and their environment, before the most obvious impacts can be detected. Therefore, we need to develop a unified conceptual framework that allows us to predict early ecological impacts under changing environments. The concept of coupling, defined as the multipl...
Article
Full-text available
Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provid...
Article
Full-text available
Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provid...
Article
Full-text available
Embedded in longer term warming are extreme climatic events such as heatwaves and droughts that are increasing in frequency, duration and intensity. Changes in climate attributes such as temperature are often measured over larger spatial scales, whereas environmental conditions to which many small ectothermic arthropods are exposed are largely dete...
Article
Plant–soil feedback (PSF) and diversity–productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity–productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relatio...
Article
Full-text available
Biobased production has been promoted as an alternative to fossil‐based production to mitigate climate change. However, emerging concerns over the sustainability of biobased products have shown that tensions can emerge between different objectives and concerns, like emission reduction targets and food security, and that these are dependent on local...
Article
Full-text available
Plant-soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here,...
Article
Full-text available
The mycobiome (fungal microbiome) influences plants— from seed germination to full maturation. While many studies on fungal‐plant interaction studies have focused on known mutualistic and pathogenic fungi, the functional role of ubiquitous endophytic fungi remains little explored. We examined how root‐inhabiting fungi (endophytes) influence range e...
Article
It is generally assumed that restoring biodiversity will enhance diversity and ecosystem functioning. However, to date, it has rarely been evaluated whether and how restoration efforts manage to rebuild biodiversity and multiple ecosystem functions (ecosystem multifunctionality) simultaneously. Here, we quantified how three restoration methods of i...
Article
Despite the advantages of the next generation sequencing (NGS) techniques, one of their caveats is that they do not differentiate between microbes that are actively participating in carbon cycling in the rhizosphere and microbes performing other functions in the soils. Here we combined DNA-SIP with NGS to investigate which rhizosphere fungi activel...
Article
Full-text available
Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground...
Article
Full-text available
Climate change is known to disrupt aboveground food chains when the various trophic layers respond differently to warming. However, little is known about belowground food chains involving microbial preys and their predators. Here, we study how climate warming-induced heat shocks influence resistance (change immediately after a disturbance) and resi...
Article
Full-text available
Climate change causes species range expansions to higher latitudes and altitudes. It is expected that, due to differences in dispersal abilities between plants and soil biota, range-expanding plant species will become associated with a partly new belowground community in their expanded range. Theory on biological invasions predicts that outside the...
Article
Full-text available
The restoration of Nardus grasslands is often hampered by high bioavailability of soil phosphorus and disturbed soil communities. In order to better understand these bottlenecks, we studied Nardus grassland species grown together in communities with fast-growing species in 50-liter pots along a gradient of bioavailable phosphorus with or without in...
Article
Full-text available
Increasing frequency and magnitude of climatic extremes, such as heat waves are expected to enhance abiotic stresses on ecological communities. It has been proposed that ecological communities in disturbed habitats may be most sensitive to climatic extremes, as disturbance may reduce density and diversity of higher trophic level organisms like pred...
Article
The influence of temperature on mineralization of plant litter and pre-existing soil organic matter (SOM) involves not only the prevailing temperature, but also how it has changed through time. However, little is known about how temperature variability through time influences mineralization processes. Here, we investigated how short-term temperatur...
Article
As a model for genetic studies, Arabidopsis thaliana (Arabidopsis) offers great potential to unravel plant genome-related mechanisms that shape the root microbiome. However, the fugitive life history of this species might have evolved at the expense of investing in capacity to steer an extensive rhizosphere effect. To determine whether the rhizosph...
Article
Full-text available
Coupled ecosystems may offer a wider array of highly valuable ecosystem services. However, empirical evidence supporting the role of ecosystem coupling for the functioning of ecosystems and the mechanisms driving the coupling-functioning relationship is scarce. Moreover, global environmental change may decouple ecological interactions and biogeoche...
Article
Multiple large-scale restoration strategies are emerging globally to counteract ecosystem degradation and biodiversity loss. However, restoration often remains insufficient to offset that loss. To address this challenge, we propose to focus restoration science on the long-term (centuries to millennia) re-assembly of degraded ecosystem complexity in...
Article
Full-text available
As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional...
Article
Full-text available
Plant-soil feedbacks (PSFs) are interactions among plants, soil organisms, and abiotic soil conditions that influence plant performance, plant species diversity, and community structure, ultimately driving ecosystem processes. We review how climate change will alter PSFs and their potential consequences for ecosystem functioning. Climate change inf...
Article
Full-text available
Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, a...
Article
Full-text available
Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, a...
Article
Full-text available
Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, a...
Data
This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S6 Tables S1 to S4 References
Data
This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S6 Tables S1 to S4 References
Data
This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S6 Tables S1 to S4 References
Data
This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S6 Tables S1 to S4 References
Data
This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S6 Tables S1 to S4 References
Article
Full-text available
Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, a...
Article
Increasing aridity under global change is predicted to have a profound impact on the structure and functioning of terrestrial ecosystems, yet we have a poor understanding of how belowground communities respond. In order to understand the longer term responses of different trophic levels in the soil food web to increasing aridity, we investigated th...
Article
Full-text available
Soil faunal activity can be a major control of greenhouse gas (GHG) emissions from soil. Effects of single faunal species, genera or families have been investigated, but it is unknown how soil fauna diversity may influence emissions of both carbon dioxide (CO2, end product of decomposition of organic matter) and nitrous oxide (N2O, an intermediate...
Article
Biodiversity on Earth is strongly affected by human alterations to the environment. The majority of studies have considered aboveground biodiversity, yet little is known about whether biodiversity changes belowground follow the same patterns as those observed aboveground. It is now established that communities of soil biota have been substantially...
Article
For many species, human-induced environmental changes are important indirect drivers of range expansion into new regions. We argue that it is important to distinguish the range dynamics of such species from those that occur without, or with less clear, involvement of human-induced environmental changes. We elucidate the salient features of the rapi...
Article
Full-text available
Interactions between aboveground and belowground organisms are important drivers of plant growth and performance in natural ecosystems. Making practical use of such above-belowground biotic interactions offers important opportunities for enhancing the sustainability of agriculture, as it could favor crop growth, nutrient supply, and defense against...
Article
Full-text available
Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 geore...
Article
Full-text available
Human travel and global trade have tremendously increased the spread of invasive microorganisms in new regions. Experimental and observational studies in terrestrial ecosystems are beginning to shed light on processes of microbial invasions, their ecological impacts and implications for ecosystem functioning. We provide examples of terrestrial inva...
Article
Full-text available
Recent demonstrations of the role of plant–soil biota interactions have challenged the conventional view that vegetation changes are mainly driven by changing abiotic conditions. However, while this concept has been validated under natural conditions, our understanding of the long‐term consequences of plant–soil interactions for above‐belowground c...
Preprint
Soil organisms provide crucial ecosystem services that support human life. However, little is known about their diversity, distribution, and the threats affecting them. Here, we compiled a global dataset of sampled earthworm communities from over 7000 sites in 56 countries to predict patterns in earthworm diversity, abundance, and biomass. We ident...
Article
Soils are among the most biodiverse and densely inhabited environments on our planet. However, there is little understanding of spatial distribution patterns of belowground biota, and this hampers progress in understanding species interactions in belowground communities. We investigated the spatial distribution of nematodes, which are highly abunda...
Article
Insect pollination is a well-studied ecosystem service that supports production in 75% of globally important crops. Although yield is known to be sustained and regulated by a bundle of ecosystem services and management factors, the contribution of pollination to yield has been mostly studied in isolation. Here, we compiled and reviewed research on...
Article
1.Successful restoration of semi‐natural grasslands on grasslands previously subject to intensive management needs to overcome manifold barriers. These include high soil fertility, the dominance of a few fast‐growing plant species, degraded soil faunal communities, and missing propagules of the targeted above‐ and belowground flora and fauna. A com...
Article
Full-text available
Current climate change has led to latitudinal and altitudinal range expansions of numerous species. During such range expansions, plant species are expected to experience changes in interactions with other organisms, especially with belowground biota that have a limited dispersal capacity. Nematodes form a key component of the belowground food web...
Article
Increasing evidence suggests that specific interactions between microbial decomposers and plant litter, named home field advantage (HFA), influence litter breakdown. However, we still have limited understanding of whether HFA relates to specific microbiota, and whether specialized microbes originate from the soil or from the leaf microbiome. Here,...
Article
Full-text available
Plant-soil feedbacks contribute to vegetation dynamics by species-specific interactions between plants and soil biota. Variation in plant-soil feedbacks can be predicted by root traits, successional position, and plant nativeness. However, it is unknown whether closely related plant species develop more similar plant-soil feedbacks than more distan...
Article
Full-text available
Plant range expansion is occurring at a rapid pace, largely in response to human-induced climate warming. Although the movement of plants along latitudinal and altitudinal gradients is well-documented, effects on belowground microbial communities remain largely unknown. Furthermore, for range expansion, not all plant species are equal: in a new ran...
Article
Full-text available
Introduced exotic plant species that originate from other continents are known to alter soil microbial community composition and nutrient cycling. Plant species that expand range to higher latitudes and altitudes as a consequence of current climate warming might as well affect the composition and functioning of native soil communities in their new...
Article
Full-text available
We assembled communities of bacteria and exposed them to different nutrient concentrations with or without predation by protists. Taxa that were rare in the field were less abundant at low nutrient concentrations than common taxa, independent of predation. However, some taxa that were rare in the field became highly abundant in the assembled commun...